When Everything On Earth Died

Based on fossil records, 250 million years ago over 90% of all species on Earth died out, effectively resetting evolution. (Image: Lunar and Planetary Institute)

[/caption]

Hey, remember that one time when 90% of all life on Earth got wiped out?

I don’t either. But it’s a good thing it happened because otherwise none of us would be here to… not remember it. Still, the end-Permian Extinction — a.k.a. the Great Dying — was very much a real crisis for life on Earth 252 million years ago. It makes the K-T extinction event of the dinosaurs look like a rather nice day by comparison, and is literally the most catastrophic event known to have ever befallen Earthly life. Luckily for us (and pretty much all of the species that have arisen since) the situation eventually sorted itself out. But how long did that take?

An alien Earth: what our planet looked like during the time of the Permian Extinction. (Via The Planetary Habitability Laboratory @ UPR Arecibo, NASA, Ron Blakey and Colorado Plateau Geosystems, Inc., and The PaleoMap Project)

The Permian Extinction was a perfect storm of geological events that resulted in the disappearance of over 90% of life on Earth — both on land and in the oceans. (Or ocean, as I should say, since at that time the land mass of Earth had gathered into one enormous continent — called Pangaea — and thus there was one ocean, referred to as Panthalassa.) A combination of increased volcanism, global warming, acid rain, ocean acidification and anoxia, and the loss of shallow sea habitats (due to the single large continent) set up a series of extinctions that nearly wiped our planet’s biological slate clean.

Exactly why the event occurred and how Earth returned to a state in which live could once again thrive is still debated by scientists, but it’s now been estimated that the recovery process took about 10 million years.

(Read: Recovering From a Mass Extinction is Slow Going)

Research by Dr. Zhong-Qiang Chen from the China University of Geosciences in Wuhan, and Professor Michael Benton from the University of Bristol, UK, show that repeated setbacks in conditions on Earth continued for 5 to 6 million years after the initial wave of extinctions. It appears that every time life would begin to recover within an ecological niche, another wave of environmental calamities would break.

“Life seemed to be getting back to normal when another crisis hit and set it back again,” said Prof. Benton. “The carbon crises were repeated many times, and then finally conditions became normal again after five million years or so.”

“The causes of the killing – global warming, acid rain, ocean acidification – sound eerily familiar to us today. Perhaps we can learn something from these ancient events.”

– Michael Benton, Professor of Vertebrate Palaeontology at the University of Bristol

It wasn’t until the severity of the crises abated that life could gradually begin reclaiming and rebuilding Earth’s ecosystems. New forms of life appeared, taking advantage of open niches to grab a foothold in a new world. It was then that many of the ecosystems we see today made their start, and opened the door for the rise of Earth’s most famous prehistoric critters: the dinosaurs.

“The event had re-set evolution,” said Benton. “However, the causes of the killing – global warming, acid rain, ocean acidification – sound eerily familiar to us today. Perhaps we can learn something from these ancient events.”

The team’s research was published in the May 27 issue of Nature Geoscience. Read more on the University of Bristol’s website here.

Awesome Video of a Dragon’s Descent!

Dragon's Apollo-esque drogue chutes deployed (NASA)


Just in from SpaceX and NASA, here’s a video of the descent of the Dragon capsule on the morning of May 31, 2012.

[/caption]

Taken from a chase plane, the footage shows the spacecraft’s dramatic chute deployment and splashdown into the Pacific at 8:42 a.m. PT, approximately 560 miles southwest off the coast of Los Angeles. The event marked the end of a successful and historic mission that heralds a new era of commercial spaceflight in the U.S.

Read more about the completion of the first Dragon mission here.

Video: NASA

Astronomers Take “Baby Picture” of an Incredibly Distant Galaxy

False-color image of galaxy LAEJ095950.99+021219.1 (Credit: James Rhoads/ASU)

[/caption]

Astronomers from Arizona State University have grabbed an image of a dim, distant galaxy, seeing it as it looked only 800 million years after the birth of the Universe. Visible above as a green blob in the center of a false-color image acquired with the Magellan Telescopes at the Las Campanas Observatory in Chile, the galaxy is seen in its infancy and, at 13 billion light-years away, is one of the ten most distant objects ever discovered.

The galaxy, designated LAEJ095950.99+021219.1, was detected by light emitted by ionized hydrogen using the Magellan Telescopes’ IMACS (Inamori-Magellan Areal Camera & Spectrograph) instrument, built at the Carnegie Institute in Washington. In order to even find such a remote object — whose existence had already been suspected — the team had to use a special narrow-band filter on the IMACS instrument designed to isolate specific wavelengths of light.

“Young galaxies must be observed at infrared wavelengths and this is not easy to do using ground-based telescopes, since the Earth’s atmosphere itself glows and large detectors are hard to make,” said team leader Sangeeta Malhotra, an associate professor at ASU who helped develop the technique.

“As time goes by, these small blobs which are forming stars, they’ll dance around each other, merge with each other and form bigger and bigger galaxies. Somewhere halfway through the age of the universe they start looking like the galaxies we see today – and not before.”

– Sangeeta Malhotra, ASU professor 

LAEJ095950.99+021219.1 is seen at a redshift of 7, putting it farther away than any other objects previously discovered using the narrow-band technique.

(What is redshift? Watch “How To Measure The Universe” here.)

“We have used this search to find hundreds of objects at somewhat smaller distances. We have found several hundred galaxies at redshift 4.5, several at redshift 6.5, and now at redshift 7 we have found one,” said James Rhoads, associate professor at ASU and research team leader.

“This image is like a baby picture of this galaxy, taken when the universe was only 5 percent of its current age. Studying these very early galaxies is important because it helps us understand how galaxies form and grow.”

So why does LAEJ095950.99+021219.1 not look much like the galaxies we’re used to seeing in images?

Malhotra explains: “Somewhere halfway through the age of the universe they start looking like the galaxies we see today – and not before. Why, how, when, where that happens is a fairly active area of research.”

The team’s NSF-funded research was published in Astrophysical Journal Letters. Read more on Phys.Org News here.

A Rare Type of Solar Storm Spotted by Satellite

Artist's impression of cosmic rays striking Earth (Simon Swordy/University of Chicago, NASA)

[/caption]

When a moderate-sized M-class flare erupted from the Sun on May 17, it sent out a barrage of high-energy solar particles that belied its initial intensity. These particles traveled at nearly the speed of light, crossing the 93 million miles between the Sun and Earth in a mere 20 minutes and impacting our atmosphere, causing cascades of neutrons to reach the ground — a rare event known as a ground level enhancement, or GLE.

The first such event since 2006, the GLE was recorded by a joint Russian/Italian spacecraft called PAMELA and is an indicator that the peak of solar maximum is on the way.

The PAMELA spacecraft — which stands for Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics — is designed to detect high-energy cosmic rays streaming in from intergalactic space. But on May 17, scientists from NASA’s Goddard Space Flight Center convinced the Russian team  in charge of PAMELA to grab data from the solar event occurring much closer to home.

This graph shows the neutrons detected by a neutron detector at the University of Oulu in Finland from May 16 through May 18, 2012. (University of Oulu/NASA's Integrated Space Weather Analysis System)

The result: the first observations from space of the solar particles that trigger the neutron storms that make up a GLE. Scientists hope to use the data to learn more about how GLEs are created, and why the May 17 “moderate” solar flare ended up making one.

“Usually we would expect this kind of ground level enhancement from a giant coronal mass ejection or a big X-class flare,” said Georgia de Nolfo, a space scientist at NASA’s Goddard Space Flight Center. “So not only are we really excited that we were able to observe these particularly high energy particles from space, but we also have a scientific puzzle to solve.”

Fewer than 100 GLEs have been recorded in the last 70 years, with the most powerful having occurred on February 23, 1956. Like most energetic solar outbursts, GLEs can have disruptive effects on sensitive electronics in orbit as well as on the ground, and based on recent studies may even have adverse effects on cellular systems and development.

The M-class flare from AR 1476 on May 17, 2012 (at right) Courtesy NASA/SDO and the AIA science team.

Read more on the NASA news release here.

Was Pluto Ever REALLY a Planet?

Pluto, Charon, Nix and Hydra (NASA)

Ever since the infamous 2006 reclassification of Pluto off the list of “official” planets (which had a rather incendiary effect on many of the distant world’s Earthly fans) the term “planet” has been seen by some as a variable one, difficult to define and apparently able to be given and taken away. But was Pluto ever really deserving of the title to begin with?

This fun info-animation by C.G.P. Grey suggests that it wasn’t, and offers a compelling explanation why.

[/caption]

Grey writes on his blog:

“To my constant surprise the issue of Pluto’s planetary status — which I think should be a dry technical issue — really gets people riled. But it’s also been my experience that the people who most want Pluto to be a planet know the least about it and the history of its discovery. So, I hope that this video can help correct that a little bit.”

We still love you, Pluto, no matter what you are!

See more of Grey’s excellent animations on YouTube here.

A Tribute to Hubble… and Humanity

Here’s a excellent video compilation featuring images from the Hubble Space Telescope, along with music by Kanye West and quotes from astronomers Neil deGrasse Tyson, Lawrence Krauss and Carl Sagan reflecting on our place in the Universe… and the Universe’s place within each of us.

Uploaded to YouTube by video editor Brandon Fibbs, this is a reminder of how Hubble has opened our eyes to the wonders of the cosmos. Enjoy.

“The cosmos is also within us. We’re made of star stuff… we are a way for the cosmos to know itself.”
– Carl Sagan

Worlds Without Suns: Nomad Planets Could Number In The Quadrillions

Artist's concept of a free-floating Jupiter-like planet. (NASA / JPL-Caltech)

[/caption]

The concept of nomad planets has been featured before here on Universe Today, and for good reason. Not only is the idea of mysterious lone planets drifting sunless through interstellar space an intriguing one, but also the sheer potential quantity of such worlds is simply staggering. If some very well-respected scientists’ calculations are correct there are more nomad planets in our Milky Way galaxy than there are stars — a lot more. With estimates up to 100,000 nomad planets for every star in the galaxy, there could be literally quadrillions of wandering worlds out there, ranging in size from Pluto-sized to even larger than Jupiter.

That’s a lot of nomads. But where did they all come from?

Recently, The Kavli Foundation had a discussion with several scientists involved in nomad planet research. Roger D. Blandford, Director of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University, Dimitar D. Sasselov, Professor of Astronomy at Harvard University and Louis E. Strigari, Research Associate at KIPAC and the SLAC National Accelerator Laboratory talked about their findings and what sort of worlds these nomad planets might be, as well as how they may have formed.

One potential source for nomad planets is forceful ejection from solar systems.

“Most stars form in clusters, and around many stars there are protoplanetary disks of gas and dust in which planets form and then potentially get ejected in various ways,” said Strigari. “If these early-forming solar systems have a large number of planets down to the mass of Pluto, you can imagine that exchanges could be frequent.”

And the possibility of planetary formation outside of stellar disks is not entirely ruled out by the researchers — although they do impose a lower limit to the size of such worlds.

“Theoretical calculations say that probably the lowest-mass nomad planet that can form by that process is something around the mass of Jupiter,” said Strigari. “So we don’t expect that planets smaller than that are going to form independent of a developing solar system.”

“This is the big mystery that surrounds this new paper. How do these smaller nomad planets form?” Sasselov added.

Of course, without a sun of their own to supply heat and energy one might assume such worlds would be cold and inhospitable to life. But, as the researchers point out, that may not always be the case. A nomad planet’s internal heat could supply the necessary energy to fuel the emergence of life… or at least keep it going.

“If you imagine the Earth as it is today becoming a nomad planet… life on Earth is not going to cease,” said Sasselov. “That we know. It’s not even speculation at this point. …scientists already have identified a large number of microbes and even two types of nematodes that survive entirely on the heat that comes from inside the Earth.”

Researcher Roger Blandford also suggested that “small nomad planets could retain very dense, high-pressure ‘blankets’ around them. These could conceivably include molecular hydrogen atmospheres or possibly surface ice that would trap a lot of heat. They might be able to keep water liquid, which would be conducive to creating or sustaining life.”

And so with all these potentially life-sustaining planets knocking about the galaxy,  is it possible that they could have helped transport organisms from one solar system to another? It’s a concept called panspermia, and it’s been around since at least the 5th century BCE when the Greek philosopher Anaxagoras first wrote about it. (We’ve written about it too, as recently as three weeks ago, and it’s still a much-debated topic.)

“In the 20th century, many eminent scientists have entertained the speculation that life propagated either in a directed, random or malicious way throughout the galaxy,” said Blandford. “One thing that I think modern astronomy might add to that is clear evidence that many galaxies collide and spray material out into intergalactic space. So life can propagate between galaxies too, in principle.

There could be quadrillions of nomad planets in our galaxy alone -- and they could even be ejected into intergalactic space. (Image: ESO/S.Brunier)

“And so it’s a very old speculation, but it’s a perfectly reasonable idea and one that is becoming more accessible to scientific investigation.”

Nomad planets may not even be limited to the confines of the Milky Way. Given enough of a push, they could be sent out of the galaxy entirely.

“Just a stellar or black hole encounter within the galaxy can, in principle, give a planet the escape velocity it needs to be ejected from the galaxy. If you look at galaxies at large, collisions between them leads a lot of material being cast out into intergalactic space,” Blandford said.

The discussion is a fascinating one and can be found in its entirety on The Kavli Foundation’s site here, and watch a recorded interview between Louis Strigari and journalist Bruce Lieberman here.

The Kavli Foundation, based in Oxnard, California, is dedicated to the goals of advancing science for the benefit of humanity and promoting increased public understanding and support for scientists and their work.

Write Your Name In Galaxies!

The name of everyone's favorite space news blog written in starlight!

[/caption]

Ever wanted to see your name in lights? How about star lights? Well there’s a fun little website that will let you assemble your name — or anything you want to say — using real galaxies as the letters… very cool!

Created by UK astronomer Steven Bamford, My Galaxies uses actual images of galaxies acquired through the Sloan Digital Sky Survey and Galaxy Zoo projects to create your message, which you can then share on Facebook, Twitter or email. You can even download a high-res version of the resulting PNG image (although I did find that I had to open the file in Photoshop and add a layer filled with black behind the galaxified letters, in order to clear out some background noise. Perhaps this can be fixed in the future.)

It’s a nice bit of coding, and makes for a cool banner or message for your favorite starry-eyed individual. Check it out!

“Really? There are galaxies that look like letters? OK, S and Z I can believe, but M? H? R? Capitals or little letters? What about punctuation, or numbers? Well, there aren’t many, but when you’ve got pictures of millions of galaxies and an energetic group of Zooites there isn’t much that can stay hidden!”

– Steven Bamford

Make your own My Galaxy message and read more about how it’s done here.

(Tip of the star-studded hat to Jennifer Oullette for the heads-up!)

Fly To Space For $320!

JP Aerospace's MiniCube program can send your stuff to the "edge of space"

[/caption]

Ok, at 100,000 feet it’s not really “space” but for $320 USD JP Aerospace is offering a very affordable way to get your research experiment, brand statement, artwork or anything you can imagine (and that fits into a 50mm cube, weight limits apply) into the upper atmosphere. Pretty cool!

Touting its program as “stomping down the cost of space”,  Rancho Cordova, California-based JP Aerospace (America’s OTHER Space Program) is offering its MiniCube platform to anyone who wants to get… well, something… carried up to 100,000 feet.

The plastic MiniCubes are each 1mm-thick, 48mm wide and 50mm high. Their bases have a standard tripod mount, and the MiniCubes can be cut, drilled, printed and/or modified within parameters before being mailed back to JPA for flight. Once the MiniCubes are flown, they are returned to their customers along with a data sheet and a CD of images from the mission. All for $320!

Again, it may not technically be “space”, but the view’s not bad.

Where MiniCubes go: a photo from a JPA balloon platform (JP Aerospace)

At the time of this writing there are 20 spaces available for the next JPA high-altitude balloon flight on September 22.

Find out more about JPA, MiniCubes, size specifications and how to purchase a space on the next flight here.

All images via JPAerospace.com

A Twisting Tale of Space Solar Power

The University of Strathclyde's Dr. Massimiliano Vasile with a prototype of a SAM module

[/caption]

The dream of clean, consistent and renewable space solar power may become a reality, thanks to new research being done at The University of Strathclyde in Glasgow, Scotland.

The concept of space solar power — gathering solar energy with satellites in low-Earth orbit and “beaming” it down to collection stations on the ground — has been around for decades, but technology restrictions and prohibitive costs have kept it in the R&D phases, with some doubting that it will ever happen at all.

Now, researcher Dr. Massimiliano Vasile, of the University of Strathclyde’s Department of Mechanical and Aerospace Engineering, has announced his team’s development of modular devices that could be used to gather solar energy in orbit, working atop an experimental “space web” structure developed by graduate students at the university’s Department of Mechanical and Aerospace Engineering.

“By using either microwaves or lasers we would be able to beam the energy back down to earth, directly to specific areas. This would provide a reliable, quality source of energy and would remove the need for storing energy coming from renewable sources on ground as it would provide a constant delivery of solar energy.”

– Dr. Massimiliano Vasile, University of Strathclyde

The web structure, part of an experiment called Suaineadh — which means “twisting” in Scottish Gaelic (and I believe it’s pronounced soo-in-ade but correct me if I’m wrong) — is made of a central hub that would go into orbit and release a square web of material that’s weighted at the corners. The whole apparatus would spin, keeping its shape via centrifugal force and providing a firm structure that other devices could build upon and attach to.

The Suaineadh experiment was successfully launched on March 19 aboard a Swedish sounding rocket and while it appears that the components worked as expected, communication was lost after ejection. As a result the central hub — with all its data — couldn’t be located after landing. A recovery mission is planned for this summer.

Meanwhile, Dr. Vasile is still confident that his team’s space solar project, called SAM, can help provide space solar power to remote locations.

A single inflatable SAM cell (M. Vasile)

“The current project, called SAM (Self-inflating Adaptable Membrane) will test the deployment of an ultra light cellular structure that can change shape once deployed,” Dr. Vasile explains. “The structure is made of cells that are self-inflating in vacuum and can change their volume independently through nanopumps.

“The independent control of the cells would allow us to morph the structure into a solar concentrator to collect the sunlight and project it on solar arrays. The same structure can be used to build large space systems by assembling thousands of small individual units.”

By collecting solar energy in space, where the constraints of day and night or weather variability are nonexistent, the satellites could ultimately beam clean energy down to otherwise off-the-grid locales.

“In areas like the Sahara desert where quality solar power can be captured, it becomes very difficult to transport this energy to areas where it can be used,” says Dr. Vasile. “However, our research is focusing on how we can remove this obstacle and use space based solar power to target difficult to reach areas.

“By using either microwaves or lasers we would be able to beam the energy back down to earth, directly to specific areas. This would provide a reliable, quality source of energy and would remove the need for storing energy coming from renewable sources on ground as it would provide a constant delivery of solar energy.”

If successful, the Suaineadh/SAM project could develop into a source of renewable energy for not only small, remote locations but also neighborhoods, towns and perhaps even entire cities.

“Initially, smaller satellites will be able to generate enough energy for a small village but we have the aim, and indeed the technology available, to one day put a large enough structure in space that could gather energy that would be capable of powering a large city,” Dr. Vasile says.

Read more on the University of Strathclyde Glasgow’s site here.

Image credits: The University of Strathclyde. The project is part of a NASA Institute for Advanced Concepts (NIAC) study.