Is Earth Alive? Scientists Seek Sulfur For An Answer

Image of Earth taken by ESA's Rosetta spacecraft in 2009

[/caption]

Researchers at the University of Maryland have discovered a way to identify and track sulfuric compounds in Earth’s marine environment, opening a path to either refute or support a decades-old hypothesis that our planet can be compared to a singular, self-regulating, living organism — a.k.a. the Gaia theory.

Proposed by scientists James Lovelock and Lynn Margulis in the 70s, the Gaia theory likens Earth to a self-supporting singular life form, similar to a cell. The theory claims that, rather than being merely a stage upon which life exists, life — in all forms — works to actively construct an Earthly environment in which it can thrive.

Although named after the Greek goddess of Earth, the Gaia theory is not so much about mythology or New Age mysticism as it is about biology, chemistry and geology — and how they all interact to make our world suitable for living things.

Once called the Gaia hypothesis, enough scientific cross-disciplinary support has since been discovered that it’s now commonly referred to as a theory.

Marine phytoplankton -- like these diatoms -- may produce sulfur compounds that can be transmitted into the air, affecting climate. (NOAA image)

One facet of the Gaia theory is that sulfur compounds would be created by microscopic marine organisms — such as phytoplankton and algae — and these compounds could be transmitted into the air, and eventually (in some form) to the land, thus helping to support a sulfur cycle.

Sulfur is a key element in both organic and inorganic compounds. The tenth most abundant element in the Universe, sulfur is crucial to climate regulation — as well as life as we know it.

In particular, two sulfur compounds — dimethylsulfoniopropionate and its atmospherically-oxidized version, dimethylsulfide — are considered to be likely candidates for the products created by marine life. It’s these two compounds that UMD researcher Harry Oduro, along with geochemist and professor James Farquhar and marine biologist Kathryn Van Alstyne (of Western Washington University) have discovered a way to track across multiple environments, from sea to air to land, allowing scientists to trace which isotopes are coming from what sources.

“What Harry did in this research was to devise a way to isolate and measure the sulfur isotopic composition of these two sulfur compounds,” said Farquhar. “This was a very difficult measurement to do right, and his measurements revealed an unexpected variability in an isotopic signal that appears to be related to the way the sulfur is metabolized.”

The team’s research can be used to measure how the organisms are producing the compounds, under which circumstances and how they are ultimately affecting their — and our — environment in the process.

“The ability to do this could help us answer important climate questions, and ultimately better predict climate changes,” said Farquhar. “And it may even help us to better trace connections between dimethylsulfide emissions and sulfate aerosols, ultimately testing a coupling in the Gaia hypothesis.”

Whether or not Earth can be called a singular — or possibly even sentient — living organism of which all organisms are contributing members thereof may still be up for debate, but it is fairly well-accepted that life can shape and alter its own environment (and in the case of humans, often for the worse.) Research like this can help science determine just how far-reaching those alterations may be.

The study appears in this week’s Online Early Edition of the Proceedings of the National Academy of Sciences (PNAS).

Read more on the University of Maryland’s news page here.

Image credit: ESA ©2009 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA. Edited by J. Major.

Space Exploration By Robot Swarm

"Hopper" rover/spacecraft concept by Stanford University's Marco Pavone

[/caption]

With all there’s yet to learn about our solar system from the many smaller worlds that reside within it — asteroids, protoplanets and small moons — one researcher from Stanford University is suggesting we unleash a swarm of rover/spacecraft hybrids that can explore en masse.

Marco Pavone, an assistant professor of aeronautics and astronautics at Stanford University and research affiliate at JPL, has been developing a concept under NASA’s Innovative Advanced Concepts (NIAC) Program that would see small spherical robots deployed to small worlds, such as Mars’ moons Phobos and Deimos, where they would take advantage of low gravity to explore — literally —  in leaps and bounds.

Due to the proposed low costs of such a mission, multiple spacecraft could be scattered across a world, increasing the area that could be covered as well as allowing for varied surfaces to be explored. Also, were one spacecraft to fail the entire mission wouldn’t be compromised.

The concept is similar to what NASA has done in the past with the Mars rovers, except multiplied in the number of spacecraft (and reduced in cost.)

The robots would be deployed from a “mother” spacecraft and spring into action upon landing, tumbling, hopping and vaulting their way across low-mass worlds.

In addition to providing our first views from the surfaces of such worlds, Pavone’s hybrid rovers could also help prepare for future, more in-depth exploration.

“The systematic exploration of small bodies would help unravel the origin of the solar system and its early evolution, as well as assess their astrobiological relevance,” Pavone explains. “In addition, we can evaluate the resource potential of small bodies in view of future human missions beyond Earth.”

Read more from NASA’s Office of the Chief Technologist here.

Photo courtesy of Marco Pavone

Expedition 31 Blasts Off!

Launch of the Soyuz TMA-04M rocket from the Baikonur Cosmodrome on May 15, 2012 (NASA/Bill Ingalls)

[/caption]

After a six-week delay, the crew of Expedition 31 successfully launched aboard a Soyuz TMA-04M rocket on Tuesday, May 15 at 0301 GMT (11:01 p.m. EDT May 14) from Russia’s historic Baikonur Cosmodrome, located in the steppes of Kazakhstan.

The rocket will deliver NASA astronaut Joe Acaba and Russian cosmonauts Gennady Padalka and Sergei Revin to the International Space Station. After a two-day journey, their Soyuz capsule will dock with the ISS at 11:38 p.m. CDT on Wednesday.

The launch was aired live by NASA HD TV. The full launch can be viewed below:

The crew was originally slated to launch on March 30, but problems with a pressure test forced a delay until a new Soyuz rocket could be brought into service. In the meantime ISS crew members Don Pettit, ESA astronaut Andre Kuipers and cosmonaut Oleg Kononenko have had the station to themselves since April 27.

The three new crew members will remain on Space Station until mid-September, serving as flight engineers under Expedition 31 commander Oleg Kononenko until July 1, when the current crew will depart and Padalka will assume command, marking the beginning of Expedition 32.

For more news on Expedition 31, visit NASA’s ISS website here. Also, you can follow NASA astronaut Joe Acaba on Twitter @AstroAcaba.

Members of the media photograph the Soyuz TMA-04M rocket launch from the Baikonur Cosmodrome. (NASA/Bill Ingalls)

Video credit: NASA TV. Images: NASA/Bill Ingalls

Former Astronaut Criticizes NASA’s Current Course

Former NASA astronaut Story Musgrave railed against the administration's current direction -- or lack thereof.

[/caption]

Former NASA astronaut Story Musgrave is neither happy nor excited about the current state of the space administration or about the commercial COTS (Commercial Orbital Transportation Services) program. He’s not happy, and he’s not afraid to say so.

“The whole thing is chaos and a cop out. The whole thing is a Washington failure,” Musgrave bluntly stated to Examiner.com’s Charles Atkeison in an interview this past weekend.

Story Musgrave in 1983 (NASA)

Musgrave was a NASA astronaut for over 30 years and was a crew member on six shuttle missions. He performed the first shuttle spacewalk on Challenger’s first flight, was a pilot on an astronomy mission, was the lead spacewalker on the Hubble repair mission and on his last flight he operated an electronic chip manufacturing satellite on Columbia.

He has 7 graduate degrees in math, computers, chemistry, medicine, physiology, literature and psychology. He has been awarded 20 honorary doctorates and was a part-time trauma surgeon during his 30 year astronaut career.

And, according to Atkeison, Musgrave “feels the space agency has no true goals or focus today.”

“We’re not going anywhere… there is no where, there is no what, and there is no when,” the former astronaut told Atkeison. “There is no Mars program, none. There is also no Moon program. There is no asteroid program… there’s no what we’re gonna do and no when we’re gonna do it.”

Neither does Musgrave put much faith in the value of the COTS program… which includes the upcoming launch of SpaceX’s Dragon capsule.

This isn’t the first time Musgrave has spoken out against NASA’s direction, either; in June of 2011 Musgrave lambasted the administration for its failure to have a “next step” after phasing out the shuttle program.

“Why are we so poor in our vision and so poor in our project management that we come to a point where it’s reasonable to phase out the current program and we have no idea what the next one is?” Musgrave said in 2011. “Washington has to stop doing that.”

Story Musgrave, now 76, currently operates a palm farm in Orlando, FL, a production company in Sydney and a sculpture company in Burbank, CA. He is also a landscape architect, a design professor and  a concept artist with Disney Imagineering. It’s clear that Musgrave is a man who knows what vision is — and isn’t. Still, he’s always honored to have had the opportunity to be a part of NASA.

“I’m massively privileged to be part of the space program, and I never forget to say that,” said Musgrave last year.

Read the full story by Charles Atkeison on Examiner.com here.

First spacewalk of the space shuttle era (STS-6) by Story Musgrave and Don Peterson to test new spacesuits and life support systems. (NASA)

Warhol Crater Gets Its 15 Minutes of Fame

Warhol crater, one of 23 recently named craters on Mercury

[/caption]

As pop art icon Andy Warhol said, “In the future everyone will be famous for fifteen minutes,”  and so here’s an image of the crater on Mercury that now bears his name, set up in the style of one of his multicolored silkscreens.

Warhol is one of 23 craters on Mercury to be recently approved for names by the International Astronomical Union (IAU), joining other notable artists, authors and musicians like Gustav Holst, Rene Magritte and Dr. Seuss who now have craters named in their honor on the first rock from the Sun.

95 km (59 miles) in diameter, Warhol crater features a large, elongated central peak, stepped walls and many of the curious erosions known as hollows.

The original image, seen at top left, was acquired by NASA’s MESSENGER spacecraft on October 21, 2011, using its Wide-Angle Camera Mercury Dual Imaging System (MDIS) instrument.

With the new list of 23 named craters, there are now 76 officially (and artistically) titled craters on Mercury since MESSENGER’s first pass of the planet in January 2008.

See the original release by the MESSENGER mission team here.

“I’m bored with that line. I never use it anymore. My new line is “In 15 minutes everybody will be famous.”
– Andy Warhol (1928 – 1987)

Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

A Sword of Stars

The stars and dust of spiral galaxy NGC 891 seen by Hubble edge-on

[/caption]

Like the blade of a magical weapon from a fantasy tale, the northern edge of spiral galaxy NGC 891 is captured by the Hubble Space Telescope, glowing with the light of billions of stars and interwoven with dark clouds of dust and cold gas.

In reality this cosmic blade is enormous. About the same size as our galaxy, NGC 891 is approximately 100,000 light-years in diameter, making the section visible here around 40,000 light-years in length.

Unlike the Milky Way, however, NGC 891 is unbarred and also exhibits many more filaments of dark gas and dust. Astronomers suggest that these are the result of star formation and supernovae, both of which can expel vast amounts of interstellar material far out into space.

The few bright stars in the foreground are located in our own galaxy.

NGC 891 is located in the constellation Andromeda and lies about 30 million light-years away… that means the light captured by Hubble’s Advanced Camera for Surveys to create the image above began its journey 35 million years after the asteroid impact that led to the extinction of the dinosaurs, and about 26 million years before our ancient African ancestors began walking upright. That may sound like a long trip but, as Douglas Adams so eloquently said, “that’s just peanuts to space!”

Read more on the Hubble site here.

Image credit: ESA/Hubble and NASA

 

The End Of Envisat

After ten years in orbit Envisat's mission has been declared over. (ESA)

[/caption]

Well, it’s official. After ten years of groundbreaking observation of our planet, ESA has declared the end of the Envisat mission after losing contact with the satellite on April 8, 2012. All attempts to re-establish communication with Envisat have so far been unsuccessful, and although recovery teams will continue to determine the cause of signal loss and try to regain a signal over the next several weeks, the mission — and the satellite — have been retired.

Having performed twice as long as originally planned, the hardworking Envisat has definitely earned its rest.

On April 8, the European Space Agency lost communication with the Earth-observation satellite, preventing reception of data as it passed over the Kiruna station in Sweden. Although later confirmed that the satellite is still in orbit, the recovery team has not been able to re-establish contact.

It’s thought that a loss of a power regulator could be blocking telemetry and telecommands from reaching Envisat, or else the satellite may have experienced a short-circuit and attempted to go into “safe mode” but experienced difficulties during the transition, leaving it in an unknown state.

Read: Is This the Last Image From Envisat?

ESA states that the chances of ever regaining communication with Envisat are extremely low.

While we had reported before on the last image received before falling silent, the image below is actually the final image from Envisat, an X-band image of the Canary Islands.

The final image from Envisat, acquired on April 8, 2012. (ESA/Edisoft)

During its lifetime, Envisat completed 50,000 orbits of Earth and returned over a thousand terabytes of data, containing invaluable measurements of our planet’s surface and atmosphere that were used in more than 2500 science publications.

The video below gives a fitting eulogy for a satellite that’s definitely overachieved and over-performed, giving us a decade of crucial observations of our world from orbit.

Read more on the ESA news release here.

A New Angle on Titan

Color-composite image of Titan and Saturn. There are few confirmed craters on Titan, and the ones that have been spotted are much shallower than expected. Image Credit: NASA/JPL/SSI/J. Major

Here’s a great shot of Titan and Saturn acquired by Cassini on May 6, 2012 just after a pass by the haze-covered moon. It’s a color-composite made from images taken in Cassini’s red, green and blue color channels, and the resulting image was color adjusted a bit to appear more “Saturny”.

UPDATE 7/2/12: The image above is featured in today’s Astronomy Picture of the Day (APOD)… check it out here.

Cassini also made some closer passes of Titan on May 6, taking images within about 710,000 km. After recent passes of Encealdus and Dione, Cassini buzzed past Titan in preparation of a targeted flyby on May 22, after which it will head up and out out of the “moonplane” in order to get a better view of Saturn’s rings and upper latitudes.

After that, Cassini won’t be playing amongst the moons again for three years, so images like this will be a rarity for a while.

Another image of Titan, closer-in and set against Saturn’s rings and clouds, shows the fine, transparent structure of the moon’s upper atmospheric haze layers:

Created by the breakdown of methane in Titan’s opaque atmosphere by UV radiation, the haze is composed of complex hydrocarbons that extend outwards up to ten times the thickness of Earth’s atmosphere!

(The RGB layers weren’t available for this particular view, so there’s no color version of it.)

Check out previous images from Cassini’s flyby of Dione and Enceladus, and follow along with the Cassini mission on the JPL site here.

Top image: Color-composite image of Titan and Saturn (NASA/JPL/SSI/J. Major) Bottom image: Titan in blue wavelength against Saturn (NASA/JPL/SSI)

By Thor’s Mighty Helmet!

Image of the Thor's Helmet nebula (NGC 2359) Credit: R. Barrena (IAC) and D. López

[/caption]

Going to see the new Avengers movie this weekend, either for the first or fortieth time? You may not see much of Thor’s helmet in the film (as he opts for more of a “Point Break” look) but astronomers using the Isaac Newton Group of telescopes on the Canary Islands have succeeded in spotting it… in this super image of the Thor’s Helmet nebula!

Named for its similarity to the famous horned Viking headgear (seen horizontally), the Thor’s Helmet nebula is a Wolf-Rayet structure created by stellar winds from the star seen near the center blowing the gas of the bluish “helmet” outwards into space via pre-supernova emissions.

The colors of the image above, acquired with the ING’s Isaac Newton Telescope, correspond to light emitted in hydrogen alpha, doubly-ionised oxygen and single-ionised sulfur wavelengths.

Super-sized for the thunder god himself, Thor’s Helmet measures at about 30 light-years across. It’s located in the constellation Canis Major, approximately 15,000 light-years from Earth. (You’d think Thor would have left his favorite accessory in a more convenient location… I suspect Loki may be behind this.)

Astronomers, assemble!

Read more about this and see other images from the ING telescopes here.

The Isaac Newton Group of Telescopes (ING) is owned by the Science and Technology Facilities Council (STFC) of the United Kingdom, and it is operated jointly with the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) of the Netherlands and the Instituto de Astrofísica de Canarias (IAC) of Spain. The telescopes are located in the Spanish Observatorio del Roque de los Muchachos on La Palma, Canary Islands, which is operated by the Instituto de Astrofísica de Canarias (IAC).

From Russia With Love: A Singularly Stunning Image of Earth

Full-disk image of Earth from Russia's Elektro-L satellite. (NTs OMZ)

[/caption]

Unlike most satellite images of Earth, this one was not assembled from multiple swath scans or digitally projected onto a globe model — it’s the full disk of our planet in captured as a single, enormous 121 megapixel image, acquired by Russia’s Elektro-L weather-forecasting satellite.

Like NASA’s GOES satellites, Elektro-L is parked in a geostationary orbit approximately 36,000 km (22,300 miles) above our planet. Unlike NASA’s satellites, however, Elektro-L captures images in near-infrared as well as visible wavelengths, providing detail about not only cloud movement but also vegetation variations. Its wide-angle Multichannel Scanning Unit (MSU) takes images every 15-30 minutes, showing the same viewpoint of Earth across progressive times of the day.

At a resolution of 0.62 miles per pixel, full-size Elektro-L images are some of the most detailed images of Earth acquired by a weather satellite.

Download the full-size image here (100+ megabytes).

Elektro-L diagram. © 2009 Anatoly Zak

Launched aboard a Zenit rocket on January 20, 2011, Elektro-L was the first major spacecraft to be developed in post-Soviet Russia. Parked over Earth at 76 degrees east longitude, Elektro-L provides local and global weather forecasting and analysis of ocean conditions, as well as “space weather” monitoring — measurements of solar radiation and how it interacts with Earth’s magnetic field. Its initial lifespan is projected to be ten years.

A second Elektro-L satellite is anticipated to launch in 2013.

Image credit: Russian Federal Space Agency / Research Center for Earth Operative Monitoring (NTS OMZ). See more images and video from Elektro-L on James Drake’s Planet Earth here. (Tip of the geostationary hat to Jesus Diaz at Gizmodo.)