The Secret Origin Story of Brown Dwarfs

Artist's impression of a Y-dwarf, the coldest known type of brown dwarf star. (NASA/JPL-Caltech)

[/caption]

Sometimes called failed stars, brown dwarfs straddle the line between star and planet. Too massive to be “just” a planet, but lacking enough material to start fusion and become a full-fledged star, brown dwarfs are sort of the middle child of cosmic objects. Only first detected in the 1990s, their origins have been a mystery for astronomers. But a researchers from Canada and Austria now think they have an answer for the question: where do brown dwarfs come from?

If there’s enough mass in a cloud of cosmic material to start falling in upon itself, gradually spinning and collapsing under its own gravity to compress and form a star, why are there brown dwarfs? They’re not merely oversized planets — they aren’t in orbit around a star. They’re not stars that “cooled off” — those are white dwarfs (and are something else entirely.) The material that makes up a brown dwarf probably shouldn’t have even had enough mass and angular momentum to start the whole process off to begin with, yet they’re out there… and, as astronomers are finding out now that they know how to look for them, there’s quite a lot.

So how did they form?

According to research by Shantanu Basu of the University of Western Ontario and  Eduard I. Vorobyov from the University of Vienna in Austria and Russia’s Southern Federal University, brown dwarfs may have been flung out of other protostellar disks as they were forming, taking clumps of material with them to complete their development.

Basu and Vorobyov modeled the dynamics of protostellar disks, the clouds of gas and dust that form “real” stars. (Our own solar system formed from one such disk nearly five billion years ago.) What they found was that given enough angular momentum — that is, spin — the disk could easily eject larger clumps of material while still having enough left over to eventually form a star.

Model of how a clump of low-mass material gets ejected from a disk (S. Basu/E. Vorobyev)

The ejected clumps would then continue condensing into a massive object, but never quite enough to begin hydrogen fusion. Rather than stars, they become brown dwarfs — still radiating heat but nothing like a true star. (And they’re not really brown, by the way… they’re probably more of a dull red.)

In fact a single protostellar disk could eject more than one clump during its development, Basu and Vorobyov found, leading to the creation of multiple brown dwarfs.

If this scenario is indeed the way brown dwarfs form, it stands to reason that the Universe may be full of them. Since they are not very luminous and difficult to detect at long distances, the researchers suggest that brown dwarfs may be part of the answer to the dark matter mystery.

“There could be significant mass in the universe that is locked up in brown dwarfs and contribute at least part of the budget for the universe’s missing dark matter,” Basu said. “And the common idea that the first stars in the early universe were only of very high mass may also need revision.”

Based on this hypothesis, with the potential number of brown dwarfs that could be in our galaxy alone we may find that these “failed stars” are actually quite successful after all.

The team’s research paper was accepted on March 1 into The Astrophysical Journal.

Read more on the University of Western Ontario’s news release here.

Exploration at its Finest: Cassini Visits Dione

[/caption]

After completing its most recent flyby of Enceladus, Cassini made a pass by Dione — its final visit of the icy moon for the next three years. Coming within  5,000 miles (8000 km) of Dione on May 2, Cassini captured some fantastic images of the moon’s heavily-cratered and frozen surface. Here’s just a few of the raw images that arrived back here on Earth earlier today:

Crescent-lit Dione, with some reflected light via Saturnshine
A nearly fully-lit Dione, with Saturn's rings in the background
Dione's extensively-cratered limb
Some of Dione's signature "wispy lines", bright icy faces of sheer cliffs now known to be tectonic in origin
A color-composite image of an ancient impact crater on the edge of Dione's Saturn-facing side - this could be from the impact that spun the moon 180 degrees. (NASA/JPL/SSI/J. Major)

698 miles (1123 km) in diameter, Dione orbits Saturn at about the same distance that the Moon orbits Earth. Its composition is two-thirds water ice, which at the incredibly cold temperatures found around Saturn behaves like rock does here on Earth.

 

Cassini won’t visit Dione so closely again until June 2015, after spending three years angled high out of the equatorial plane while it studies Saturn’s rings and polar regions.

As Carolyn Porco, Cassini Imaging Team Leader said today, “This is exploration at its finest. It won’t continue forever. So, enjoy it while it lasts!”

See more on the Cassini Imaging Central Laboratory for Operations (CICLOPS) site here.

Image credits: NASA/JPL/Space Science Institute 

 

Scientists Set Their Sights on Arctic Ice Loss

Greenland ice breakup seen from NASA ER-2 cockpit during a MABEL flight (NASA)

[/caption]

NASA researchers have just completed science mission flights over Greenland and the surrounding seas, gathering data on ice distribution and thickness with the MABEL (Multiple Altimeter Beam Experimental Lidar) laser altimeter instrument mounted in the nose of an ER-2 aircraft. WIth MABEL’s unprecedented ability to detect individual photons, researchers will be able to even more accurately determine how Arctic ice sheets are behaving in today’s changing climate.

At the same time, news has come in from researchers with the University of Washington, who have completed a NASA- and NSF-funded study of the enormous island’s glaciers spanning a ten-year period. What they have found is that the glaciers have been increasing in speed about 30% over the past ten years — which is actually less than earlier studies had anticipated.

“In some sense, this raises as many questions as it answers. It shows there’s a lot of variability,” said Ian Joughin, a glaciologist in the UW’s Applied Physics Laboratory and coauthor of the paper, published May 4 in Science.

Previous research had suggested that Greenland’s melting glaciers could contribute up to 19 inches to global sea level rise by 2100. But the behavior of Greenland’s vast ice fields and ocean-draining glaciers was not yet thoroughly researched. Based on this new study, the outlet glaciers have not sped up as much as expected.

Still, ocean-draining (a.k.a. marine-terminating) glaciers move much faster than their land-based counterparts, and the UW researchers have found that their speeds are increasing on average — up to 32% in some areas.

The team realizes that the study may just not have observed a long enough period of time. (These are glaciers, after all!)

Icebergs calve from the edge of Greenland's Gyldenlove glacier in April 2011. (NASA/GSFC/Michael Studinger)

“There’s the caveat that this 10-year time series is too short to really understand long-term behavior, so there still may be future events – tipping points – that could cause large increases in glacier speed to continue,” said Ian Howat, an assistant professor of earth sciences at Ohio State University and a co-author of the paper. “Or perhaps some of the big glaciers in the north of Greenland that haven’t yet exhibited any changes may begin to speed up, which would greatly increase the rate of sea level rise.”

What the researchers didn’t find was any evidence that the rate of flow is slowing down. Though the true extent of the effect of Greenland’s ice on future sea level rise may not be unerringly predictable down to the inch or centimeter, even at the currently observed rate a contribution of 4 or more inches by the end of the century is still very much a possibility.

Meanwhile, the data gathered from the MABEL science flights over the past four weeks will be used to calibrate NASA’s next-generation ice-observing satellite, IceSat-2, planned for launch in 2016. Once in orbit, IceSat-2 will provide even more detailed insight to the complex behavior of our planet’s ice sheets.

Read more on the UW News release here.

Will This Be The Fate Of The Earth?

Artist's impression of PG0843+516, a white dwarf star surrounded by Earthlike planetary remains. (© Mark A. Garlick / space-art.co.uk / University of Warwick)

[/caption]

Astronomers have found four nearby white dwarf stars surrounded by disks of material that could be the remains of rocky planets much like Earth — and one star in particular appears to be in the act of swallowing up what’s left of an Earthlike planet’s core.

The research, announced today by the Royal Astronomical Society, gives a chilling look at the eventual fate that may await our own planet.

Astronomers from the University of Warwick used Hubble to identify the composition of four white dwarfs’ atmospheres, found during a survey of over 80 such stars located within 100 light-years of the Sun. What they found was a majority of the material was composed of elements found in our own Solar System: oxygen, magnesium, silicon and iron. Together these elements make up 93% of our planet.

In addition, a curiously low ratio of carbon was identified, indicating that rocky planets were at one time in orbit around the stars.

Since white dwarfs are the leftover cores of stellar-mass stars that have burnt through all their fuel, the material in their atmosphere is likely the leftover bits of planets. Once held in safe, stable orbits, when their stars neared the ends of their lives they expanded, possibly engulfing the innermost planets and disrupting the orbits of others, triggering a runaway collision effect that eventually shattered them all, forming an orbiting cloud of debris.

This could very well be what happens to our Solar System in four or five billion years.

“What we are seeing today in these white dwarfs several hundred light years away could well be a snapshot of the very distant future of the Earth,” said Professor Boris Gänsicke of the Department of Physics at the University of Warwick, who led the study. “During the transformation of the Sun into a white dwarf, it will lose a large amount of mass, and all the planets will move further out. This may destabilise the orbits and lead to collisions between planetary bodies as happened in the unstable early days of our solar systems.”

Three easy steps to planetary destruction. (© Mark A. Garlick / space-art.co.uk / University of Warwick)

One of the white dwarfs studied, labeled PG0843+516, may even be actively eating the remains of an once-Earthlike world’s core.

The researchers identified an abundance of heavier elements like iron, nickel and sulphur in the atmosphere surrounding PG0843+516. These elements are found in the cores of terrestrial planets, having sunk into their interiors during the early stages of planetary formation. Finding them out in the open attests to the destruction of a rocky world like ours.

Of course, being heavier elements, they will be the first to be accreted  by their star.

“It is entirely feasible that in PG0843+516 we see the accretion of such fragments made from the core material of what was once a terrestrial exoplanet,” Prof. Gänsicke said.

It’s an eerie look into a distant future, when Earth and the inner planets could become just some elements in a cloud.

Read the full story on the RAS site here.

 

Enceladus On Display In Newest Images From Cassini

Enceladus' southern ice geysers are brilliant in backlit sunlight (NASA/JPL/SSI/J. Major)

[/caption]

The latest images are in from Saturn’s very own personal paparazzi, NASA’s Cassini spacecraft, fresh from its early morning flyby of the ice-spewing moon Enceladus. And, being its last closeup for the next three years, the little moon didn’t disappoint!

The image above is a composite I made from two raw images (this one and this one) assembled to show Enceladus in its crescent-lit entirety with jets in full force. The images were rotated to orient the moon’s southern pole — where the jets originate — toward the bottom.

Cassini was between 72,090 miles (116,000 km) and 90,000 miles (140,000 km) from Enceladus when these images were acquired.

This morning’s E-19 flyby completed a trio of recent close passes by Cassini of the 318-mile (511-km) -wide moon, bringing the spacecraft as low as 46 miles (74 km) above its frozen surface. The goal of the maneuver was to gather data about Enceladus’ internal mass — particularly in the region around its southern pole, where a reservoir of liquid water is thought to reside — and also to look for “hot spots” on its surface that would give more information about its overall energy distribution.

Cassini had previously discovered that Enceladus radiates a surprising amount of heat from its surface, mostly along the “tiger stripe” features — long, deep furrows (sulcae) that gouge its southern hemisphere, they are the source of the water-ice geysers.

Cassini also used the flyby opportunity to study Enceladus’ gravitational field.

By imaging the moon with backlit lighting from the Sun the highly-reflective ice particles in the jets become visible. More direct lighting reduces the jets’ visibility in images, which must be exposed for the natural light of the scene or risk “blowing out” due to Enceladus’ natural high reflectivity.

The images below are raw spacecraft downloads right from the Cassini’s imaging headquarters in Boulder, CO.

Enceladus' geysers in action on May 2, 2012. (NASA/JPL/SSI)
Enceladus sprays ice into the hazy E ring, which orbits Saturn (NASA/JPL/SSI)

Cassini also swung closely by Dione during this morning’s flyby but the images from that encounter aren’t available yet. Stay tuned to Universe Today for more postcards from Saturn!

As always, you can follow along with the ongoing Cassini mission on JPL’s dedicated site here, as well as on the Cassini Imaging Central Laboratory for Operations (CICLOPS) site.

ESA Turns On The JUICE For New Jupiter Mission

Galileo image of Ganymede, Jupiter's - and the Solar System's - largest moon. (Ted Stryk)

[/caption]

The European Space Agency has given the go-ahead for an exciting mission to explore the icy moons of Jupiter, as well as the giant planet itself.

JUICEJUpiter ICy moons Explorer — will consist of a solar-powered spacecraft that will spend 3.5 years within the Jovian system, investigating Ganymede, Europa and the upper atmosphere of Jupiter. Anticipated to launch in June 2022, JUICE would arrive at Jupiter in early 2030.

As its name implies, JUICE’s main targets are Jupiter’s largest icy moons — Ganymede and Europa — which are thought to have liquid oceans concealed beneath their frozen surfaces.

The largest moon in the Solar System, Ganymede is also thought to have a molten iron core generating a magnetic field much like Earth’s. The internal heat from this core may help keep Ganymede’s underground ocean liquid, but the dynamics of how it all works are not quite understood.

JUICE will also study the ice-coated Europa, whose cueball-smooth surface lined with cracks and jumbled mounds of frozen material seem to be sure indicators of a subsurface ocean, although how deep and how extensive is might be are still unknown — not to mention its composition and whether or not it could be hospitable to life.

The rust-colored cracks lining Europa's otherwise smooth surface hint at a subsurface ocean. (Ted Stryk)

“JUICE will give us better insight into how gas giants and their orbiting worlds form, and their potential for hosting life,” said Professor Alvaro Giménez Cañete, ESA’s Director of Science and Robotic Exploration.

The JUICE spacecraft was originally supposed to join a NASA mission dedicated to the investigation of Europa, but NASA deemed their proposed mission too costly and it was cancelled. According to Robert Pappalardo, study scientist for the Europa mission based at JPL, NASA may still supply some instruments for the spacecraft “assuming that the funding situation in the United States can bear it.”

Artist's rendering of JUICE at Jupiter. (ESA/AOES)

JUICE will also capture images of Jupiter’s moon Callisto and search for aurorae in the gas giant’s upper atmosphere, as well as measure the planet’s powerful magnetic field. Once arriving in 2030, it will spend at least three years exploring the Jovian worlds.

Read more in today’s news release from Nature, and stay tuned to ESA’s JUICE mission page here.

Recalibrated Galileo images © Ted Stryk. See more of Ted’s excellent work on his site Planetary Images From Then And Now.

Where All The Hottest Stars Gather

The star cluster NGC 6604 (ESO)

[/caption]

An ESO telescope captures a group of hot young stars that would outshine any Hollywood party!

At the upper left of this image is the star cluster NGC 6604, a grouping of hot young stars within a larger collection located in the sky near the much more famous Eagle Nebula (of “Pillars of Creation” fame.) The young stars, which burn bright and blue, are helping make a new generation of stars with their strong stellar winds, which condense nearby gas and dust into even more star-forming regions.

Eventually the new stars will replace the ones seen here, which, although big and bright, will quickly burn through their stellar fuel and fade. Such is the life cycle of massive stars — live fast and die young.

This image was acquired by the MPG/ESO 2.2-meter telescope at the European Southern Observatory’s La Silla Observatory in Chile. NGC 6604 is about 5,500 light-years from Earth, located in the constellation Serpens. Read more on the ESO news release here.

Fragments of Meteorite Worth Their Weight in Gold

Fragments collected from the April 22 fireball over central California. (Franck Marchis)

[/caption]

Actually it’s more like 3.5 times their weight in gold, according to today’s market value… and meteorite experts from SETI and NASA’s Marshall Space Flight Center.

During the daylight hours of April 22, 2012, reports came in from all over the north central California area of an extremely bright fireball — described as a “glittering sparkler” — and accompanying loud explosion. It was soon determined that this was the result of a meteoroid about the size of a minivan entering the atmosphere and disintegrating. It was later estimated that the object weighed about 70 metric tons and detonated with a 5-kiloton force.

Read more about the California fireball event here.

Over a thousand meteorite hunters scrambled to the area, searching for any traces of the cosmic visitor’s remains. After a few days, several pieces of the meteorite were found and reported by five individuals, adding up to 46 grams in total.

Those pieces could be worth over $9,000 USD, according to Bill Cooke of NASA’s Meteoroid Environment Office at Marshall Space Flight Center.

Based on today’s market, that’s about 3.6 times the value of gold (about $1,660 per troy ounce — 31.1 grams).

The high value is due to the extreme rarity of the meteorite fragments. The California fireball is now known to have been created by a CM chondrite, a type of carbonaceous meteorite with material characteristics similar to comets.

SETI Institute's Franck Marchis and the chondrite fragments (F. Marchis)

According to Franck Marchis, Planetary Astronomer at the Carl Sagan Center of the SETI Institute and one of the coordinators of the meteorite reporting teams, CM chondrites appear to have been altered by water, and have deuterium-to-hydrogen ratios in line with what’s been measured in the tails of comets Halley and Hyakutake.

They also have been found to contain organic compounds and amino acids, lending to the hypothesis that such meteorites may have helped supply early Earth with the building blocks for life.

But due to their fragile composition, they are also incredibly rare. Only 1% of known meteorites are CM chondrites, making even the small handful of fragments found in California very valuable.

“This will be only the third observed CM fall in the US, after Crescent, OK, in 1936, (78 g) and Murray, KY, in 1950 (13 kg),” Marchis told Universe Today.

As far as what the finders will do with the fragments, that’s entirely up to them.

“They can sell them on eBay or they can lend them to the scientists… or make a donation.” Marchis said.

Just goes to show that all that glitters really isn’t gold — it could be even better.

Read more in an article by Sara Reardon on New Scientist, and read more on the comet/chondrite connection here. And the ongoing search for pieces of what’s now being referred to as the “Sutter’s Mill Meteorite” can be followed here and here.

The largest CM chondrite ever recovered was from a fall in Murchison, Australia on September 28, 1969. The total mass of its collected fragments weighed in at over 100 kg (220 lbs).

NASA’s STEREO Spots a New Nova

STEREO-B image of Sagittarii 2012 (STEREO/SECCHI/NASA/NRL)


While on duty observing the Sun from its position in solar orbit, NASA’s STEREO-B spacecraft captured the sudden appearance of a distant bright object. This flare-up turned out to be a nova — designated Sagittarii 2012 — the violent expulsion of material and radiation from a re-igniting white dwarf star.

Unlike a supernova, which is the cataclysmic collapse and explosion of a massive star whose core has finally fused its last, a nova is the result of material falling onto the surface of a white dwarf that’s part of a binary pair. The material, typically hydrogen and helium gas, is drawn off the white dwarf’s partner which has expanded into a red giant.

Eventually the white dwarf cannot contain all of the material that it has sucked in from its neighbor… material which has been heated to tremendous temperatures on its surface as it got compressed further and further by the white dwarf’s incredibly strong gravity. Fusion occurs on the dwarf’s outermost layers, blasting its surface out into space in an explosion of light and energy.

This is a nova — so called because, when witnessed in the night sky, one could suddenly appear as a “new star” in the heavens — sometimes even outshining all other visible stars!

An individual nova will soon fade, but a white dwarf can produce many such flares over time. It all depends on how rapidly it’s accreting material (and how much there is available.)

Over the course of 4 days, Sagittarii 2012 reached a magnitude of about 8.5… still too dim to be seen with the unaided eye, but STEREO-B was able to detect it with its SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) instrument, which is sensitive to extreme ultraviolet wavelengths.

The video above was made from images acquired from April 20 – 24, 2012.

It’s not known yet how far away Sagittarii 2012 is but rest assured it poses no threat to Earth. The energy expelled by a nova is nowhere near that of a supernova, and although you wouldn’t want to have a front-row seat to such an event we’re well away from the danger zone.

What this does show is that STEREO-B is not only a super Sun-watching sentinel, but also very good at observing much more distant stars as well!

Thanks to @SungrazerComets for the heads-up on this novel nova!

[/caption]

 

OMG Space

OMG Space attempts to portray the scale sizes and distances in the Solar System

[/caption]

“You may think it’s a long way down the road to the chemist’s, but that’s just peanuts to space.” – Douglas Adams

Standard classroom models and textbook illustrations of the Solar System, regardless of how pretty they are, all share one thing in common: they’re wrong. Ok, maybe not wrong, but definitely inaccurate… especially in regards to scale. And understandably so, as it’s nearly impossible to portray in a convenient manner the sheer amount of space there is between the planets and their relative sizes. Even if a model manages to show one or the other in a straightforward, linear fashion, it usually doesn’t show both.

This one does.

OMG Space is a web page made by Margot Trudell as graphic design thesis project at Toronto’s OCAD University. Displayed on the Visual.ly portfolio site, Margot’s expansive infographic shows the Sun, planets and some minor bodies to scale, both in terms of relative size and distance. By clicking on a planet’s name at the bottom of the page you’ll be whisked away toward it, giving a sense of how very far it really is between the many worlds that make up our own little Solar System.

And if that’s not enough, Margot has included a descriptive chart for each world that gives basic information on distance from the Sun, orbital period and moon count as well as details on visiting exploration missions — past, present and planned. These can be accessed by clicking on the respective worlds once you arrive.

Each planet has an infographic associated with it, showing physical characteristics and exploration timelines. (M. Trudell)

“I created the infographics first and as I worked on them decided they needed more context, and the idea of creating a to scale version of our solar system came to mind,” Margot told Universe Today. “The project was initially intended to be all print, but knowing the real scale of our solar system I eventually came up with the idea of using the infiniteness of the web to my advantage.”

If you watch the scroll bar on the right side of the page (and I do suggest resizing the page to fill your screen as much as possible) you’ll also get a sense of how much space you’re traversing as you zip between worlds. And that’s just taking into consideration the average distances between each planet at opposition. In reality, they’re never lined up in a row like that!

If you’re so inclined you can also scroll up and down manually… if only to see how long it takes you to not get anywhere.

“My favourite thing to do on OMG Space’s website is go to Earth and then click on the link to the Moon,” Margot said. “The small distance you move yet the big gap you see… it gives you a whole new perspective on how far people traveled to get to the moon and back, and it shows how far the moon really is from Earth (I feel that it’s always portrayed as being almost right beside us) and makes you consider how powerful those rockets must have been to get us that far.

“It gives you a bit of that ‘OMG’ feeling that the project is named for.”

Yes, OMG indeed.

Infographics by Margot Trudell. See more of Margot’s work here.