A Peek at a Pitch-Black Pit

A rimless pit crater within the crater Tolstoj

[/caption]

MESSENGER captured this high-resolution image of an elongated pit crater within the floor of the 355-km (220-mile) -wide crater Tolstoj on Mercury on Jan. 11, 2012. The low angle of sun illumination puts the interior of the pit crater into deep shadow, making it appear bottomless.

Pit craters are not caused by impacts, but rather by the collapse of the roof of an underground magma chamber. They are characterized by the lack of a rim or surrounding ejecta blankets, and are often not circular in shape.

Since the floor of Tolstoj crater is thought to have once been flooded by lava, a pit crater is not out of place here.

The presence of such craters on Mercury indicates past volcanic activity on Mercury contributing to the planet’s evolution.

Read more on the MESSENGER mission website here.

Image credit: : NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Star Lab Needs Payloads!

The multi-section Star Lab suborbital vehicle. (Credit: 4Frontiers Corp.)

[/caption]

Star Lab, the next-generation vehicle for suborbital experiments developed by the Florida-based 4Frontiers Corporation, is well on its way toward its first successful flight — and it’s looking for payloads.

First reported on Universe Today by Jason Rhian in November of last year, Star Lab consists of stacked and subdivided cylindrical sections customized to hold scientific experiments. Contained within a rocket vehicle affixed to the wing of a Starfighters, Inc. F-104 supersonic aircraft, Star Lab will be launched during flight to attain an altitude of about 100 km, going suborbital and achieving 3 1/2 minutes of microgravity before descending.

“If Star Lab proves itself viable this could open the door to a great many scientific institutions conducting their research by using the Star Lab vehicle,” Mark Homnick, CEO of 4Frontiers Corporation, told Universe Today in November.

(Read Science On The Wings of Starfighters by Jason Rhian)

A high-purity environment within the Star Lab compartments will ensure no contamination from the outside can interfere with payloads contained within, making Star Lab suitable for both non-organic and bio-med experiments.

A scale prototype of a Star Lab payload section, molded in ABS plastic. (4Frontiers/J. Major)

Alternatively, the payload compartments can be made accessible to the external environment, allowing for atmospheric sampling.

After descent, Star Lab will splash down into the Atlantic and be retrieved by ship. Clients can expect to have their payloads returned within a 24-hour period — a quick turnaround especially essential for biological experiments.

In addition, Star Lab payloads can be accessed up to 24 hours before launch, allowing for any last-minute adjustments, minor installations or fine tuning.

Currently Star Lab is moving into its flight test phase of development, when the F-104s will go through a series of incremental tests up to and including an actual launch of the vehicle. This will determine how well it handles the stresses of flight and how to best — and most safely — perform the actual launch, slated for September 2012.

A maneuver only ever executed in military operations, Star Lab will become the first commercial vehicle to be launched from an aircraft.

(Read StarFighters, Inc. – The Supersonic Research Fleet Expands by Tammy Plotner)

Star Lab has 14 contracts signed for payloads at this time, and is right now working on a partnership with the payload-specialist company Kentucky Space to co-develop a successful market for bio-med experiments.

“We are looking for payloads… we’re real, we’re viable, and we have the best deal that I know of in respect to costs and what we provide,” Homnick said during an interview on March 15, 2012. “We’ll have the lowest cost and the highest launch rate, anywhere.”

At this point, signups with Star Lab require only a signature… no payment is required until the vehicle is proven.

“There’s even a contingency in there… we have to show with our prototypes that we are launching in the summer that they actually perform,” Homnick added. “One, they have to reach the altitude — over 80 kilometers — and two, we have to return the payloads for our prototype. And then, after all that, they would actually pay us… half up front, and half after launch.”

And if that’s not a good enough deal, the state of Florida is helping pick up some of the bill.

Under NASA’s Florida Space Grant, commercial ventures taking place in Florida are subject to a rebate program. Once a payload is launched, Space Lab customers can receive a refund from Space Florida of 1/3 of their cost.

Starting at $4,000 (after the Space Florida rebate), including integration and return costs, getting an experiment suborbital has never been so cost-effective.

“The whole concept is to make it really inexpensive and convenient to fly a lot of payloads,” Homnick said. “With ten launches a year, and up to thirteen payloads per launch, there’s a high launch rate.”

And with such convenience, Star Lab will help get the future of space research off the ground — literally.

Members of the Star Lab team during a fast taxi test at Kennedy Space Center's Shuttle Landing Facility. (4Frontiers Corp.)

“We’re real, we’re viable, and we have the best deal that I know of… we’ll have the lowest cost and the highest launch rate, anywhere.”

– Mark Homnick, CEO of 4Frontiers Corporation

4Frontiers will be at the Space Flight Payloads Workshop on Friday, March 23 at the Florida Solar Energy Center from 10 am to 5 pm. See more about Star Lab and what’s coming next from 4Frontiers here.

4Frontiers Corporation, the principal developer of Star Lab, was founded in 2005 in Florida, USA. 4Frontiers is an emerging space commerce company focused on developing fundamental space-related capabilities and resources essential for a long-term human presence in space. 4Frontiers will address the potential of the four most promising space frontiers: Earth orbit, the Moon, Mars and asteroids.

Neutrinos Obey The Speed Limit, After All

Inside the LHC's underground tunnel. (Credit: CERN)

[/caption]

Neutrinos have been cleared of allegations of speeding, according to an announcement issued today by CERN and the ICARUS experiment at Italy’s Gran Sasso National Laboratory. Turns out they travel exactly as fast as they should, and not a nanosecond more.

The initial announcement in September 2011 from the OPERA experiment noted a discrepancy in the measured speed of neutrinos traveling in a beam sent to the detectors at Gran Sasso from CERN in Geneva. If their measurements were correct, it would have meant that the neutrinos had arrived 60 nanoseconds faster than the speed of light allows. This, understandably, set the world of physics a bit on edge as it would effectually crumble the foundations of the Standard Model of physics.

As other facilities set out to duplicate the results, further investigations by the OPERA team indicated that the speed anomaly may have been the result of bad fiberoptic wiring between the detectors and the GPS computers, although this was never officially confirmed to be the exact cause.

Now, a a statement from CERN reports the results of the ICARUS experiment — Imaging Cosmic and Rare Underground Signals — which is stationed at the same facilities as OPERA. The ICARUS data, in measuring neutrinos from last year’s beams, show no speed anomaly — further evidence that OPERA’s measurement was very likely a result of error.

The full release states:

__________________

The ICARUS experiment at the Italian Gran Sasso laboratory has today reported a new measurement of the time of flight of neutrinos from CERN to Gran Sasso. The ICARUS measurement, using last year’s short pulsed beam from CERN, indicates that the neutrinos do not exceed the speed of light on their journey between the two laboratories. This is at odds with the initial measurement reported by OPERA last September.

What neutrinos look like to ICARUS. (LNGS)

“The evidence is beginning to point towards the OPERA result being an artefact of the measurement,” said CERN Research Director Sergio Bertolucci, “but it’s important to be rigorous, and the Gran Sasso experiments, BOREXINO, ICARUS, LVD and OPERA will be making new measurements with pulsed beams from CERN in May to give us the final verdict. In addition, cross-checks are underway at Gran Sasso to compare the timings of cosmic ray particles between the two experiments, OPERA and LVD. Whatever the result, the OPERA experiment has behaved with perfect scientific integrity in opening their measurement to broad scrutiny, and inviting independent measurements. This is how science works.” 

The ICARUS experiment has independent timing from OPERA and measured seven neutrinos in the beam from CERN last year. These all arrived in a time consistent with the speed of light.

“The ICARUS experiment has provided an important cross check of the anomalous result reports from OPERA last year,” said Carlo Rubbia, Nobel Prize winner and spokesperson of the ICARUS experiment. “ICARUS measures the neutrino’s velocity to be no faster than the speed of light. These are difficult and sensitive measurements to make and they underline the importance of the scientific process. The ICARUS Liquid Argon Time Projection Chamber is a novel detector which allows an accurate reconstruction of the neutrino interactions comparable with the old bubble chambers with fully electronics acquisition systems. The fast associated scintillation pulse provides the precise  timing of each event, and has been exploited for the neutrino time-of-flight measurement. This technique is now recognized world wide as the most appropriate for future large volume neutrino detectors”.

__________________

An important note is that, although further research points more and more to neutrinos behaving as expected, the OPERA team had proceeded in a scientific manner right up to and including the announcement of their findings.

“Whatever the result, the OPERA experiment has behaved with perfect scientific integrity in opening their measurement to broad scrutiny, and inviting independent measurements,” the ICARUS team reported. “This is how science works.”

See more news from CERN here.

So Long, SWAN…

Remember that newly-discovered comet we mentioned a couple of days ago?  Well, it’s gone. Poof. Into the Sun and never to return, it was a sungrazer’s final voyage.

The video above features images from the SOHO spacecraft and description from Bad Astronomer Phil Plait, with music by Kevin MacLeod.

Alas, poor SWAN… at least we knew him.

Read more about the history of Comet SWAN on the Sungrazing Comets site. Video credit: NASA/SOHO (and thanks to Phil Plait for the assembly.)

Go On a Grand Tour of the Moon

Take a "peak" into Tycho Crater!


To honor the Lunar Reconnaissance Orbiter’s amazing 1,000 days in science-filled orbit, the LRO team at Goddard Space Flight Center has created a wonderful video tour of the lunar surface like you’ve never seen it before!

[/caption]

“Tour of the Moon” takes viewers to several breathtaking locations on the Moon, including Orientale Basin, Shackleton crater, Tycho crater, Aristarchus Plateau, Mare Serenitatis, Compton-Belkovich volcano, Tsiolkovsky crater and more. The fully narrated video is above, and clips from each of the stops on the tour are available in many other formats here.

In addition, another video highlighting the dramatic evolution of the Moon was released today… you can view the full narrated version in 2D and stereoscopic 3D here.

iPad owners can also download the NASA Viz app to see this and other NASA stories, updated twice a week.

Credit: NASA Goddard Space Flight Center

Revisiting The First Rover

LROC image of Lunokhod 1 (NASA/GSFC/ASU)

[/caption]

Before there was Curiosity, before Spirit, and Opportunity, and even long before Sojourner, there was Lunokhod 1, the Soviet Union’s lunar rover that explored Mare Imbrium from November of 1970 to September the following year. It was a curious-looking machine, a steampunk fantasy reminiscent of something out of a Jules Verne novel. But until the Mars Exploration Rovers nearly 40 years later, Lunokhod 1 held the record for the longest-operating robotic rover on the surface of another world.

These images from the Lunar Reconnaissance Orbiter Camera (LROC) are the most detailed yet of the now-silent Soviet rover and its lander, Luna 17.

The lander, Luna 17, was launched from Earth orbit on November 10, 1970, and entered lunar orbit five days later. It successfully soft-landed in Mare Imbrium on November 17 and deployed the Lunokhod (“moon walker” in Russian) rover, which was powered by batteries that were recharged via solar power during the lunar day.

Luna 17 and Lunokhod 1's tracks. (NASA/GSFC/ASU)

The 5600 kg (12,345 lb.) Lunokhod 1 boasted a suite of scientific tools for exploring the lunar surface. It was equipped with a cone-shaped antenna, a highly directional helical antenna, four television cameras, and special extendable devices to impact the lunar soil for soil density and mechanical property tests.

An x-ray spectrometer, an x-ray telescope, cosmic-ray detectors, and a laser device were also included.

The super-steampunk Lunokhod 1 rover. (NASA/GSFC)

Operating for nearly 300 days — almost four times longer than planned — by the time it officially ceased operations in October 1971 Lunokhod 1 had traveled 10,540 meters and had transmitted more than 20,000 images, and had conducted over 500 lunar soil tests.

The images above were obtained during a low-altitude pass by LRO, which came within 33 km (20.5 miles) of the lunar surface.

Via the LROC site by Arizona State University.

Luna 17 seen from Lunokhod 1

Space Travel Is Bad For Your Eyes

From "Mars Attacks" © 1996 Warner Brothers. All rights reserved.

Microgravity — or “zero-g” as it’s sometimes called — is not a natural state for the human body to live in for prolonged periods of time. But that is what today’s astronauts are often expected to do, whether while on expedition aboard Space Station or during a future voyage to the Moon or Mars. A host of physical issues can result from the space environment, from bone loss and muscle atrophy to the risks associated from increased exposure to radiation.

Now, there’s another downside to long-term life in orbit: eye and brain damage.

A team of radiologists led by Dr. Larry A. Kramer from The University of Texas Medical School at Houston performed MRIs on 27 astronauts, measuring in each the shape and thickness of the rear of the eyes, optic nerve, optic nerve sheath and pituitary gland.

In 7 of the 27 astronauts flattening of the backs of the eyes was noted, and enlargement of the optic nerve was detected in nearly all of them — 26 out of 27.

In addition, four exhibited deformation of the pituitary gland.

The optic nerve. (NIH)

The changes to the eyes and optic nerves are similar to what are typically seen in those suffering from idiopathic intracranial hypertension (IIH), a disorder characterized by increased pressure within the skull. Symptoms typically include headache, dizziness and nausea, and if left untreated it can produce permanent vision loss through optic nerve damage.

“The MRI findings revealed various combinations of abnormalities following both short- and long-term cumulative exposure to microgravity also seen with idiopathic intracranial hypertension,” said Dr. Kramer. “Microgravity-induced intracranial hypertension represents a hypothetical risk factor and a potential limitation to long-duration space travel.”

Chief of flight medicine at NASA’s Johnson Space Center, Dr. William J. Tarver, noted that although no astronaut has been kept from flight duties as a result of such risks, NASA will continue to “closely monitor the situation” and has placed the potential danger “high on its list of human risks.”

The team’s paper was accepted into the journal Radiology on Feb. 1.

“Orbital and Intracranial Effects of Microgravity: Findings at 3-T MR Imaging.” Collaborating with Dr. Kramer were Ashot Sargsyan, M.D., Khader M. Hasan, Ph.D., James D. Polk, D.O., and Douglas R. Hamilton, M.D., Ph.D.

Update Oct. 24, 2013: Further investigation by researchers at Houston Methodist and Johnson Space Center have shown more evidence of long-term eye damage after just two weeks in orbit. Read more.

A New Comet’s SWAN Dive Into the Sun

SOHO animation of the latest sun-diving comet (LASCO/NRL SOHO team)

[/caption]

A new comet has been discovered by the SOHO team, and it — like Lovejoy before it, almost three months to the day — is headed directly toward the Sun. Discovered by SOHO’s SWAN instrument, the comet has been dubbed Comet SWAN… making this a real swan dive (or, perhaps more appropriately, its swan song.)

The animation above has a lot of random noise in it from recent solar outbursts… can you spot the comet? If not, read on…

Labeled frame of the LASCO image (courtesy of SpaceWeather.com)

There’s Comet SWAN, just above the darker silhouette of the bar that holds the shielding disk over the center of the imager (which blocks the glare from the Sun itself.)

The comet is likely another member of the Kreutz family of comets, an extended family of pieces that broke off a larger comet several hundred years ago (which itself may have been a survivor of a breakup in 371 B.C.!) Comet Lovejoy was also a Kretuz sungrazer but it was considerably larger and brighter, which may have helped it survive its Dec. 15 solar close encounter to re-emerge on the opposite side, surprising astronomers everywhere!

Read how some scientists think Comet Lovejoy held itself together.

SWAN may not be so lucky… but then again, we’ve been surprised before!

The comet will make perihelion — its closest approach to the Sun — on March 14. Stay tuned for more details!

Images via SpaceWeather.com.