A Primer on Cosmic Sprinklers

The planetary nebula Fleming 1, as seen with ESO’s Very Large Telescope. Credit: ESO/H. Boffin

The neat thing about planetary nebulae is that they are like snowflakes: no two are quite the same. Some look like pools of hot water, some look like glowing eyes in the night and others, like this image of Fleming 1, have twin jets of material spiraling outward from the center resembling a huge cosmic sprinkler.

And for the first time, astronomers with the European Southern Observatory have paired new Very Large Telescope images of Fleming 1 with computer models to explain how the intricate dance between two dead stars result in these bizarre nebulae that appear to be flinging material out into space. The team’s findings were published in the November 9, 2012 issue of the journal Science.

“The origin of the beautiful and intricate shapes of Fleming 1 and similar objects has been controversial for many decades,” says team leader Henri Boffin in a press release. “Astronomers have suggested a binary star before, but it was always thought that in this case the pair would be well separated, with an orbital period of tens of years or longer. Thanks to our models and observations, which let us examine this unusual system in great detail and peer right into the heart of the nebula, we found the pair to be several thousand times closer.”

The team using ESO’s VLT to study Fleming 1’s central star, toward the constellation Centaurus, found not one but two white dwarfs at its core. The two white-hot dead stars slightly smaller than our Sun circle each other every 1.2 days. Binary stars have been found at the heart of planetary nebulae before, but two white dwarfs circling each other is very rare, say the scientists.

Planetary nebulae have nothing to do with planets. Astronomers in the eighteenth century likened these glowing bubbles of light to planets because they resembled the distant orbs Uranus and Neptune in their small telescopes. Planetary nebulae are actually a brief stage at the end of a sun-like star’s life. As a star with a mass up to eight times that of our Sun nears the end of its life, it sloughs off its outer shells in an immense bubble. As more and more mass is lost to space, the white-hot stellar core is exposed. This white dwarf gives off a stiff solar wind that pushes the bubble ever wider. Blistering ultraviolet radiation from the dead star excites atoms in the expanding cloud causing it to glow.

Loading player…

This animation shows how the two stars at the heart of a planetary nebula like Fleming 1 can control the creation of the spectacular jets of material ejected from the object. Credit:ESO/L. Calçada. Music: delmo “acoustic”

Gazing into a planetary nebulae rarely reveals a quiet environment. Complex knots and filaments form intricate patterns. For cosmic sprinklers like Fleming 1 material seems to be shooting from both poles with an S-shaped pattern between the star and the outermost wavefront. Scientists say that as the stars aged, they expanded and one sucked material from its companion; a kind of starry vampire, forming a spinning disk of material. As they rapidly orbited each other, the pair began to wobble like a spinning top, a type of motion called precession. The team’s study shows that precessing accretion disks within binary star systems form the symmetrical arcs of material in planetary nebulae like Fleming 1.

The VLT images revealed even more surprises about Fleming 1, named after Scottish astronomer Williamina Fleming in 1910. Scientists found a knotted ring of material within the inner nebula of Fleming 1. Scientists look for these rings as a sign of a binary system.

Source: European Southern Observatory

Swirling Vortex and Mini Moons: Spectacular Views of the Little Things Around Saturn

High-altitude clouds in Titan’s seasonal south polar swirl glow dimly in this image from NASA’s Cassini spacecraft.

With wild storms and a vast ring system, nothing seems small around Saturn. But as NASA’s Cassini spacecraft loops high over Saturn’s poles, scientists are taking time to explore the little things including a swirling vortex, the miniature moon Mimas, and another tiny ovoid moon named Methone.

Titan’s swirling vortex, lower right, glows brightly against the south polar clouds in this new image from NASA’s Cassini spacecraft. Scientists are monitoring the development of the swirling mass of gas to try and understand the weather related to the coming winter to the moon’s south pole. For a color closeup of the vortex, see Titan’s Colorful South Polar Vortex. If you’re more into a moving visualization, check out the vortex in motion.


Cassini acquired the view of the vortex on Titan on August 31, 2012 using a special filter sensitive to light in the near-infrared. Cassini took this image from a distance of about 1.2 million kilometers (750,000 miles) above the south pole of Titan. That’s nearly three times the distance between Earth and the Moon. The smallest detail on this image is about 4 miles across.

“Note the motions and beautifully detailed cloud patterns,” wrote Carolyn Porco, Cassini imaging team lead on the CICLOPS website, “very likely the result of open-cell convection — already visible in this fascinating phenomenon that we on Cassini have been fortunate to capture, for the first time, in the process of being born.”

Methone looks like a tiny gray egg in this image from NASA’s Cassini spacecraft.

Last week, the Cassini imaging team released two stunning images of Saturn. Tiny, egg-shaped Methone (pronounced meh-tho-nee) is barely 3 kilometers (2 miles) across. Cassini discovered this moon in 2004 hanging out between Mimas and Enceladus at just 194,000 km (120,000 miles) above Saturn. From Methone’s smooth surface, Saturn must be a true wonder. Small moons like Methone are generally non-round. Scientists believe they just don’t have the mass to pull themselves together into a round shape. The leading side of Methone is lit in this image and at a distance of just 4,000 km (2,500 miles) the smallest feature that can be seen is about 27 meters (88 feet).

Saturn’s moon Mimas is dwarfed by Saturn and its rings in this spectacular image from NASA’s Cassini spacecraft

Don’t blink or you might miss a tiny dot just to the upper left of Saturn. Mimas is dwarfed not only by Saturn’s rings, but also by the gigantic storms visible in the northern and southern hemisphere’s Mimas is just 396 km (246 miles) across and is the solar system’s 20th largest satellite. The moon could easily fit within the borders of Spain and most western states in the U.S. Cassini took this spectacular image from a distance of 2.4 million kilometers (1.5 million miles) from Saturn.

Source: NASA Jet Propulsion Laboratory and Cassini Imaging Central Laboratory for Operations (CICLOPS)

Stirred, Not Shaken. Black Hole Antics Puff Up Whopper of a Galaxy

Its massive gravitational field warping space, the huge elliptical galaxy A2261-BCG, seems to have a diffuse halo of stars instead of a bright central galactic core. Image credit: NASA/ESA Hubble

Bloated far beyond the size of normal galaxies, one or more black holes may have puffed up an elliptical galaxy to a whopping size, according to astronomers. To their surprise, however, the black holes are missing.

Normally, scientists measure a concentrated peak of light surrounding the central black hole surrounded by a fuzzy halo of stars. Instead, astronomers, using NASA’s Hubble Space Telescope, find that the galaxy, known as A2261-BCG, is just a diffuse, bloated foggy patch of light. The intensity of starlight remains even across the entire galaxy. Past Hubble observations show supermassive black holes, each weighing billions of times more than our Sun, reside at the cores of nearly all galaxies.

“Expecting to find a black hole in every galaxy is sort of like expecting to find a pit inside a peach,” explained astronomer and co-author Tod Lauer in a press release. Lauer is with the National Optical Astronomy Observatory in Tucson, Ariz. “With this Hubble observation, we cut into the biggest peach and we can’t find the pit. We don’t know for sure that the black hole is not there, but Hubble shows that there’s no concentration of stars in the core.”

So where are the black holes?

Astronomers, in a paper that appeared in the September 10 issue of The Astrophysical Journal, have two ideas, both involving galactic billiards, for the galaxy’s puffy appearance. In one scenario, a pair of merging black holes gravitationally stir up then scatter the galaxy’s stars. In another, the merging black holes are ejected leaving the swarm of stars with no gravitational anchor allowing them to wander outward.

Galaxy cores tend to be sized proportionally to the wheeling expanse of the host galaxy. In the case of A2261-BCG, which spans about a million light-years (10 times that of our Milky Way Galaxy), the central region is three times larger than other very luminous galaxies, according to the paper. The monster galaxy is the most massive and brightest galaxy in the Abell 2261 galaxy cluster.

Team leader Marc Postman of the Space Telescope Science Institute in Baltimore, Md., said in the press release that the galaxy stood out in the Hubble image. “When I first saw the image of this galaxy, I knew right away it was unusual,” Postman explained. “The core was very diffuse and very large. The challenge was then to make sense of all the data, given what we knew from previous Hubble observations, and come up with a plausible explanation for the intriguing nature of this particular galaxy.”

The team admits the ejected black-hole ideas sound far-fetched, “but that’s what makes observing the universe so intriguing — sometimes you find the unexpected,” said Postman.

As a follow-up, the team is searching for the sound of material falling into the black hole using the Very Large Array (VLA) radio telescope in New Mexico. Comparing the VLA data with Hubble images will allow the researchers to confirm the existence of a black hole and map its location.

Source: Hubblesite

Surprise! Galaxies Still Evolving in Present Universe

A giant spiral of gas dust and stars, Messier 101 spans 170,000 light-years and contains more than a trillion stars. Astronomers have uncovered a surprising trend in galaxy evolution where galaxies like M101 and the Milky Way Galaxy continued to develop into settled disk galaxies long after previously thought. Credit: NASA/ESA Hubble

Graceful in their turnings, spiral galaxies were thought to have reached their current state billions of years ago. A study of hundreds of galaxies, however, upsets that notion revealing that spiral galaxies, like the Andromeda Galaxy and our own Milky Way, have continued to change.

“Astronomers thought disk galaxies in the nearby universe had settled into their present form by about 8 billion years ago, with little additional development since,” said Susan Kassin, an astronomer at NASA’s Goddard Space Flight Center in Greenbelt, Md., and the study’s lead researcher in a press release. “The trend we’ve observed instead shows the opposite, that galaxies were steadily changing over this time period.”

A study of 544 star-forming galaxies observed by the Earth-based Keck and Hubble Space Telescope shows that disk galaxies like our Milky Way Galaxy unexpectedly reached their current state long after much of the universe’s star formation had ceased. Credit: NASA’s Goddard Space Flight Center

Astronomers used the twin 10-meter earth-bound W.M. Keck Observatory atop Hawaii’s Mauna Kea volcano and NASA’s Hubble Space Telescope to study 544 star-forming galaxies. Farther back in time, galaxies tend to be very different, say astronomers, with random and disorganized motions. Nearer to the present, star-forming galaxies look like well-ordered disk-shaped systems. Rotation in these galaxies trumps other internal, random motions. These galaxies are gradually settling into well-behaved disks with the most massive galaxies always showing higher organization.

This plot shows the fractions of settled disk galaxies in four time spans, each about 3 billion years long. There is a steady shift toward higher percentages of settled galaxies closer to the present time. At any given time, the most massive galaxies are the most settled. More distant and less massive galaxies on average exhibit more disorganized internal motions, with gas moving in multiple directions, and slower rotation speeds. Credit: NASA’s Goddard Space Flight Center

The sampling of galaxies studied, from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Redshift Survey, ranged between 2 billion and 8 billion light-years from Earth with masses between 0.3 percent to 100 percent that of our own Milky Way Galaxy. Researchers looked at all galaxies in this time range with emission lines bright enough to determine internal motions. Researchers focused on emission lines characteristically emitted by gas within the galaxy. The emission lines not only tell scientists about the elements that make up the galaxies but also red shifting of emission lines contains information on the internal motions and distance.

“Previous studies removed galaxies that did not look like the well-ordered rotating disks now common in the universe today,” said co-author Benjamin Weiner, an astronomer at the University of Arizona in Tucson. “By neglecting them, these studies examined only those rare galaxies in the distant universe that are well-behaved and concluded that galaxies didn’t change.”

In the past 8 billion years, mergers between galaxies, both large and small, has decreased. So has the overall rate of star formation and associated disruptions due to supernovae explosions. Both factors may play a role in the newly found trend, say scientists.

The Milky Way Galaxy may have gone through the same chaotic growing and changing as the galaxies in the DEEP2 sample before settling into its present state at just about the same time the Sun and Earth were forming, say team scientists. By observing the pattern, astronomers can now adjust computer simulations of galaxy evolution until they replicate the observations. Then the hunt will be on to determine the physical processes responsible for the trend.

This cosmological simulation follows the development of a single disk galaxy throughout the life of the Universe; about 13.5 billion years. Red colors show old stars, young stars show as white and bright blue while the distribution of gas shows as a pale blue. The computer-generated view spans about 300,000 light-years. The simulation, running on the Pleiades supercomputer at NASA’s Ames Research Center in Moffett Field, California, took about 1 million CPU hours to complete. Credit: F. Governato and T. Quinn (Univ. of Washington), A. Brooks (Univ. of Wisconsin, Madison), and J. Wadsley (McMaster Univ.).

A paper detailing the findings will be published in the October 20, 2012 The Astrophysical Journal.

Source: NASA

Galactic Struggle Captured by Gemini Observatory

The Gemini Multi-Object Spectroraph on the Fredrick C. Gillett Gemini North Telescope on Mauna Kea in Hawaii captured this beautiful image of the ring galaxy NGC 660. The galaxy lies about 40 million light-years from Earth toward the constellation Pisces the Fishes. The field of view of the zoomed out image is 9.3×5.6 arcminutes. North is to the right and east is up. Total exposure for the image for all filters was 1,620 seconds. Credit: Gemini Observatory/AURA.

Strings of gas and dust, the wreckage of a colossal galactic struggle, lie strewn and littered about polar-ring galaxy NGC 660 in this new image from the Gemini Observatory.

Zoom around the ring of stars, stop to dive into massive star clusters and pink nebulae rich with the birth of new stars. Astronomers have found only a few of these bizarre objects. Most are made up of an early-type spiral galaxy, known as a lenticular galaxy, surrounded by a vast ring of stars extending for tens of thousands of light-years nearly perpendicular to the plane of the main galaxy. NGC 660, however, is the only polar-ring galaxy with a late-type lenticular galaxy as host.

Continue reading “Galactic Struggle Captured by Gemini Observatory”

Keeping an Earthly Eye on Io’s Insane Volcanic Activity

Although space missions Voyager and Galileo observed evidence of volcanic activity on Io, it was a faint blue plume at the edge of Io’s limb in a highly-enhanced image from Voyager that first offered evidence of the moon’s turbulent nature.

You fancy yourself an armchair astronomer? A group of California researchers have stepped it up a notch by monitoring the intense volcanic eruptions on Jupiter’s strangest moon Io from the comfort of their home.

Io, the innermost of the four largest moons around Jupiter, or the Galilean moons, is the most volcanically active object in the Solar System with more than 400 active volcanoes spitting out plumes of sulfur and sulfur dioxide. Scientists think a gravitational tug-of-war with Jupiter is one cause of Io’s intense vulcanism. Researchers point out that most of the processes are not well understood. While Io’s eruptions can’t be seen directly from Earth, a team led by Frank Marchis, a researcher at the Carl Sagan Center of the SETI Institute have come up with an unique combination of Earth-based telescope arrays and archival imagery from the Voyager and Galileo probes, according to a press release. The team announced their findings at the 2012 Division of Planetary Sciences meeting today in Reno, Nevada.

“Since our first observation of Io in 2001 using the W. M. Keck II 10-m telescope from the top of Mauna Kea in Hawaii and its AO (adaptive optics) system, our group became very excited about the technology,” says Marchis. “We also began using AO at the Very Large Telescope in Chile, and at the Gemini North telescope in Hawaii. The technology has improved over the years, and the image quality and usefulness of those complex instruments has made them part of the essential instrument suite for large telescopes.”

A faint blue plume on a grainy and highly enhanced image from Voyager 1 first hinted at Io’s dynamic nature. Voyager’s cameras showed a bizarre terrain of volcanic fields, dark spots and active plumes. Scientists nicknamed it the “Pizza Moon.” NASA’s Galileo probe observed more than 160 active volcanoes in various stages of eruption during its looping tour of the solar system’s largest planet.

But crystal clear pictures from Galileo ceased in 2003. Observing a Moon-sized object at the incredible distance to Jupiter from Earth is a challenge because of the blurring caused by Earth’s stirring atmosphere. Since 2001, all large 8- to 10-meter telescopes have been equipped with adaptive optics that correct for that blur. Since 2003, Marchis and his team have gathered about 40 cycles of observations of Io in the near-infrared showing details as small as 100 kilometers, or 60 miles, on the surface of the moon.

Observations of several bright & young eruptions detected at short wavelengths (~2.1 microns) on the top and longer wavelengths (~3.2 microns) on the bottom since 2004 using the W. M. Keck 10-meter telescope (May 2004, Aug 2007, Sep 2007, July 2009), the Gemini North 8-meter telescope (Aug 2007), and the ESO VLT-Yepun 8-meter telescope (Feb 2007), all with their adaptive optics systems. The thermal signature of the Tvashtar outburst can be seen near the north pole on images collected in 2007. A new eruption on Pillan Patera was seen in Aug 2007. A young and bright eruption was detected on Loki Patera in July 2009. This is the last bright eruption that was detected in our survey; since then, Io’s volcanic activity has been quiescent. Credit: F. Marchis

“Spacecraft have only been able to capture fleeting glimpses of Io’s volcanoes, Voyager for a few months, Galileo a few years, and New Horizons a few days. Ground-based observations, on the other hand, can continue to monitor Io’s volcanoes over long time-scales. The more telescopes looking at Io, the better time coverage we can obtain.” Said Julie Rathbun from Redlands University, a planetary scientist not directly involved in this study but who has conducted monitoring of Io with NASA’s IRTF 3-meter telescope for more than 15 years. “AO observations from 8-10m class telescopes are a dramatic improvement in spatial resolution over previous ground-based observations. Soon they will not only be our only way to monitor Io’s volcanoes, but the best way. We should be making these observations more often.”

Simulation of observations of Io using the W. M. Keck telescope and its current AO system, a next-generation AO system mounted on the W. M. Keck telescope (KNGAO), and the Thirty Meter Telescope (TMT) equipped with its AO system (NFIRAOS). The spatial resolution on the center of Io provided by these AO systems is respectively 140 km, 110 km and 35 km in the H band (1.6 microns). Two young eruptive centers labeled A & B can be detected only on the TMT observations. The KNGAO instrument detected the brightest eruption labeled A. Credit: F. Marchis

According to the team, observations reveal a series of young and energetic eruptions called outbursts. These events stand out indicating a high eruption temperature. Coincidentally, the team observed the awakening of the volcano Tvashtar while New Horizons slingshot past Jupiter on its way to Pluto. The eruption lasted from April 2006 to September 2007. Older observations from Galileo show a similar eruption pattern in 1999 lasting for 15 months.

“The episodicity of these volcanoes points to a regular recharge of magma storage chambers” said Ashley Davies a volcanologist at the Jet Propulsion Laboratory, California Institute of Technology, and a member of the study. “This will allow us to model the eruption process and understand the how heat is removed from Io’s deep interior by this particular style of volcanic activity.”

The team found four additional eruptions including a previously unobserved active volcano in 2004. The new sporadic blast accounted for about 10 percent of Io’s average thermal output, according to Marchis. The outburst was more energetic than Tvashtar in 2001. While the team continues to study Io, they have noted that since September 2010, the crazily active moon has been mostly quiet. A dozen or so permanent, low temperature eruptions dot the globe but the team has not detected the young, fire fountain style eruptions seen before.

“The next giant leap in the field of planetary astronomy is the arrival of Giant Segmented Mirror Telescopes, such as the Thirty Meter Telescope expected to be available in 2021. It will provide a spatial resolution of 35 km in the near-infrared, equivalent to the spatial resolution of global observations taken by the Galileo spacecraft. When pointed at Io, these telescopes will offer the equivalent of a spacecraft flyby of the satellite,” Marchis said.

Source: SETI

Dying Star Blows Surprising Spiral Bubble

Using the Atacama Large Millimeter/submillimeter Array, or ALMA, astronomers found an unexpected spiral structure surrounding the red giant star R Sculptoris shown here in this visualization. Credit: ALMA (ESO/NAOJ/NRAO)

Sometimes what we can’t see is just as surprising as what lies directly in front of us. This especially holds true in a new finding from the astronomers using the Atacama Large Millimeter/sumbillimeter Array, or ALMA, in Chile. A surprising and strange spiral structure surrounding the old star R Sculptoris is likely being created by an unseen companion, say astronomers.

The team using ALMA, the most powerful millimeter/submillimeter telescope in the world, mapped the spiral structure in three-dimensions. The astronomers say this is the first time a spiral of material, with a surrounding shell, has been observed. They report their findings in the journal Nature this week.

“We’ve seen shells around this kind of star before,” says lead author Matthias Maercker of the European Southern Observatory and Argelander Institute for Astronomy, University of Bonn, Germany in a press release. “But this is the first time we’ve ever seen a spiral of material coming out from a star, together with a surrounding shell.”

Scientists, using the NASA/ESA Hubble Space Telescope found a similar spiral, but without a surrounding shell, while observing the star LL Pegasi. Unlike the new ALMA observations, however, the astronomers could not create a three-dimensional map of the structure. Hubble observations saw the dust while ALMA detected the molecular emission.

ALMA detects the warm glow of carbon monoxide molecules in the far infrared through the multimeter wavelengths allowing astronomers to map the gas emissions surrounding the star in high-resolution. The team believes the strangely shaped bubble of material was probably created by an invisible companion star orbiting the red giant.

As stars like our Sun reach the ends of their lives, they become red giants. Swollen and cool, the stars begin a short-lived helium burning phase. During this time, the stars slough off large amounts of their mass in a dense stellar wind forming an expanding glowing shell around the stellar core. The pulses occur about every 10,000 to 50,000 years and last just a few hundred years. New observations of R Sculptoris show a pulse event rocked the star about 1,800 years ago and lasted for about 200 years. Computer simulations following the evolution of a binary system fit the new ALMA observations, according to the astronomers.

“It’s a real challenge to describe theoretically all the observed details coming from ALMA,” says co-author Shazrene Mohamed, of Argelander Institute for Astronomy in Bonn, Germany and South African Astronomical Observatory. “But our computer models show that we really are on the right track. ALMA is giving us new insight into what’s happening in these stars and what might happen to the Sun in a few billion years from now.”

A wide field view of the red giant variable star R Sculptoris. Credit: ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin

R Sculptoris is considered by astronomers to be an asymptotic giant branch, or AGB, star. With masses between 0.8 and 8 solar masses, they are cool red giants with a tiny central core of carbon and oxygen surrounded by a burning shell of helium and hydrogen burning. Eventually, our Sun will evolve into an AGB star. The glowing shell is made up of gas and dust, material that will be used for making future stars with their retinue of planets and moons and even the building blocks of life.

“In the near future, observations of stars like R Sculptoris with ALMA will help us to understand how the elements we are made up of reached places like the Earth. They also give us a hint of what our own star’s far future might be like,” says Maercker.

This new video shows a series of slices through the data, each taken at a slightly different frequency. These reveal the shell around the star, appearing as a circular ring, that seems to gets bigger and then smaller, as well as a clear spiral structure in the inner material that it best seen about half-way through the video sequence.

Source: European Southern Observatory

Small image caption: What appears to be a thin spiral pattern winding away from a star is shown in this remarkable picture from the Advanced Camera for Surveys on the NASA/ESA Hubble Space Telescope shows one of the most perfect geometrical forms created in space. It captures the formation of an unusual pre-planetary nebula, known as IRAS 23166+1655, around the star LL Pegasi (also known as AFGL 3068) in the constellation of Pegasus (the Winged Horse). Credit: NASA/ESA Hubble

Monster Black Holes Lurk at the Edge of Time

The reddish object in this infrared image is ULASJ1234+0907, located about 11 billion light-years from Earth. The red color comes from vast amounts of dust, which absorbs bluer light, and obscures the supermassive black hole from view in visible wavelengths. Credit: image created using data from UKIDSS and the Wide-field Infrared Survey Explorer (WISE) observatory.

As if staring toward the edge of the Universe weren’t fascinating enough, scientists at the University of Cambridge say they see enormous, rapidly growing supermassive black holes barely detectable near the edge of time.

Thick dust shrouds the monster black holes but they emit vast amounts of radiation through violent interactions and collisions with their host galaxies making them visible in the infrared part of the electromagnetic spectrum. The team published their results in the journal Monthly Notices of the Royal Astronomical Society.

The most remote object in the study lies at a whopping 11 billion light-years from Earth. Ancient light from the supermassive black hole, named ULASJ1234+0907 and located toward the constellation of Virgo, the Maiden, has traveled (at almost 10 trillion kilometers, or 6 million million miles, per year) across the cosmos for nearly the estimated age of the Universe. The monster black hole is more than 10 billion times the mass of our Sun and 10,000 times more massive than the black hole embedded in the Milky Way Galaxy; making it one of the most massive black holes ever seen. And it’s not alone. Researchers say that there may be as many as 400 giants black holes in the tiny sliver of the Universe that we can observe.

“These results could have a significant impact on studies of supermassive black holes” said Dr Manda Banerji, lead author of the paper, in a press release. “Most black holes of this kind are seen through the matter they drag in. As the neighbouring material spirals in towards the black holes, it heats up. Astronomers are able to see this radiation and observe these systems.”

The team from Cambridge used infrared surveys being carried out on the UK Infrared Telescope (UKIRT) to peer through the dust and locate the giant black holes for the first time.

“These results are particularly exciting because they show that our new infrared surveys are finding super massive black holes that are invisible in optical surveys,” says Richard McMahon, co-author of the study. “These new quasars are important because we may be catching them as they are being fed through collisions with other galaxies. Observations with the new Atacama Large Millimeter Array (ALMA) telescope in Chile will allow us to directly test this picture by detecting the microwave frequency radiation emitted by the vast amounts of gas in the colliding galaxies.”

Huge black holes are known to reside at the centers of all galaxies. Astronomers predict the most massive of these cosmic phenomena grow through violent collisions with other galaxies. Galactic interactions trigger star formation which provides more fuel for black holes to devour. And it’s during this process that thick layers of dust hide the munching black holes.

“Although these black holes have been studied for some time,” says Banergi, “the new results indicate that some of the most massive ones may have so far been hidden from our view. The newly discovered black holes, devouring the equivalent of several hundred Suns every year, will shed light on the physical processes governing the growth of all supermassive black holes.”

Astronomers compare the extreme case of ULASJ1234+0907 with the relatively nearby and well-studied Markarian 231. Markarian 231, found just 600 million light-years away, appears to have recently undergone a violent collision with another galaxy producing an example of a dusty, growing black hole in the local Universe. By contrast, the more extreme example of ULASJ1234+0907, shows scientists that conditions in the early Universe were more turbulent and inhospitable than today.

Source: Royal Astronomical Society

Image Credit: Markarian 231, an example of a galaxy with a dusty rapidly growing supermassive black hole located 600 million light years from Earth. The bright source at the center of the galaxy marks the black hole while rings of gas and dust can be seen around it as well as “tidal tails” left over from a recent impact with another galaxy. Courtesy of NASA/ESA Hubble Space Telescope.

Blowing a Super-duper Celestial Bubble

Image credit: X-ray: NASA/CXC/U.Mich./S.Oey, IR: NASA/JPL, Optical: ESO/WFI/2.2-m. Zoom by John Williams/TerraZoom using Zoomify

When NASA combines images from different telescopes, they create dazzling scenes of celestial wonder and in the process we learn a few more things. Behold this wonder of combined light, known as LHA 120-N 44, or N 44 for short. Zoom into the scene using the toolbar at the bottom of the image. Click the farthest button on the right of the toolbar to see this wonder in full-screen. (Hint: press the “Esc” key to get back to work)

Continue reading “Blowing a Super-duper Celestial Bubble”

Finding Life in All the Unlikely, Unexpected Places

Just one of several weather stations set up at Chott El Jerid, a Tunisian saltpan, measuring temperature, humidity, ultraviolet radiation, wind direction and velocity. Image credit: Felipe Goméz/Europlanet

From orbit and on the ground, Mars looks inhospitable. But it doesn’t look much different than the freezing Antarctic plains, sun-baked saltpans in Tunisia or Spain’s corrosively acidic Rio Tinto, according to a few explorers from the Centro de Astrobiología (CAB) in Madrid, who today presented some of their findings of life during a press conference at the European Planetary Science Congress.

The biggest difference, however, is that life still thrives in these extreme locales on Earth.

“The big questions are: what is life, how can we define it and what the requirements for supporting life?” asks project leader Dr. Felipe Goméz. “To understand the results we receive back from missions like Curiosity, we need to have detailed knowledge of similar environments on Earth. Metabolic diversity on Earth is huge. We have found a range of complex chemical processes that allow life to survive in unexpected places.”

Over the past four years, Goméz and his colleagues have checked Earth’s most inhospitable locales; the Chott el Jerid saltpan in Tunisia, the Atacama Desert in Chile, Rio Tinto in southern Spain and Deception Island in Antarctica.

While visiting Chott el Jerid, the team tracked huge changes in environmental conditions throughout the day but it was a small rise in surface temperature after dusk that caught their eye. “We found that this is caused by water condensing on the surface and hydrating salts which releases heat in an exothermic reaction,” he said in the press release. This is very interesting from the perspective of the REMS instrument on Curiosity — it gives us away to follow when liquid water might be present on the surface.”

The team also built a three-dimensional picture of the subsurface in the saltpan by measuring the electrical properties of the soil. While drilling several meters into the subsurface at Chott el Jerid and in the Atacama Desert, researchers found bacteria at depth that was completely isolated from the surface. The researchers found not only bacteria, but also single-celled halophilic organisms that are able to oxidize metabolites under both aerobic and anaerobic conditions.

Along the surface of Chott El Jerid, which is made up of very pure sodium chloride with a trace of other salts, the team found small pieces of organic matter within the salt crystals. Once analyzed, they found populations of halophilic, salt-loving, dormant bacteria. In the laboratory, they were able to rehydrate the samples and bring the bacteria back to life, Goméz said.

Another unexpected find occurred while studying outcrops of the mineral jarosite at Rio Tinto in Spain. Jarosite, found on the surface of Mars by the Mars Exploration Rover Opportunity, forms only in the presence of water that contains high concentrations of metals, such as iron. The outcrops at Rio Tinto also are extremely corrosive. Yet, sandwiched between layers in the salt crusts, the team found photosynthetic bacteria. Unexpectedly, iron in the salt crust seems to protect bacteria from ultraviolet radiation, Goméz said. Samples of bacteria with iron present were exposed with high levels of ultraviolet radiation. They survived while bacteria samples without iron were destroyed.

“What the bacteria we found in Rio Tinto show is that the presence of ferric compounds can actually protect life. This could mean that life formed earlier on Earth than we thought. These effects are also relevant for the formation of life on the surface of Mars,” says Goméz. The team also found that salt provides stable conditions that can allow life to survive in very hard environments.

“Within salts, the temperature and humidity are protected from fluctuations and the doses of ultraviolet radiation are very low,” explained Goméz. “In the laboratory, we placed populations of different bacteria between layers of salt a few millimetres thick and exposed them to Martian conditions. Nearly 100% of deinoccocus radiodurans, a hardy type of bacteria survived being irradiated. But fascinatingly, about 40% of acidithiobacillus ferrooxidans – a very fragile variety of bacteria – also survived when protected by a salt crust.”

The findings have implications not only for studying possible life on Mars, but also for the development of life on early Earth.

Source: European Planetary Science Congress (EPSC) 2012 Press Release

Image Details: Photosynthetic bacteria at Rio Tinto. Credit: Felipe Goméz

About the author: John Williams is owner of TerraZoom, a Colorado-based web development shop specializing in web mapping and online image zooms. He also writes the award-winning blog, StarryCritters, an interactive site devoted to looking at images from NASA’s Great Observatories and other sources in a different way. A former contributing editor for Final Frontier, his work has appeared in the Planetary Society Blog, Air & Space Smithsonian, Astronomy, Earth, MX Developer’s Journal, The Kansas City Star and many other newspapers and magazines. Follow John on Twitter @terrazoom