X-37B launch delayed due to weather

Poor weather dealyed the launch of the Air Force's Orbital Test Vehicle. Photo Credit: Jason Rhian

[/caption]

CAPE CANAVERAL – Weather delayed the launch of the second of the United States Air Force’s Orbital Test Vehicles (OTV). The X-37B, as it is more commonly known, sate encapsulated within its fairing on top of the Atlas V 501 launch vehicle at Cape Canaveral Air Force Station (CCAFS).

It appeared that the launch might occur at the first launch window, which opened at 3:50 p.m. EDT. However high-level ground winds forced a delay. The second launch window was for 5:27 p.m. EDT, but by this time the winds had increased, Cumulous Clouds had moved into the area – bringing heavy rains in with them, forcing a scrub for the day. The plans are now for a 24-hour recycle of the launch, however tomorrow does not look much better with similar weather threatening the launch.

The first OTV, USA-212 lifted off from the exact same launch pad on 22 April 2010 and returned to Earth on Dec. 3, 2010. The return to earth tested out the space planes heat shield as well as the vehicle’s hypersonic aerodynamic aspects. The space plane is small enough to be carried within the U.S. space shuttle’s payload bay, it landed at Vandenberg Air Force Base in California.

Looming clouds, high winds and eventually rain stopped the launch of the second of the Air Force's OTVs. Photo Credit: Jason Rhian

Weather a concern for second OTV launch

The X-37B (OTV) sits safely cocooned inside its fairing at Cape Canaveral Air Force Station in Florida. Photo Credit: USAF

[/caption]
CAPE CANAVERAL – In preparation for the launch of the second of the U.S. Air Force’s Orbital Test Vehicles (OTV), the Air Force has released images of the OTV being encapsulated within the fairing that goes on top of the Atlas V AV-026 launch vehicle. Currently, the launch is scheduled to take place on Friday, March 4. The launch window is between 3:39 p.m. EDT and 5:39 p.m. EDT.

UPDATE: Due to weather concerns, the launch has been postponed until Saturday, March 5. Weather is predicted to improve to 40% favorable for launch.

The X-37B OTV is carefully sealed within its fairing. This then is hoisted to the top of the Atlas launch vehicle. Photo Credit: USAF

The tiny X-37B space plane is better known as the X-37B. The small spacecraft was designed to fit within the payload bay of the space shuttle. It currently is inside the Atlas’ 5-meter fairing. This is what is known as the X-37B Orbital Test Vehicle encapsulated assembly or EA. The EA being hoisted to the top of the rocket is one of the last major assembly endeavors before launch.

The X-37B, its nose pointed skyward is sealed inside its fairing. Photo Credit: USAF

The EA arrived at Cape Canaveral Air Force Station’s Space Launch Complex 41 (SLC-41) on Feb. 21. Currently weather conditions provide for a 70 percent chance of unfavorable conditions for launch. The primary causes for concern are gusty winds and Cumulus Clouds.

With the lights from a distant launch pad providing illumination the X-37B's EA trundles to its launch pad. Photo Credit: USAF

Review: Apollo 12 On the Ocean of Storms

David M. Harland has detailed man's first precision landing on the moon in: Apollo 12 On the Ocean of Storms. Image Credit: Spinger/Praxis

[/caption]

As one chapter in manned space flight draws to a close, it is human nature to look back, to draw parallels and to remember similar points in time. A new offering from Springer-Praxis details man’s second landing on the surface of another world, the 1969 mission of Apollo 12. The book is entitled; Apollo 12 On the Ocean of Storms. Strangely, this is the first time that the full story of man’s first trip to the Ocean of Storms has ever been written down. The story in-and-of-itself is compelling, filled with peril, discovery and friendship.

President Nixon was at the launch, but a storm had blown in. The launch went ahead regardless and the Saturn V rocket thundered into the sky – where it was struck twice by lightning. The lightning traveled down the rocket’s plume and struck the pad. On board the Yankee Clipper (the Command Module in which the crew rode), fuel cells, inertial guidance platform and telemetry system went offline.

EECOM John Aaron in Mission Control, with the help of Lunar Module Pilot Alan Bean, saved the day by remembering an obscure procedure, and once in orbit the spacecraft was restored to full operation.

By setting down on the Moon close by an unmanned probe, Apollo 12 showed that precision lunar landings were possible, that microbes could survive for years inside such a robot in that harsh environment – and that friends can make the best crewmates.

This is just a tiny hint of the richly detailed story that is Apollo 12. When it came time to select an author to tell this tale, Springer tapped one of the best in the business – David M. Harland.

Harland is one of the most prolific, accurate authors in his field of expertise – aerospace history. As such, when he started to cover the Apollo era, fans were waiting with great anticipation for his chronicles covering the greatest era in human exploration.

The crew of Apollo 12, from left-to-right, Pete Conrad, Dick Gordon and Alan Bean. Photo Credit: NASA

“I wrote this book as part of my series on NASA’s Moon program. I started with Apollo 11, and will work sequentially with books devoted to each of the missions which landed on the Moon, explaining the planning, assembly of the vehicles, launch through to splash, and the scientific insight gained,” said Harland during a recent interview. “People tend to remember the Apollo 8 flight around the Moon at Christmas 1968, the Apollo 11 landing, and the aborted Apollo 13 mission. Yet the missions which followed Apollo 11 and landed on the Moon were far more than ‘flags and footprints’, they were scientific exploration – indeed as one of the astronauts said, ‘exploration at its greatest’. I’m delighted that Springer-Praxis has given me the freedom to write this series.”

Springer Praxis has developed a virtual library’s worth of books regarding space flight. Apollo 12 On the Ocean of Storms is a very worthy addition to this collection and can be found online at Amazon.com. The book includes 530 pages with dozens of historic, color images.

Alan Bean looks out on the moon's Ocean of Storms. David M. Harland has produced a vivid, detailed account of this amazing journey in Apollo 12 On the Ocean of Storms. Photo Credit: NASA

Leland Melvin remembers the past as he looks forward

Leland Melvin (right) talks education at NASA's Kennedy Space Center. He is standing next to Stephan Turnipseed, president of LEGO Education North America. Photo Credit: Mike Killian

[/caption]

CAPE CANAVERAL – Most people struggle to find a new path when their primary career ends unexpectedly. Some say that it’s hard to get ahead in this world. Then there are those that prove it is possible to have a vibrant second career and that it is possible to make it – in spades. Leland Melvin is one of those people.

Back in 1986 it seemed he would be a wide receiver for the NFL. Then an injury sidelined him when he was training with the Detroit Lions. He tried again the following spring with the Dallas Cowboys – but the same injury resurfaced and dashed his NFL hopes. Few manage to pull off a second high-caliber career after such a setback. But Melvin did just that – he went on to join one of America’s most elite clubs – he became an astronaut.

He went on to fly on two space shuttle missions, STS-122 and STS-129, both onboard Atlantis, both to the International Space Station (ISS).

Melvin suits up in preparation to launcing with his Atlantis crewmembers to orbit. Photo Credit: NASA

He didn’t start out with the plan to be an astronaut however; in fact he really didn’t think that he would work for the space agency. A job fair, of all things, helped him become an engineer at NASA’s Langley Research Center.

“I really didn’t think I wanted to be with NASA,” Melvin said during an interview at NASA’s Kennedy Space Center just before the shuttle Discovery launched on its final mission. “This one lady would have none of it. I helped her with her bags and she helped me with my career.”

Melvin got accepted as an astronaut in 1998. However, he never drifted far from his roots – and those were firmly planted in education. After he completed his missions to space, his mind and his path went back to education. In October of 2010 he was selected as NASA’s Associate Administrator for Education.

Leland Melvin was a mission specialist on STS-129 which launched to the International Space Station in 2009. Photo Credit: NASA

Since selected he has worked to make NASA’s education elements a more hands-on affair. Melvin has become a tireless advocate of NASA’s Summer of Innovation, Explorer Schools as well as the numerous other education programs that the space agency supports. One of his responsibilities is to raise public awareness about how much NASA does to support education. It was in that capacity that he was at Kennedy Space Center on launch day.

For some, coming down to a shuttle launch is a perk of the job; Melvin seemed far more interested with getting the word out about NASA’s educational outreach efforts, jumping from one interview to the next.

Leland Melvin was all set to play in the NFL before an injury changed his plans. He became an astronaut, but still remains dedicated to the goal of education. Photo Credit: NASA

“People really don’t realize how much of a tremendous investment that NASA truly is,” said Melvin. “Basically, for every dollar they put in – they get eighteen dollars in return. Out of every tax dollar, I think it boils down to one-seventh of one cent goes to NASA – for that the public gets the astronaut corps, the shuttle, space station, all the probes to the planets, on and on…it’s really an incredible deal.”

Melvin’s life has been shaped by education, from his parents, to his experiences in college and now with NASA. Sometimes, Melvin takes a second from the frenetic pace of his job and looks back.

“Education has always been important to me, I got that from my parents,” said Melvin. Both of his parents were teachers, a fact he is reminded about whenever he visits his hometown of Lynchburg, Virginia. “People still come up to me and thank me for what my father did for them.”

Leland Melvin sees his experiences with NASA as proof that people can do pretty much whatever they want to - they just have to set their minds to it. Photo Credit: NASA

Discovery’s final crew arrives at NASA’s Kennedy Space Center

STS-133 Commander Steve Lindsey and Mission Specialist Alvin Drew land at Kennedy Space Center's Shuttle Landing Facility. Photo Credit: Jason Rhian

[/caption]

CAPE CANAVERAL – Arriving in their trademark T-38 Talon jets, the crew that will fly the last mission of the space shuttle Discovery arrived at NASA’s Kennedy Space Center in Florida. The astronauts landed at the Shuttle Landing Facility (SLF) at 3:45 p.m. EDT and took a few moments to speak to members of the media and pose for pictures before heading off to prepare for their 11-day mission.

Discovery is currently slated to begin its mission to the International Space Station (ISS) with liftoff taking place at 4:50 p.m. EDT Thursday, Feb. 24. The STS-133 mission is Discovery’s final scheduled flight. However, STS-132, which took place this past May, was shuttle Atlantis’ final scheduled flight – now that orbiter is scheduled to close out the shuttle program when it completes mission STS-135, which is scheduled to take place late this summer.

The crew will deliver the Leonardo Permanent Multipurpose Module (PMM) to the space station. The PMM was modified from the Multi-Purpose Logistics Module (MPLM) Leonardo – which was essentially a cargo container. Now, Leonardo will be a permanent fixture on the orbiting outpost providing additional storage for the station’s crew.

STS-133 mission Commander Steve Lindsey discusses the upcoming mission at Kennedy Space Center's Shuttle Launch Facility. Photo Credit: Jason Rhian

On the way to orbit, the PMM will carry, among other things, the first human-like robot ever flown in space, Robonaut 2 (R2). R2 will stay onboard the station and will be used to test the viability of similar robots in assisting astronauts on future long-duration missions. One of the things that the station can always use – is more spare parts. STS-133 will deliver various parts and the Express Logistics Carrier 4, a platform that holds large equipment.

The crew consists of Commander Steve Lindsey, Pilot Eric Boe and Mission Specialists Alvin Drew, Steve Bowen, Michael Barratt and Nicole Stott. Bowen is a last minute addition to the crew. He replaces Tim Kopra who broke his hip in a bicycle accident.

Mission Specialist Alvin Drew (left) is greeted by NASA Administrator Charles Bolden (right). Photo Credit: Jason Rhian

Forever Endeavour: USA has Plan to Continue Flying Space Shuttles

If a proposal by United Space Alliance is approved the shuttles Endeavour and Atlantis could continue to fly until at least 2017. Photo Credit: NASA

[/caption]

She is the youngest orbiter in NASA’s fleet – and she is being looked at to keep her country in space during a period when the U.S. will lack the capability to do so. Both Endeavour and her sister Atlantis are part of a proposal to keep the shuttles flying into 2017. United Space Alliance (USA) submitted the proposal in the latter part of 2010 as part of NASA’s Commercial Crew Development Round 2 ( CCDev2).

NASA asked aerospace firms for concepts and ideas to advance the cause of commercial crew transportation. NASA has offered to provide funding to companies to look into various manned space flight systems. USA submitted the Commercial Space Transportation System (CSTS) – an adapted version of the shuttle’s Space Transportation System title.

USA wanted to make sure that all options for crew transportation to orbit were on the table. That included keeping the orbiters Atlantis and Endeavour in service until 2017. If this plan succeeds, the shuttles could conduct missions as quickly as by the year 2013. They would have to wait for new external tanks to be produced. Two flights annually would cost approximately $1.5 billion.

Although some are calling the proposal a “long shot” the plan has some very tangible merits. It would limit the “gap” between the end of the end of the shuttle era and when commercial space-taxis could begin ferrying astronauts to the International Space Station (ISS). Keeping the shuttles in service would also help to significantly decrease dependence on the Russian Soyuz for access to the orbiting outpost.

“The CSTS could provide a near-term U.S. solution for crew transport until a new system is ready. It could provide a low-risk approach to bridging the gap in human spaceflight since the program has been flying since 1981 and is well understood,” USA spokesperson Tracy Yates told Universe Today. “It could also provide redundancy for human access to the ISS and therefore ensure the continued viability of an important national asset. The concept has the potential to offer a proven vehicle operated by a seasoned workforce at a market-driven price. It preserves down-mass capability, stabilizes a larger portion of the human spaceflight workforce for future NASA programs and keeps more crew transport dollars at home.”

For the Space Coast this proposal would also have the added benefit of staving off the crippling unemployment that has come as part of the one-two punch of the end of the shuttle era and the cancellation of the Constellation Program.

Although the CSTS has a specific date (2017) mentioned – it is capable of remaining in effect until the new commercial systems come online. This proposal would allow NASA to utilize a proven space vehicle and the overall idea of a “commercial shuttle program” is actually nothing new – the idea has been bandied about since the 90s.

However, while the cost is less than the $3 billion the shuttle program cost in 2010, it is basically the same amount that NASA is paying Space Exploration Technologies (SpaceX) for 12 missions to the space station. The NewSpace firm has stated that four manned flights would cost approximately $550 million.

Space Exploration Technologies (SpaceX) has stated that a flight on the manned version of the Dragon spacecraft would cost about $140 million. Image Credit: SpaceX

“The main thing that this program has going against it is this, what does the shuttle offer that the HTV, ATV, Soyuz and soon commercial craft can’t offer,” said noted space historian David M. Harland. “In today’s economic climate it makes more sense to pay $50 million or so for a seat on Soyuz.”

Air Force and ULA to launch second X-37B

The second launch of the U.S. Air Force's X-37B OTV is slated for March 4, 2010. Photo Credit: Air Force

[/caption]
CAPE CANAVERAL – From all appearances the first flight of the U.S. Air Force’s secretive X-37B space plane was a complete success. As such, the Air Force is planning to launch a second Orbital Test Vehicle (OTV) on March 4 from Cape Canaveral Air Force Station in Florida on top of a United Launch Alliance (ULA) Atlas rocket. The Air Force has not yet released a specific launch time.

The first flight of an OTV took place on Apr. 22, 2010 on top of an Atlas V 501 rocket and was designated USA-212. Built by Boeing, the spacecraft is unmanned and is in many ways similar to the space shuttle. It has a payload bay, maneuvering thrusters up front and to the rear of the spacecraft and a single, primary engine.

The OTV is different from the space shuttle in that it can operate on-orbit for up to 270 days. During the vehicle’s maiden flight it was spotted by a number of amateur astronomers who verified that the craft changed orbits a number of times before it landed safely at Vandenberg Air Force base on Dec. 3, 2010.

The first X-37B lifted off from Cape Canaveral Air Force Station last April. Photo Credit: ULA T.V.

“We are tremendously excited to launch the second OTV space vehicle for the Air Force Rapid Capabilities Office. Our combined Air Force and ULA mission partner team has worked hard to prepare the Atlas V for this mission which is the first launch of the year for ULA from the east coast in 2011,” said ULA’s Director of Communications, Mike Rein. “I fully expect this launch to be a 100 percent successful mission – just like the first OTV launch in April 2010.”

Originally the OTV was to be deployed from the space shuttle’s payload bay, after the Columbia accident however, it was decided to launch from an EELV instead. At first a Delta II was given the nod to launch the space plane – before the Atlas V was confirmed as the launch vehicle that would be used.

The X-37B is similar in many ways to NASA's space shuttle - but it is far smaller and unmanned. Photo Credit: Air Force

The U.S. Air Force has disclosed only minimal information regarding the first mission and has said little about the upcoming mission as well. The Air Force has stated that the length of the OTV’s mission’s will be determined by the completion rates of the experiments that are onboard. Mission control is based out of Colorado with the 3d Space Experimentation Squadron.

The X-37B is only the second reusable spacecraft that is capable of conducting an automated landing. The only other reusable craft that has demonstrated this capability was Russia’s Buran shuttle which returned safely to Earth on Nov. 15, 1988.

The X-37B was a program initially handled by NASA; however the program was eventually turned over to the U.S. Defense Advanced Research Projects Agency (DARPA) and the Pentagon. The OTV flew several times on Scaled Composites’ White Knight aircraft and was drop tested twice successfully in 2006.

As seen in this diagram, the X-37B is encapsulated within the fairing of the Atlas rocket. Image Credit: ULA
[

Kelly remains commander of STS-134 mission (Updated)

It was announced today that Mark, Kelly, center, will fly on the STS-134 mission currently slated to launch Apr. 19. Image Credit: NASA

[/caption]

HOUSTON — Whether or not Mark Kelly would command the final scheduled flight of the space shuttle Endeavour, STS-134, had been left undecided in the wake of the shootings in Tucson, Arizona. It was announced today that Kelly would remain the commander of the mission, if all goes well he will launch with the remainder of his crew on Apr. 19.

Kelly’s wife, Rep. Gabrielle Giffords was severely injured when she was shot during an event held outdoors in Tucson, Arizona. As such, Kelly’s time has been spent at his wife’s side as she recuperates.

“I am looking forward to rejoining my STS-134 crew members and finishing our training for the mission,” Kelly said. “We have been preparing for more than 18 months, and we will be ready to deliver the Alpha Magnetic Spectrometer (AMS) to the International Space Station and complete the other objectives of the flight. I appreciate the confidence that my NASA management has in me and the rest of my space shuttle crew.”

Kelly was forced to take leave to be at his wife’s side. He asked that a backup commander be chosen. NASA selected four-time shuttle veteran Rick Sturckow, to take Kelly’s place in case he could not make the flight.

At a press conference on Friday, Kelly said his decision to return “has everything to do with what is right for NASA first and then me and my family.”

He said all of his family – including his daughters and Giffords’ parents – support his decision to fly the mission, and that when he was considering not commanding STS-134, they all told him he needed to reconsider.

The main reason he has decided to return to training is the incredible recovery of Giffords, which has surprised everyone, including her doctors. Kelly would not talk about Giffords’ condition, or give any information if Giffords has spoken directly to Kelly about the decision to fly the mission, but he did say that Giffords should be able to come to Kennedy Space Center for the launch in April.

“Absolutely. I have every intention that she’ll be there for the launch,” he said in response to a question of if she would be able to attend. “I’ve already talked to her doctors about it. There really shouldn’t be any reason why she can’t go to the launch.”

Although Kelly was willing to return as commander, Peggy Whitson, chief of the Astronaut Office, said they didn’t take his decision lightly. “We researched this and really looked into Gabby’s condition and looked at the prognosis,” as well as making sure Kelly wouldn’t change his mind at the last minute. They put Kelly through a trial run this week of what his activities would be during training and if he could hand the work flow.

Asked about those who might criticize his decision, Kelly said those people might not understand the entire situation.

“They don’t know her very well, so they don’t know what she would want,” he said. “She is a big supporter of my career, a big supporter of NASA. She really values the mission of NASA. What we do and what the nation gets from that are very high on her list of things she really treasures about this country. So I think they don’t understand that, and they also don’t understand her condition or the support system that I have in place. I think if they had more details about those things, you’d probably have less people being critical. But I think in any decision there’s a lot of interest in, you’re going to have people on both sides.”

As to whether NASA will be criticized for allowing Kelly to return when he has been absent from training for several weeks, Brent Jett, chief Flight Crew Operations Directorate said, “When Mark’s situation got to the point where he was ready to commit to fly, our job was to evaluate what was best for the mission, it is that simple. With all the training and time he has put in, we had to know if he was ready. But we had to take certain steps to make sure he was ready. And we feel we’ve done that. And we’re really happy that he is back as commander of STS-134.”

Kelly said the outpouring of support he has received is a bit humbling. “I’m very grateful for it,” he said. “It is nice to see that people care about who she is and what she represents. The fact that something so horrible where 6 people lost their lives, it is really a sad situation. But I’m hopeful that something positive can come from it.”

STS-134 is currently scheduled to be the final flight of the space shuttle Endeavour, the youngest orbiter in the fleet. It will carry the Alpha Magnetic Spectrometer – 2 (AMS-02) science experiment, the ExPRESS Logistics Carrier 3 as well as equipment that will test out the risk mitigation equipment for the Orion spacecraft.

Bigelow Aerospace and Space Florida announce exhibit center

Space Florida and Bigelow Aerospace signed a Memorandum of Understanding to open an exhibit center on Florida's Space Coast. Photo Credit: Jason Rhian

[/caption]

CAPE CANAVERAL – Another NewSpace firm was in the Cape Canaveral area to ink a deal with Florida’s aerospace organization, Space Florida, today. A meeting was held today at the Radisson Resort at the Port to discuss the partnership of Space Florida and Bigelow Aerospace to establish a exhibit center on the Space Coast. Numerous dignitaries and officials in the space industry attended as did elected officials such as Rep. Bill Posey. The brief session started at 1 p.m. EDT and lasted about an hour.

“My purpose by coming here today is to provide a message of hope, that this country is absolutely capable of taking charge of the future of space, not just bequeathing it to other countries and other nations,” said Robert Bigelow founder and president of Bigelow Aerospace at the end of Wednesday’s meeting. “The private sector in this country has the ambition and the chutzpah to go ahead and take this on…”

Space Florida and the commercial space firm inked a deal to build an exhibit center that will showcase one-third scale replicas of Bigelow Aerospace’s inflatable space stations. Two prototypes of which have already been sent into orbit via Russian rockets. The exhibit will primarily be utilized for marketing purposes.

The event was closed with a signing of the Memorandum of Understanding and a brief question and answer session with those in attendance and the media.

Frank DiBello president of Space Florida shakes hans with Robert Bigelow, the founder and president of Bigelow Aerospace. Photo Credit: Jason Rhian

This new effort does however highlight the growing interest of the emerging commercial aerospace market in Florida’s established space infrastructure. Bigelow stated that it was possible that Florida could be the place where much of his firm’s hardware is launched from. However, he mentioned other U.S. launch facilities as well. Approximately 25 flights will be required to make Bigelow’s space station objectives a reality.

“If you think about the process of a country or a major corporation wanting to fly something into space to conduct research, it’s not a simple device that they fly, it is a research program that they find that fits into a multi-year plan,” said Frank DiBello the president of Space Florida. “It is a multi-year project for every one of these customers, we see this as an industry that we are growing – and this is a brick that were placing into the wall of that industry.”

If Florida is selected this could well bring something very valuable back to the Space Coast region of Florida – jobs. These efforts could bring about 1,800 jobs to the area.

Robert Bigelow, president of Bigelow Aerospace discusses his plans for the future. Photo Credit: Jason Rhian

Space Florida is the arm of the State of Florida that is responsible for economic development of aerospace business. The organization was established by the Florida legislature back in 2006 from three separate entities, the Florida Aerospace Finance Corporation, the Florida Space Authority and the Florida Space Research Institute.

Bigelow Aerospace was founded in 1999 and it has since flown two prototypes into space Genesis I and Genesis II which were launched atop a Dnepr ICBM from the Dombarovskiy Cosmodrome in Russia. At the meeting in Cape Canaveral on Wednesday Bigelow stated that one of the main customers that his company is looking at is smaller nations that cannot afford their own space program and would like to send payloads into orbit.

Replicas of two of Bigelow Aerospace's spacecraft. The ones on display at the exhibit center will be one-third the size of the actual flight models. Photo Credit: Jason Rhian

Re-Discovery; Orbiter makes second trip out to the launch pad for STS-133

Discovery, resplendent in her xenon glow, heads to the launch pad for her date with history. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]

CAPE CANAVERAL – Space shuttle Discovery was wheeled out of the Vehicle Assembly Building (VAB) on one of the massive crawler-transporters toward launch complex 39A – and its final mission – STS-133, currently scheduled for launch on February 24 at 4:50 p.m. EST (21:50 GMT). This marks the second trip out to the launch pad for Discovery; the orbiter had to be taken back to the VAB for scans and repairs.

Discovery was first wheeled out to LC 39A on Sept. 20, 2010. The Nov. 5 launch attempt was aborted due to a leaky Ground Umbilical Carrier Plate (GUCP). When engineers were checking out this problem, they discovered another, a section of popped up foam on the shuttle’s external tank. Foam has been a concern ever since a briefcase-sized piece of foam led to the loss of the shuttle Columbia in 2003.

In this image, Discovery rolls past the turn basin at NASA's Kennedy Space Center in Florida. Photo Credit Alan Walters/awaltersphoto.com

Further inspection showed that the cracks extended all the way down to the aluminum skin of the external tank. As engineers looked further more and more of these cracks were discovered around what is known as the “intertank” region. Engineers did what repairs that they could out at the launch pad. Then the large, orange tank was filled with the super-cooled fuel that powers the shuttle into orbit. When tanking occurs, the tank can shrink by as much as half-an-inch.

Discovery, bathed in xenon lights heads toward her date with history. Photo Credit: Jason Rhian

With the realization that this shrinkage could severely impact the cracks, 89 sensors were placed around this area to monitor the effect of fueling the external tank. To properly check any potential impact the tanking had, scans would need to be conducted and that meant a trip back to the VAB. So Discovery was rolled back to the VAB for X-Rays and other scans.

Once the area was given a thorough inspection, more cracks were found and further repairs were required. But during this time NASA had discovered what was causing these small cracks to occur and Discovery was set to head back out to the launch pad for her date with history.

Reflected in the turn basin, the space shuttle Discovery heads off into the distance. Photo Credit: Jason Rhian

Discovery began its slow methodical trek out to the launch pad at 8 p.m. EDT. The trip takes several hours to reach its destination, as the pondering crawler-transporter that hauls the spacecraft out to the launch pad moves at a blistering one mile an hour.

Discovery’s final mission is a resupply flight to the International Space Station. The orbiter will ferry a modified cargo carrier, the Leonardo Permanent Multipurpose Module along with much-needed supplies and the first human-like robot to fly into space – Robonaut-2. The crew consists of commander Steve Lindsey, Pilot Eric Boe and mission specialists Michael Barratt, Alvin Drew, Nicole Stott and Steve Bowen.

Bowen is a last-minute replacement for Tim Kopra, who broke his hip in a bicycle accident earlier this month.

Shuttle Discovery makes her way to launch complex 39A for her upcoming launch of the STS-133 crew to the International Space Station. Photo Credit: Jason Rhian
Discovery inside the VAB before rollout. Credit: Alan Walters (awaltersphoto.com) for Universe Today
Discovery inside the VAB before rollout. Credit: Alan Walters (awaltersphoto.com) for Universe Today
Discovery inside the VAB before rollout. Credit: Alan Walters (awaltersphoto.com) for Universe Today
Discovery inside the VAB before rollout. Credit: Alan Walters (awaltersphoto.com) for Universe Today
Discovery heading to the launchpad on January 31, 2011. Credit: Alan Walters (awaltersphoto.com) for Universe Today