Faster Than Light? More Like Faulty Wiring.

Image credit: CORBIS/CERN

[/caption]

You can shelf your designs for a warp drive engine (for now) and put the DeLorean back in the garage; it turns out neutrinos may not have broken any cosmic speed limits after all.

Ever since the news came out on September 22 of last year that a team of researchers in Italy had clocked neutrinos traveling faster than the speed of light, the physics world has been resounding with the potential implications of such a discovery — that is, if it were true. The speed of light has been a key component of the standard model of physics for over a century, an Einstein-established limit that particles (even tricky neutrinos) weren’t supposed to be able to break, not even a little.

Now, according to a breaking news article by Edwin Cartlidge on AAAS’ ScienceInsider, the neutrinos may be cleared of any speed violations.

“According to sources familiar with the experiment, the 60 nanoseconds discrepancy appears to come from a bad connection between a fiber optic cable that connects to the GPS receiver used to correct the timing of the neutrinos’ flight and an electronic card in a computer,” Cartlidge reported.

The original OPERA (Oscillation Project with Emulsion-tRacking Apparatus) experiment had a beam of neutrinos fired from CERN in Geneva, Switzerland, aimed at an underground detector array located 730 km away at the Gran Sasso facility, near L’Aquila, Italy. Researchers were surprised to discover the neutrinos arriving earlier than expected, by a difference of 60 nanoseconds. This would have meant the neutrinos had traveled faster than light speed to get there.

Repeated experiments at the facility revealed the same results. When the news was released, the findings seemed to be solid — from a methodological standpoint, anyway.

Shocked at their own results, the OPERA researchers were more than happy to have colleagues check their results, and welcomed other facilities to attempt the same experiment.

Repeated attempts may no longer be needed.

Once the aforementioned fiber optic cable was readjusted, it was found that the speed of data traveling through it matched the 60 nanosecond discrepancy initially attributed to the neutrinos. This could very well explain the subatomic particles’ apparent speed burst.

Case closed? Well… it is science, after all.

“New data,” Cartlidge added, “will be needed to confirm this hypothesis.”

See the original OPERA team paper here.

_______________________

UPDATE 2/22/12 11:48 pm EST: According to a more recent article on Nature’s newsblog, the Science Insider report erroneously attributed the 60 nanosecond discrepancy to loose fiber optic wiring from the GPS unit, based on inside “sources”. OPERA’s statement doesn’t specify as such, “saying instead that its two possible sources of error point in opposite directions and it is still working things out.”

OPERA’s official statement released today is as follows:

“The OPERA Collaboration, by continuing its campaign of verifications on the neutrino velocity measurement, has identified two issues that could significantly affect the reported result. The first one is linked to the oscillator used to produce the events time-stamps in between the GPS synchronizations. The second point is related to the connection of the optical fiber bringing the external GPS signal to the OPERA master clock.

These two issues can modify the neutrino time of flight in opposite directions. While continuing our investigations, in order to unambiguously quantify the effect on the observed result, the Collaboration is looking forward to performing a new measurement of the neutrino velocity as soon as a new bunched beam will be available in 2012. An extensive report on the above mentioned verifications and results will be shortly made available to the scientific committees and agencies.” (via Nature newsblog.)

By Dawn’s Early Light

Vesta's surface textures get highlighted by dawn's light

[/caption]

Sunrise on Vesta highlights the asteroid’s varied surface textures in this image from NASA’s Dawn spacecraft, released on Monday, Feb. 20. The image was taken on Dec. 18 with Dawn’s Framing Camera (FC).

Just as the low angle of  early morning sunlight casts long shadows on Earth, sunrise on Vesta has the same effect — although on Vesta it’s not trees and buildings that are being illuminated but rather deep craters and chains of pits!

The steep inner wall of a crater is seen at lower right with several landslides visible, its outer ridge cutting a sharp line.

Chains of pits are visible in the center of the view. These features are the result of ejected material from an impact that occurred outside of the image area.

Other lower-profile, likely older craters remain in shadow.

Many of these features would appear much less dramatic with a high angle of illumination, but they really shine brightest in dawn’s light.

See the full image release on the Dawn mission site here.

Image credit: NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA

Chandra Spots a Black Hole’s High-Speed Hurricane

Artist's impression of a binary system containing a stellar-mass black hole called IGR J17091-3624

[/caption]

Astronomers using NASA’s Chandra X-ray Observatory have reported record-breaking wind speeds coming from a stellar-mass black hole.

The “wind”, a high-speed stream of material that’s being drawn off a star orbiting the black hole and ejected back out into space, has been clocked at a staggering 20 million miles per hour — 3% the speed of light! That’s ten times faster than any such wind ever measured from a black hole of its size!

The black hole, dubbed IGR J17091-3624 (IGR J17091 for short), is located about 28,000 light-years away in the constellation Scorpius. It is part of a binary system, with a Sun-like star in orbit around it.

“This is like the cosmic equivalent of winds from a category five hurricane,” said Ashley King from the University of Michigan, lead author of the study. “We weren’t expecting to see such powerful winds from a black hole like this.”

IGR J17091 exhibits wind speeds akin to black holes many times its mass… such winds have only ever been measured coming from black holes millions or even billions of times more massive.

“It’s a surprise this small black hole is able to muster the wind speeds we typically only see in the giant black holes,” said co-author Jon M. Miller, also from the University of Michigan.

Illustration of Cygnus X-1, another stellar-mass black hole located 6070 ly away. (NASA/CXC/M.Weiss)

Stellar-mass black holes are formed from the gravitational collapse of stars about 20 to 25 times the mass of our Sun.

“This black hole is performing well above its weight class,” Miller added.

IGR J17091 is also surprising in that it seems to be expelling much more material from its accretion disk than it is capturing. Up to 95% of the disk material is being blown out into space by the high-speed wind which, unlike polar jets associated with black holes, blows in many different directions.

While jets of material have been previously observed in IGR J17091, they have not been seen at the same time as the high-speed winds. This supports the idea that winds can suppress the formation of jets.

Chandra observations made two months ago did not show evidence of the winds, meaning they can apparently turn on and off. The winds are thought to be powered by constant variations in the powerful magnetic fields surrounding the black hole.

The study was published in the Feb. 20 issue of The Astrophysical Journal Letters.

Illustration credit: NASA/CXC/M.Weiss. Source: Chandra Press Room.

Degas: a Crater Painted Blue

MESSENGER wide-angle camera image of Degas crater

[/caption]

This image, acquired by NASA’s MESSENGER spacecraft on December 12, 2011, reveals the blue coloration of the 32-mile (52-km) -wide Degas crater located in Mercury’s Sobkou Planitia region.

Degas’ bright central peaks are highly reflective in this view, and may be surrounded by hollows — patches of sunken, eroded ground first identified by MESSENGER last year.

Such blue-colored material within craters has been increasingly identified as more of Mercury’s surface is revealed in detail by MESSENGER images. It is likely due to an as-yet-unspecified type of dark subsurface rock, revealed by impact events.

The slightly larger, more eroded crater that Degas abuts is named Brontë.

The image was acquired with MESSENGER’s Wide Angle Camera (WAC) of the Mercury Dual Imaging System (MDIS), using filters 9, 7, 6 (996, 748, 433 nanometers) in red, green, and blue, respectively.

Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington.

A Mardi Gras Moon Crossing

SDO AIA image of the Sun and Moon at 14:11 UT on Feb. 21, 2012

[/caption]

The Sun seems to be glowing in traditional Mardi Gras colors in this image, made from three AIA channels taken today at approximately 14:11 UT (about 9:11 a.m. EST) as the Moon passed between it and the Solar Dynamics Observatory spacecraft. Looks like it’s that time of year again!

During portions of the year, the Moon transits the Sun on a regular basis from the perspective of NASA’s SDO spacecraft, which lies within the Moon’s orbit. When this happens we are treated to an improvised eclipse… and it gives SDO engineers a way to fine-tune the observatory’s calibration as well.

Here are more AIA views of the same event captured in different wavelengths:

Lunar transit on 2-21-12; AIA 304
Lunar transit on 2-21-12; AIA 193
Lunar transit on 2-21-12; AIA 4500

…and here’s an interesting image taken in HMI Dopplergram:

HMI Dopplergram image of transit

While the AIA (Atmospheric Imaging Assembly) images the Sun in light sensitive to different layers of its atmosphere, the Helioseismic and Magnetic Imager (HMI) studies oscillations in the Sun’s magnetic field at the surface layer.

Watch a video of the path of this lunar transit, posted by the SDO team here.

And if you happen to be reading this as of the time of this writing (appx. 10:06 a.m. EST) you can keep up with the latest images coming in on the SDO site at http://sdo.gsfc.nasa.gov/.

It’s Mardi Gras and the Moon doesn’t want to miss out on any of the fun!

Images courtesy of NASA/SDO and the AIA, EVE, and HMI science teams. Hat-tip to Mr. Stu Atkinson who called the AIA alert on Twitter.

Bright Peaks, Dark Shadows

MESSENGER image of Mercury's Amaral crater

[/caption]

The 68-mile (109-km) -wide Amaral crater on Mercury reveals its brightly-tipped central peaks in this image, acquired by NASA’s MESSENGER spacecraft on Feb. 4, 2012. Long shadows are cast by the crater’s peaks and rugged rim (north is to the left.)

The image was acquired as a high-resolution targeted observation with MESSENGER’s Narrow-Angle Camera (NAC) on its Mercury Dual Imaging System (MDIS).

Amaral’s bright peaks were first spotted during MESSENGER’s first flyby of Mercury in Jan. 2008. With a smooth floor, visible ejecta and small secondary craters, Amaral appeared noticeably younger than the heavily cratered surface around it.

Amaral's "blue" peaks seen in a color-enhanced global image acquired Jan. 14, 2008.

Its central peaks also attracted astronomers’ interest, as they were seen to possess a striking blue hue in color-enhanced images that likely indicates rocks with different composition from the surrounding surface.

Amaral’s peaks resemble those of the slightly larger crater Eminescu, which is now known to contain recently-discovered features called hollows. It’s not yet known if Amaral also contains hollows, but it’s suspected that they may be present on the tips of the peaks.

The crater is named after Brazilian artist Tarsila do Amaral. She lived from 1886 to 1973 and is considered to be one of the leading Latin American modernist painters.

Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington.

SOLID Clues for Finding Life on Mars

Microbes have been found flourishing beneath the surface of the Atacama Desert. (Parro et al./CAB/SINC)

[/caption]

Researchers from the Center of Astrobiology (CAB) in Spain and the Catholic University of the North in Chile have found an “oasis” of microorganisms living two meters beneath the arid soil of the Atacama, proving that even on the driest place on Earth, life finds a way.

Chile’s Atacama Desert receives on average less than .01 cm (.004 inches) of rain per year. In some locations rain has not fallen for over 400 years. But even in this harsh environment there is moisture… just enough, at least, for rock salts and other compounds that can absorb any traces of water to support microbial life beneath the surface.

Using a device called SOLID (Signs Of LIfe Detection) developed by CAB, the researchers were able to identify the presence of microorganisms living on thin films of water within the salty subsurface soil.

Even the substrate itself is able to absorb moisture from the air, concentrating it into films only a few microns thick around the salt crystals. This gives the microorganisms everything they need to survive and flourish — two to three meters underground.

SOLID's array of life-detector modules. (CAB)

At that depth, there is no sunlight and no oxygen, but there is life.

And even when researchers dug to a depth of five meters (a little over 16 feet) and took samples back to a lab, they were able to not only locate microorganisms but also revive them with the addition of a little water.

Of course, the implications for finding life — or at least the remains of its past existence — on Mars is evident. Mars has been shown to have saline deposits in many regions, and the salt is what helps water remain liquid, longer.

“The high concentration of salt has a double effect: it absorbs water between the crystals and lowers the freezing point, so that they can have thin films of water (in brine) at temperatures several degrees below zero, up to minus 20 C,” said Victor Parro, researcher from the Center of Astrobiology (INTA-CSIC, Spain) and coordinator of the study. This is within the temperature range of many regions of Mars, and also anything located several meters below the surface would be well protected from UV radiation from the Sun.

“If there are similar microbes on Mars or remains in similar conditions to the ones we have found in Atacama, we could detect them with instruments like SOLID,” Parro said.

The development of a new version of the SOLID instrument is currently underway for ESA’s ExoMars program.

Read more here on the Science Codex article.

What might be found just a few feet under the surface of Mars? (NASA/JPL-Caltech)

Kuiper’s Color Close-Up

[/caption]

The pale-orange coloration around the 39-mile (62-km) -wide Kuiper crater on Mercury is evident in this image, a color composition made from targeted images acquired by NASA’s MESSENGER spacecraft on September 2, 2011.

The color may be due to compositional differences in the material that was ejected during the impact that formed the crater.

Kuiper crater is named after Gerard Kuiper, a Dutch-American astronomer who was a member of the Mariner 10 team. He is regarded by many as the father of modern planetary science.

“Kuiper studied the planets… at a time when they were scarcely of interest to other astronomers. But with new telescopes and instrumentation, he showed that there were great things to discover, which is as true today as it was then.”

– Dr. Bill McKinnon, Professor of Planetary Sciences at Washington University in St. Louis

Airless worlds like Mercury are constantly bombarded with micrometeoroids and charged solar particles in an effect known as “space weathering”. Craters with bright rays — like Kuiper — are thought to be relatively young because they have had less exposure to space weathering than craters without such rays.

See the original image release on the MESSENGER site here.

Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

A Swirling Oasis of Life

A 150-km (93-mile) - wide eddy in the southern Indian Ocean. (NASA/Terra-MODIS)

[/caption]

A serpentine eddy swirls in the southern Indian Ocean several hundred kilometers off the coast of South Africa in this natural-color image, acquired by NASA’s Terra satellite on December 26, 2011.

The blue color is created by blooms of phytoplankton, fertilized by the nutrient-rich deep water drawn up by the 150-km-wide eddy.

The counter-clockwise anticyclonic structure of the eddy may resemble a hurricane or typhoon, but unlike those violent storms eddies bring nourishment rather than destruction.

“Eddies are the internal weather of the sea,” said Dennis McGillicuddy, an oceanographer at the Woods Hole Oceanographic Institution in Massachusetts.

And also unlike atmospheric storms, ocean eddies can last for months, even up to a year. The largest ones can contain up to 1,200 cubic miles (5,000 cubic kilometers) of water.

The nutrient-drawing power of eddies can supply the relatively barren waters of the open ocean with nutrients, creating “oases in the oceanic desert,” according to McGillicuddy.

Read more about the WHOI study of eddies here.

The eddy imaged here likely peeled off from the Agulhas Current, which flows along the southeastern coast of Africa and around the tip of South Africa. Agulhas eddies tend to be among the largest in the world.

The image below shows the eddy in context with the surrounding area:

Eddy off the coast of South Africa. December 26, 2011. (NASA/Terra-MODIS)

MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard NASA’s Terra (EOS AM) satellite. Terra MODIS views the entire Earth’s surface every 1 to 2 days, acquiring data in 36 spectral bands. These data improve our understanding of global dynamics and processes occurring on the land, in the ocean, and in the lower atmosphere.

Read more on NASA’s Earth Observatory site here.

NASA Earth Observatory image created by Jesse Allen, using data obtained from the Land Atmosphere Near real-time Capability for EOS (LANCE).

New Comet Discovered by Amateur Astronomer

Image of Comet C/2012 C2 (Bruenjes) made from ten 60 sec. exposures on Feb. 11, 2012. (Fred Bruenjes)

[/caption]

“Friday, February 10th 2012 just felt like the perfect night for a comet to be discovered by an amateur astronomer,” writes Fred Bruenjes on his astronomy blog. And, this past Friday night, that’s exactly what Fred did.

Here’s how he did it:

Using custom-written software to operate a 14″ Meade LX200GPS telescope in his self-built observatory in Warrensburg, Missouri, Fred set his system up to capture images of the sky on that cold evening, not allowing himself to be chased inside by the low temperatures or the bright, rising moon. After some technical difficulties with his dSLR, Fred managed to acquire some quality images. While making a cursory look through the blink data, Fred was surprised to spot a faint burry object visible moving across three frames. A check of online databases of known objects brought up no positive hits — this was something that hadn’t been seen before.

Raw-color discovery image. (Fred Bruenjes)

Fred describes the “eureka” moment on his blog:

A check of known objects in the region had a lot of results in the area, but all were moving eastward while my fuzzy was moving westward. Rocks don’t make U-turns. This was really getting exciting. I had Jen, my better half, an accomplished astro imager, take a look at the images and before I could point out the faint smudge she exclaimed “That’s a comet!”

Still, Fred notes, “it wasn’t a slam-dunk.” The images were faint and there could have been other causes of blurry spots in digital images. But a check of the raw color data revealed a greenish coloration to the object’s glow, which is indicative of cyanogen and carbon emission — typical hallmarks of comets. “Very encouraging,” Fred added.

Another night’s observation was needed. If it was a comet, it would appear again along its expected trajectory. Of course, with an unidentified comet there would be no known orbit, so Fred had to manually extrapolate its position. When he trained his telescope onto his calculated coordinates the following evening and began taking images, there it was… the same faint, fuzzy green blur from the previous night, slowly appearing in the darkening sky right where it should be.

“Oh. Wow. It was dead nuts at where it was supposed to be,” Fred writes. “Wow. This thing is for real! It’s at about this time that it begins to sink in that a lifelong quest has just been fulfilled. I just crossed another thing off the bucket list!”

Fred spent the next hour gathering images to send in to the IAU’s Minor Planet Center, in the hopes of having the object cataloged so that others could locate and observe it. He didn’t have to wait long; within five minutes the object was listed on the Near-Earth Object Confirmation Page, and dubbed C/2012 C2 (Bruenjes), in honor of its discoverer.

Now that’s just got to feel good.

Comet Bruenjes is an NEO currently about 0.555 AU away from Earth. Its exact size and orbital period isn’t known, and it may even be a returning comet or piece from a larger one… the official report isn’t out yet. It appears to have a fairly inclined orbit relative to the ecliptic, based on the current diagram created by JPL’s Small-Body Database.

Currently plotted orbit of C/2012 C2 (Bruenjes) (NASA/JPL)

The comet’s total magnitude is 16.6, so it is dim and not visible to the naked eye. Fred told Universe Today in an email: “it’s in the constellation Aries, about six degrees north of Jupiter. Just after sunset in the Northern hemisphere it’s high in the southwest, nearly overhead.”

Stay tuned for more updated information on this newly-discovered member of our solar system. And congratulations to Fred Bruenjes, comet-hunter extraordinaire!

Read Fred’s full story on his astronomy site here.

Images © 2012 Manfred Bruenjes. All rights reserved. Used with permission.