United Launch Alliance’s Delta II Approved for Potentially Five More Launches

United Launch Alliance's Delta II rocket has been added to the National Launch Services II contract by NASA. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
NASA announced that it has added the Delta II rocket, a launch vehicle that appeared to be slipping into history, to the NASA Launch Services (NLS) II contract. The Delta II, produced by United Launch Alliance, is one of the most successful expendable launch vehicles that has ever been produced.

This modification of the contract will allow ULA to add the Delta II rocket as part of the contract’s on-ramp provision. The modification allows United Launch Services to offer as much as five Delta II rockets.

The Delta II was most recently utilized to launch the GRAIL mission to study the Moon's composition. Photo Credit: Mike Killian/ARES Institute

“We are extremely pleased NASA has added the reliable Delta II to the NLS II contract and look forward to continuing the legacy of the program,” said Michael Gass, ULA’s president and CEO. “ULA has demonstrated its ability to fully integrate Atlas V, Delta IV and Delta II product lines allowing us to continue offering medium launch capability at the best value for our customers.”

The Delta II rocket, in its various configurations has been launched 150 times and has a success rate of 98.7 percent. The one notable failure was the 1997 launch of a U.S. Air Force Global Positioning IIR-1 satellite (GPS IIR-1). Within 13 seconds of launch the Delta II exploded causing severe destruction to the surrounding area. The cause of this mishap was determined to be a crack within one of the GEM-40 solid rocket boosters that are affixed to the base of the Delta II.

The Delta II rocket has a very extensive history of success and has been used to launch many famous missions. Image Credit: NASA/JPL

“While we count success one mission at a time, we have been able to count on the Delta II’s success 96 times in a row over the last decade,” Gass said. “This is a tribute to our dedicated ULA employees, our supplier teammates and our NASA Launch Services Program customer who ensures mission success is the focus of each and every launch.”

The planetary science missions that the rocket has sent into space reads like a “Who’s Who” of space exploration missions. The Mars Exploration Rovers Spirit and Opportunity, Mars Phoenix Lander, Genesis, Stardust, Mars Pathfinder, Mars Global Surveyor, Messenger, Deep Impact, Dawn, Kepler, Wise and the recent GRAIL mission to the Moon – all thundered to orbit atop a Delta II.

The Delta II rocket is launched from either Vandenberg Air Force Base in California or Cape Canaveral Air Force Station located in Florida. Photo Credit: NASA.gov

ULA’s next planned launch of a Delta II will carry the NPOESS Preparatory Project (NPP) mission for NASA. It is currently slated to launch Oct. 25, 2011 from Space Launch Complex-2 at Vandenberg Air Force Base, located in California. ULA launches from both Vandenberg as well as Cape Canaveral Air Force Station, located in Florida.

While this change does allow for at least five more launches of the Delta II, after those launches, the rocket will no longer be utilized and will be phased out of service.

The NLS II contracts are designed to provide for payloads weighing about 550 pounds or more to be sent to a minimum 124-mile-high circular orbit. The launch service providers signed into these contracts also may offer different launch vehicles to NASA to meet other requirements. NASA can also provide launch services to other agencies, such as the National Oceanic and Atmospheric Administration or NOAA.

Spirit and Opportunity, Pathfinder, Deep Impact, Dawn, Kepler, Stardust, Genesis and Wise - were all launched on the Delta II rocket. Photo Credit: NASA/George Shelton

SpaceX: Next Dragon to Launch No-Earlier-Than Dec. 19

SpaceX has announced that it will work to launch the next Falcon 9 rocket from Cape Canaveral Air Force Station in Florida no-earlier-than Dec. 19, 2011. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
CAPE CANAVERAL, Fla – The launch date of the next Falcon 9 rocket with its Dragon Spacecraft payload has been announced to occur no-earlier-than Dec. 19. This will mean that it will have been over a year since the last time that the NewSpace firm launched one of its rockets.

“NASA is working with SpaceX on our technical and safety data for this mission while coordinating with its international partners to sort out a launch schedule once a definitive decision is reached on the next Soyuz flight to the International Space Station. As a result, we’ve submitted December 19th to NASA and the Air Force as the first in a range of dates that we would be ready to launch,” said Kirstin Brost Grantham SpaceX’s Communications Director. “We recognize that a target launch date cannot be set until NASA gives us the green light as well as the partners involved in the International Space Station program make a decision on when to continue Soyuz flights. Our flight is one of many that have to be carefully coordinated, so the ultimate schedule of launches to the ISS is still under consideration.”

At a speech at the National Press Club on Thursday, SpaceX founder and CEO Elon Musk also confirmed that the flight of Dragon will likely be delayed — perhaps until January — due to the failure of a Soyuz rocket carrying a Progress re-supply ship to the ISS on August 24, 2011.

“It actually will likely result in a delay to our launch to the ISS,” Musk said, “and NASA rightly wants to have the appropriate level of astronauts with the right training when we arrive, so it looks like January for the launch to space station, and that is contingent upon the Russians meeting the schedule they’ve currently stating.”

The Russian Space Agency has scheduled Progress launches on October 30, 2011, and January 26, 2012, with potential launches for the manned Soyuz-FG spacecraft on November 12 and December 20, 2011.

SpaceX's last launch of a Falcon 9 rocket, seen here, was on Dec. 8 and carried the first of the firm's Dragon spacecraft to orbit: Photo Credit: Alan walters/awaltersphoto.com

SpaceX last launched one of its Falcon 9 rockets on Dec. 8 of last year. That launch saw the first flight of the company’s Dragon Spacecraft, which completed two orbits before splashing safely down in the Pacific Ocean off the coast of California. This event marked the first time that a private entity had accomplished this feat. Up until that time only nations had sent and retrieved spacecraft from orbit.

Also during Musk’s speech on Sept. 29, he announced that SpaceX is developing the world’s first, fully-reusable rocket. Musk said that the development of this as-yet-unnamed rocket, if successful, would greatly reduce the cost of launching to orbit and open the doors to manned flights to Mars. But the SpaceX CEO cautioned that success was not guaranteed.

With the space shuttle fleet retired and being prepared for display in museums and tourist attractions, NASA is relying on many proposed commercial space taxis that, unlike the Dragon which has flown, have yet to be tested. Boeing, Sierra Nevada Corporation and Orbital Sciences Corporation all have proposed designs to ferry astronauts to and from low-Earth-orbit and the International Space Station.

ESA’s ExoMars Mission in Jeopardy

NASA has stated that it cannot provide one of the Atlas rockets required to launch the ExoMars mission that it has partnered with ESA on. Image Credit: ESA

[/caption]
The European Space Agency’s “ExoMars” mission is under threat of cancellation. NASA and ESA heads will meet on Monday, Oct. 3 to decide how much more can be cut from the rapidly slimming mission. This meeting comes on the heels of NASA’s latest round of cuts – which means that the U.S. space agency cannot provide ESA with the Atlas V rocket that was slated to launch part of the mission.

ESA still might be able to keep ExoMars going if it can acquire a Proton rocket under the trade system that the agency is working to negotiate with Russia. Barring that? ExoMars will more-than-likely be cancelled. ESA had been hoping to send a diverse science package to the red planet. ExoMars is currently comprised of a communications relay system, descent and landing modules and a rover that is similar in design to the Mars Exploration Rovers Spirit and Opportunity which have been operating on Mars for the past seven years.

The ExoMars Trace Gas Orbiter was originally set to launch in 2016, now its future is uncertain. Image Credit: ESA

NASA Administrator Charles Bolden and ESA Director-General Jean-Jacques Dordain are scheduled to meet in Cape Town, South Africa, during the International Astronautical Congress. During this meeting they are set to discuss one of two options that are left for their joint Mars expedition. The first is a single 2018 launch that will include a NASA-ESA rover and communications package. The second will be to try and maintain, despite the issues with the launch vehicle, the planned 2016 launch.

If a rocket can somehow be procured and the current schedule maintained, ExoMars would be a two launch affair with the Atlas V launching one of the mission’s components and another launch vehicle transporting the remainder. If the mission is saved, but scaled back further, only a single launch would take place in 2018. The Proton rocket scenario appears to be a last-ditch effort to salvage the program at this time. The final deciding factor as to whether-or-not ESA can save the program, to some degree, in its current configuration – depends on ESA obtaining a rocket to replace the Atlas V which NASA says it can no longer provide.

NASA had originally stated that it would provide two Atlas V rockets for the mission, the space agency has taken at least one of these off off the table recently. Photo Credit: ULA

ESA has estimated that either way, the mission will cost them the same 850 million euros ($1.36 billion) that it has already garnered from the nations that comprise the European Union. This is largely due to the fact that ESA has already spent the money to procure the materials and services needed for the orbiter component of the mission.
The primary issue that has continued to threaten mission is the poor state of the economy – both in the U.S. and Europe.

ExoMars started out as a rover and a separate ground station, and was originally set to launch in 2011 on a Soyuz Fregat rocket. In 2009 ESA signed into the Mars Joint Exploration Initiative with NASA. This agreement with NASA both pushed back the launch of the mission considerably and started ExoMars down the path to where it currently finds itself.

ExoMars has been changed repeatedly since its inception and now it is facing possible cancellation. Image Credits: ESA

Surf, Sand & Space: The Astronaut Beach House

The astronaut beach house has served a crucial role in terms of providing astronauts a chance to collect their breaths and calm their minds before they thunder into space. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
CAPE CANAVERAL, Fla – Astronauts preparing to launch into space for the better part of the last four decades have had a welcome refuge – the astronaut beach house. This small two-level structure it is often missed by those that are ferried past it to the nearby launch pads. The astronaut beach house is — for those set to thunder into orbit – a vital place to collect their thoughts before they make history. Let’s take a look inside, as three astronauts provide Universe Today with a guided tour of this historic and storied house.

Astronauts Robert Springer, Nicole P. Stott and Sam Durrance talked about their experiences at NASA's astronaut beach house. Photo Credit: Alan Walters/awaltersphoto.com

Robert C. Springer flew into space on space shuttle Discovery on STS-29 and on Atlantis for a Department of Defense mission on STS-38. For him, the beach house provided astronauts with a refuge from the hectic atmosphere that comes with preparing to launch to orbit. Springer retired from NASA and the United States Marine Corps in 1990. Afterward he worked for the Boeing Company as director of quality systems, Integrated Defense Systems. Springer views the beach house as a place for one to catch their breath – before the big day.

Sam T. Durrance is similar to both Springer in that he flew to orbit twice. His first mission was STS-35 aboard the space shuttle Columbia and his second was STS-67 on Endeavour. Durrance was a payload specialist on both of his two flights; this role required him to focus on each mission’s specific payload. Durrance is currently employed by the Florida Institute of Technology located in Melbourne, Florida, where he serves as a professor in the Department of Physics and Space Sciences.

Nicole P. Stott started out as a operations engineer at KSC in one of NASA’s Orbiter Processing Facilities. Stott supported human space flight endeavors in numerous roles at KSC before she moved to Johnson Space Center in 1998. She was selected for astronaut training two years later. Stott flew to the International Space Station on STS-128 where she stayed for 91 days before returning to Earth with the crew of STS-129. She would return to the ISS as a member of the STS-133 crew.

Stott came to agency later than Springer and Durrance and therefore her view is somewhat different. For her, the house served to both remind and include her in the area’s rich history.

“It’s a special place, you feel like your part of something here,” said Stott as she looked out from the beach house’s deck toward the ocean. “There is so much history here that while you know that when you’re here, it’s for an event that you’re participating in, but you’re aware that there is a lot that has gone on before you as well.”

What are the experts saying about SLS?

NASA's recent announcement concerning the design of the Space Launch System heavy-lift rocket has garnered a lot of attention - and comments - from aerospace experts. Image Credit: NASA.gov

[/caption]
CAPE CANAVERAL, Fla – NASA’s recent unveiling of what its Space Launch System or SLS would look like created a buzz in the aerospace industry. Some experts in this field have weighed in on what they thought of the design, the politics and the time involved in producing the space agency’s next heavy-left launch vehicle.

Wayne Hale was NASA’s shuttle program manager before he left the space agency in 2010. In his view, the rocket is a needed tool to provide the country with the tools needed to power the U.S. to points beyond low-Earth-orbit (LEO).

“All of us who are interested in the future advancement of space exploration applaud any efforts to expand launch capabilities. If the nation can afford a large rocket like the SLS, it would be very useful in the long run,” Hale said.

Kent Rominger, a former astronaut who is now Alliant Techsystems Vice-President for Test and Research Operations agrees. He says that the United States does not need either access to LEO or a heavy lift rocket – it needs both.

“For some reason we’ve been told that it’s either Heavy-Lift or access to LEO,” said Rominger. “If we ever want to go beyond LEO again – we need heavy lift.”

NASA's space launch system would use many of NASA's existing resources and facilities. Image Credit: NASA.gov

Robert Springer has decades of experience in the aerospace industry. First as a fighter pilot, and then as an astronaut before he entered the private sector with Boeing.

“It’s a relief to finally get a decision out of NASA, hopefully one that is fully supported by the administration and congress in terms of budget. On the surface, it doesn’t seem like much, if anything new, in the way of technology. So why is it going to take so long to get it into testing and flight—NASA did the Apollo evolution faster, and it was pretty much new technology. Even the proposed look at liquid boosters is hardly new; MSFC (Marshall Space Flight Center) had several contracts with industry to look into this technology back in the 1990’s. There are likely other areas of technology enhancement that will be included, but again, I am relatively sure that a lot of the technology (new power storage devices, something other than hydrazine for control jets, improved monitoring systems, etc) has or is being looked at. In fact, shuttle was working on that sort of technology before the administration decided to pull the plug and cancel shuttle,” Springer said. “So, good to see NASA moving forward, but it would seem that they’re really being very conservative about going forward—not sure why. Other item of note, the latest announcement that the commercial development is going to take a step back and go forward with more traditional procurement, as opposed to some of the advances made in terms of the Space Act, seems like a giant leap backward.”

Charles Bolden, a former astronaut himself and NASA’s current administrator had this to say after NASA unveiled the rocket to the world.

“This launch system will create good-paying American jobs, ensure continued U.S. leadership in space, and inspire millions around the world,” NASA Administrator Charles Bolden said. “President Obama challenged us to be bold and dream big, and that’s exactly what we are doing at NASA. While I was proud to fly on the space shuttle, tomorrow’s explorers will now dream of one day walking on Mars.”

If other initiatives that NASA is currently investing in as well as SLS prove viable in the long term the space agency stands to not only regain the capacity to send astronauts to the International Space Station – it would also be able to once again travel beyond LEO.

The design of the SLS is similar to the proposed Ares V of the Constellation Program. Images Credit: NASA.gov

Commercial Space Roundup

NASA has announced that it will option additional milestones for its Commercial Crew Development Program. Image Credit: SNC

[/caption]
By all reports – commercial space is thriving. A number of recent announcements show that the burgeoning “private” space industry is thriving. NASA released its plans to obtain transportation services for its astronauts to the International Space Station (ISS) as well as optional milestones for the Commercial Crew Development Round 2 (CCDev2).

“This is a significant step forward in America’s amazing story of space exploration,” said NASA Administrator Charles Bolden. “It’s further evidence we are committed to fully implementing our plan — as laid out in the Authorization Act — to outsource our space station transportation so NASA can focus its energy and resources on deep space exploration.”

To help speed up the process Bolden has stated that NASA will fund some of the original milestones that have already been negotiated as part of some of the Space Act Agreements (SAA) under CCDev2.

NASA’s proposal outlines contracts that would benefit multiple firms that are set to provide the space agency with designs of spacecraft, rockets and other launch services. This contract is worth an estimated $1.61 billion and is currently slated to run from July 2012 through April 2014. NASA has updated Sierra Nevada Corporation’s SAA with four more milestones – that total up to $25.6 million meaning that the contract that this NewSpace firm now has with NASA is worth $105.6 million – if the agency can successfully accomplish all of its milestones.

“All four CCDev2 partners are performing very well and meeting their milestones,” said Phil McAlister, director of NASA’s Commercial Spaceflight Development. “These additional milestones were selected because they sufficiently accelerated the development of commercial crew transportation systems to justify additional NASA investment.”

The Spacecraft Company opened an assembly facility at Mojave Air and Space Port to build Virgin Galactic spaceships. Photo Credit: Mark Greenberg

Meanwhile, out in California, The Spaceship Company (TSC), the joint venture of Sir Richard Branson’s Virgin Galactic and Scaled Composites, announced a milestone of their own with the opening of its Final Assembly, Integration and Test Hangar (FAITH), at the Mojave Air and Space Port. The hangar, which cost an estimated $8 million, supports the final stages of Virgin Galactic’s WhiteKnightTwo and SpaceShipTwo. It is hoped that this new facility will both support further commercial space ventures and create jobs.

The facility is located on taxiway-B and encompasses approximately 68,000-square-feet. It will be used to assemble, prepare and test the vehicles. One of the building’s other roles is that of maintenance hangar.

“We take great pride in the opening of FAITH as an accomplishment for our company, our current and future customers and our industry,” said The Spaceship Company Vice President, Operations Enrico Palermo. “Within this new facility, we will produce the highest quality commercial spaceflight systems.”

With FAITH in place, the required infrastructure is now in place to manufacture a fleet of SpaceShipTwo (SS2) sub-orbital spaceships as well as the WhiteKnightTwo (WK2) carrier aircraft. The facility has been sized to support construction of SS2 and WK2 with room to build two of each of these craft – at the same time.

The other structure that is needed to support SS2 and WK2 operations is a 48,000-square-foot building that is located at the Mojave Air and Space Port that TSC has recently had upgraded. If the sub-orbital space tourism market takes off TSC has optioned rights to expand the facility.

“Despite the current state of the U.S. economy and rising unemployment, this is a strong time of growth for The Spaceship Company,” Palermo said. “We are creating excellent, high-skilled job opportunities for individuals with aerospace, engineering and hands-on space program experience. We want employees who are passionate about developing new and innovative ways of accessing space.”

The SXC has signed a lease for the Lynx (tail number 2) sub-orbital space plane. Image Credit: XCOR

Staying on the topic of sub-orbital space planes, Space Expedition Curaçao (SXC) and XCOR Aerospace, Inc. have announced the completion of a deal that will secure the wet lease of production Lynx tail number two for operation on the Caribbean island of Curaçao.

“Since we signed the initial Memorandum of Understanding (MOU) in October of 2010, XCOR and SXC have worked diligently towards completing the Definitive Agreement,” explained XCOR CEO Jeff Greason. “Now that the ink is dry and the check has cleared we can proceed at full pace to begin operations in Curaçao in 2014.”

Since the first flights of SpaceShipOne high above the Mojave Desert, the commercial space industry has found its legs and has expanded its reach both nationally and internationally. With Space Exploration Technologies (SpaceX) plans to launch its next Falcon 9 rocket and Dragon spacecraft to the International Space Station in November the commercial space field appears to be cementing its beachhead on not only sub-orbital flights – but orbital ones as well.

SpaceX to Dock With ISS on Next Flight: NASA Maybe – Russia Nyet

Russia has again stated that doea not approve of SpaceX and NASA's plans to dock the next Dragon Spacecraft with the International Space Station. Image Credit: SpaceX

[/caption]

It is looking less likely that Space Exploration Technologies (SpaceX) will be allowed to dock the next of its Dragon Spacecraft to the International Space Station (ISS). Instead it is now looking like the Dragon will be allowed to only come close the orbiting outpost to test out many of the spacecraft’s key systems.

This comes from a statement issued by Vladimir Solovyov, head of the Russian segment of the ISS mission control center on Friday and posted on the Russian news site RIA Novosti. Up until now SpaceX has stated that they would launch the next Dragon Spacecraft atop one of the company’s Falcon 9 rockets on Nov. 30. It is unknown now whether-or-not the proposed docking will be allowed to take place.

SpaceX has had a string of successes - and failures - since its founding in 2002. Photo Credit: Alan Walters/awaltersphoto.com

In a company-prepared statement, SpaceX stated that the company had been working to fulfill all of the necessary requirements to allow SpaceX to become the first private firm to dock its spacecraft with the ISS. Russia, however, has repeatedly stated that it will not allow this. The rationale behind this stance is based on safety. According to Russia, a vehicle, which has only flown once, does not have the established, proven track record required for such operations.

Moreover both NASA and SpaceX stated that while a final determination has yet to be made – the private space firm has not been denied the opportunity to dock with the International Space Station. Thus leaving the flight’s status in a sort of limbo. This situation also highlights that the assorted international members involved on ISS – don’t always agree.

Russia's most recent attempt to launch its unmanned Progress Spacecraft ended in the loss of the spacecraft as well as its cargo. Photo Credit: RSC Energia

Many industry experts noted the irony of these statements given that the last Soyuz rocket failed, causing the destruction of the Progress spacecraft as well as the three tons of supplies that the spacecraft carried.

NewSpace firms themselves have acknowledged anomalies in their programs – including SpaceX. Blue Origin recently lost one of its test vehicles. Apparently the rocket went off of its predicted flight path and range safety was forced to destroy the vehicle.

Orbital Science's Cygnus Spacecraft is one of the other vehicles being developed under the COTS program. Image Credit: Orbital Sciences Corporation

Under the initial Commercial Orbital Transportation Services (COTS) agreement SpaceX was supposed to launch the Demo 2 mission, which would have completed COTS Milestone 19 (the mission scheduled for this November) two years ago. Similarly, milestones 20-22 were scheduled to be accomplished by the first quarter of 2010.

COTS is a NASA-funded program, designed to coordinate delivery of both astronauts as well as cargo to the ISS by privately-owned companies. COTS – was announced in January of 2006, under the Bush Administration. As it stands currently, SpaceX is the frontrunner under this contract which also includes Orbital Sciences Corporation.

ATK and Astrium’s Liberty Launcher Added to NASA’s Commercial Crewed Roster

The Liberty launch vehicle, produce by ATK and Astrium, has been added to the fleet of commercial rockets and spacecraft that are being developed for NASA. Image Credit" ATK

[/caption]CAPE CANAVERAL, Fla – Liberty has wings. That is to say that the launch vehicle proposed by Alliant Techsystems or ATK as they are more commonly known has been given the green light by NASA – albeit unfunded – as part of a Space Act Agreement. The announcement was made at the Kennedy Space Center press site’s auditorium in Florida Tuesday at 3 p.m. EDT. With ATK’s addition – the fleet of potential spacecraft and launch vehicles could mean that the space agency will not only be able to return to human space flight operations sooner – but with a more diverse range of vehicles to do so as well.

The proposal to use the Liberty launch vehicle, which is comprised of a five-segment solid rocket booster (similar to the four-segment SRB utilized during the shuttle program) and an Ariane V upper stage could reduce the human space flight “gap” that NASA is currently experiencing. As the company that produces the Ariane V, Astrium, is a European firm this deal also works to fulfill the White House’s wishes that space endeavors be conducted on an international level. More importantly – ATK has stated that they could be ready to launch as early as 2015.

Liberty is a combination of so-called "legacy" hardware. The first stage is a modified shuttle Solid Rocket Booster and the upper stage comes from the Ariane V rocket. Image Credit: ATK

After the Ares I launcher was scrapped along with most of the rest of the Constellation Program by the Obama Administration ATK looked into ways to preserve the project. ATK was one of the first to see the commercial crewed writing on the wall and went to work revamping the project. With a far lower cost, international partner and a new paint job – Liberty was born.

The rationale behind why the Liberty announcement was made at KSC – was highlighted by ATK’s Vice-President for Test and Research Operations, Kent Rominger.

“We want to launch Liberty from Kennedy Space Center,” said Rominger. “Our concept of operations is based around KSC assets such as the Vehicle Assembly Building (VAB). Liberty will be processed much in the same manner as the space shuttle was – so KSC is central to Liberty’s operations.”

With the inclusion of Liberty – most elements of the Constellation Program are back in place. Liberty could potentially be the launch vehicle that sends astronauts to orbits, the Space Launch System which closely resembles the Ares V is currently in development, the Orion Multi-Purpose Crew Vehicle is still in place as is the Lunar Electric Rover (although it has been renamed the “Space Exploration Vehicle”). The only element that has yet to be resurrected is the over-arching ‘Vision for Space Exploration’ – which directed NASA to go to the “Moon, Mars and Beyond.”

If all works out with NASA’s Commercial Crew Program NASA could see a problem that faced the space agency in the wake of the Challenger and Columbia accidents – erased. After the loss of each of the orbiters NASA was unable to launch astronauts to orbit for a period of roughly two years. With Liberty and man-rated versions of United Launch Alliance’s Atlas and SpaceX’s Falcon 9 rocket – if one of these launch vehicles experienced an in-flight anomaly NASA could simply switch to another launcher while any problem with another rocket is being investigated. This of course depends on whether-or-not NASA receives the funding to accomplish this.

The Liberty rocket has been designed to accomodate a wide-range of potential spacecraft. Image Credit: ATK

NASA Facing Astronaut Deficit

A National Research Council report states that NASA's ability to conduct normal human space flight operations could be hampered if it cannot maintain a robust astronaut corps. Photo Credit: Jason Rhian

[/caption]This past December the White House directed the National Academies to review how many astronauts that NASA actually needed to conduct its operations in the post-shuttle era. New findings in a new report are showing that rather than the space agency having too many astronauts – it will have too few to meet mission objectives. The National Research Council (NRC) has released a report showing that NASA is entering into a period where low numbers of qualified astronauts will affect the agency’s ability to conduct human space flight operations.

NASA once had a strong, stable astronaut corps but the agency has slowly but surely saw those numbers dwindle. In 1999 NASA had 150 astronauts today it has 61 – with more leaving the space agency every month. NASA needs to have a stable corps of space flyers for not only International Space Station operations but also to help develop the Orion Multi-Person Crew Vehicle (MPCV).

With the shuttle program over and the fleet of orbiters on their way to museums, many astronauts are opting to leave the space agency. Photo Credit: Jason Rhian

Moreover NASA needs its astronaut corps to remain stable so as to maintain its agreements with the Russian Federal Space Agency, European Space Agency, Japanese Aerospace Exploration Agency and Canadian Space agency. Fewer astronauts weakens NASA’s ability to fulfill operations that are required under these arrangements.

NASA is losing astronauts at approximately the rate of one every two months. If this exodus is allowed to continue the agency’s ability to conduct normal operations will be dramatically impaired. The NRC report highlights many of the nuances that space flight requires – most of which are missed when one considers space flight. Ground operations, emergency response, training and other elements that are involved with crewed space flight operations.

Astronaut Mark Kelly, who commanded the final flight of the space shuttle Endeavour has announced that he will leave NASA effective Oct. 1, the commander of STS-133, the final flight of Discovery, has already departed the space agency. Photo Credit: Jason Rhian

For many astronauts however the appeal of working for the space agency is fading. NASA no longer has clear-cut objectives as it once did. In 2004 plans were announced for NASA to go to the Moon, Mars and then other points in the solar system after the shuttle was retired. In 2010 NASA had the so-called ‘Vision for Space Exploration’ cancelled and the space agency was directed to assist commercial entities in developing technology to reach low-Earth-orbit. It is hoped that once these firms become viable NASA will be freed to fly to an asteroid and then Mars sometime in the 2030s.

NASA is experiencing what some might call a “brain drain” not only are astronauts departing the agency in large numbers – so too are other NASA officials. In recent months NASA’s Chief Technologist Bobby Braun, Safety Chief Bryan O’Connor and the Associate Administrator for Exploration Douglas Cooke (who has been with NASA for 38 years) have either left NASA or signaled their intent to do so.

Book Review: A Dictionary of the Space Age

A Dictionary of the Space Age covers most aspects of space flight but is somewhat lacking in detail. Image Credit: John Hopkins University & Alan Walters/awaltersphoto.com

[/caption]
Writing a dictionary is not the same as writing a novel. While it might seem difficult to mess up a dictionary, even one with terminology that is as complicated as that used within the space industry – getting it right can be challenging. For those that follow space flight having such a dictionary can be invaluable. While A Dictionary of the Space Age does meet the basic requirements easily it fails somewhat in terms of its comprehensiveness.

When normal folks, even space enthusiasts watch launches and other space-related events (EVAs, dockings, landings and such) there are so many acronyms and jargon thrown about – that it is extremely hard to follow. With A Dictionary of the Space Age on hand, one can simply thumb through and find out exactly what is being said, making it both easier to follow along and making the endeavor being witnessed far more inclusive. That is as long if you are only looking for the most general of terms. The book is far from complete – but given the complex nature of the topic – this might not have been possible.

Crewed, unmanned, military space efforts and satellites – all have key terms addressed within the pages of this book.

The book is published by The Johns Hopkins University Press and was compiled and written by aerospace expert Paul Dickson. One can purchase the book on the secondary market (Amazon.com) for around $12 (new for around $25). The dictionary also has a Kindle edition which is available for $37.76. Dickson’s previous works on space flight is Sputnik: The Shock of the Century.

Weighing in at 288 pages, the book briefly covers the primary terms used within the space community. In short, if you are interested in learning more about space flight – or wish to do so – this is a good book for you.