Exoplanet Kepler-7b Unexpectedly Reflective

Artist concept of Kepler in space. Credit: NASA/JPL

[/caption]

 

Early on in the hunt for extra solar planets, the main method for discovering planets was the radial velocity method in which astronomers would search for the tug of planets on their parent stars. With the launch of NASA’s Kepler mission, the transit method is moving into the spotlight, the radial velocity technique provided an early bias in the detection of planets since it worked most easily at finding massive planets in tight orbits. Such planets are referred to as hot Jupiters. Currently, more than 30 of this class of exoplanet have had the properties of their emission explored, allowing astronomers to build a picture of the atmospheres of such planets. However, one of the new hot Jupiters discovered by the Kepler mission doesn’t fit the picture.

The consensus on these planets is that they are expected to be rather dark. Infrared observations from Spitzer have shown that these planets emit far more heat than they absorb directly in the infrared forcing astronomers to conclude that visible light and other wavelengths are absorbed and reemitted in the infrared, producing the excess heat and giving rise to equilibrium temperatures over 1,000 K. Since the visible light is so readily absorbed, the planets would be rather dull when compared to their namesake, Jupiter.

The reflectivity of an object is known as its albedo. It is measured as a percentage where 0 would be no reflected light, and 1 would be perfect reflection. Charcoal has an albedo of 0.04 while fresh snow has an albedo of 0.9. The theoretical models of hot Jupiters place the albedo at or below 0.3, which is similar to Earth’s. Jupiter’s albedo is 0.5 due to clouds of ammonia and water ice in the upper atmosphere. So far, astronomers have placed upper limits on their albedo. Eight of them confirm this prediction, but three of them seem to be more reflective.

In 2002, it was reported that the albedo for υAnd b was as high as 0.42. This year, astronomers have placed constraints on two more systems. For HD189733 b, astronomers found that this planet actually reflected more light than it absorbed. For Kepler-7b, an albedo of 0.38 has been reported.

Revisiting this for the latter case, a new paper, slated for publication in an upcoming issue of the Astrophysical Journal, a team of astronomers led by Brice-Olivier Demory of the Massachusetts Institute of Technology confirms that Kepler-7b has an albedo that breaks the expected limit of 0.3 set by theoretical models. However, the new research does not find it to be as high as the earlier study. Instead, they revise the albedo from 0.38 to 0.32.

To explain this additional flux, the team proposes two models. They suggest that Kepler-7b may be similar to Jupiter in that it may contain high altitude clouds of some sort. Due to the proximity to its parent star, it would not be ice crystals and thus, would not reach as high of an albedo as Jupiter, but preventing the incoming light from reaching lower layers where it could be more effectively trapped would help to increase the overall albedo.

Another solution is that the planet may be lacking the molecules most responsible for absorption such as sodium, potassium, titanium monoxide and vanadium monoxide. Given the temperature of the planet, it is unlikely that the molecular components would be present in the first place since they would be broken apart from the heat. This would mean that the planet would have to have 10 to 100 times less sodium and potassium than the Sun, whose chemical composition is the basis for models since our star’s composition is generally representative of stars around which planets have been discovered and presumably, the cloud from which it formed and would also form into planets.

Presently there is no way for astronomers to determine which possibility is correct. Since astronomers are slowly becoming able to retrieve spectra of extrasolar planets, it may be possible in the future for them to test chemical compositions. Failing that, astronomers will need to examine the albedo of more exoplanets and determine just how common such reflective hot Jupiters are. If the number remains low, the plausibility of metal deficient planets remains high. However, if the numbers start creeping up, it will prompt a revision to models of such planets and their atmospheres with greater emphasis on clouds and atmospheric haze.

Testing the Spiral Density Wave Theory

M66 from Hubble
M66 from Hubble

[/caption]

 

Spiral galaxies are one of the most captivating structures in astronomy, yet their nature is still not fully understood. Astronomers currently have two categories of theories that can explain this structure, depending on the environment of the galaxy, but a new study, accepted for publication in the Astrophysical Journal, suggests that one of these theories may be largely wrong.

For galaxies with nearby companions, astronomers have suggested that tidal forces may draw out spiral structure. However, for isolated galaxies, another mechanism is required in which galaxies form these structures without intervention from a neighbor. A possible solution to this was first worked out in 1964 by Lin & Shu in which they suggested that the winding structure is merely an illusion. Instead, these arms weren’t moving structures, but areas of greater density which remained stationary as stars entered and exited them similar to how a traffic jam remains in position although the component cars travel in and out. This theory has been dubbed the Lin-Shu density wave theory and has been largely successful. Previous papers have reported a progression from cold, HI regions and dust on the inner portion of the spiral arms, that crash into this higher density region and trigger star formation, making hot O & B class stars that die before exiting the structure, leaving the lower mass stars to populate the remainder of the disk.

One of the main questions on this theory has been the longevity of the overdense region. According to Lin & Shu as well as many other astronomers, these structures are generally stable over long time periods. Others suggest that the density wave comes and goes in relatively short-lived, recurrent patterns. This would be similar to the turn signal on your car and the one in front of you at times seeming to synch up before getting out of phase again, only to line up again in a few minutes. In galaxies, the pattern would be composed of the individual orbits of the stars, which would periodically line up to create the spiral arms. Teasing out which of these was the case has been a challenge.

To do so, the new research, led by Kelly Foyle from McMaster University in Ontario, examined the progression of star formation as gas and dust entered the shock region produced by the Lin-Shu density wave. If the theory was correct, they should expect to find a progression in which they would first find cold HI gas and carbon monoxide, and then offsets of warm molecular hydrogen and 24 μm emission from stars forming in clouds, and finally, another offset of the UV emission of fully formed and unobscured stars.

The team examined 12 nearby spiral galaxies, including M 51, M 63, M 66, M 74, M 81, and M 95. These galaxies represented several variations of spiral galaxies such as grand design spirals, barred spirals, flocculent spirals and an interacting spiral.

When using a computer algorithm to examine each for offsets that would support the Lin-Shu theory, the team reported that they could not find a difference in location between the three different phases of star formation. This contradicts the previous studies (which were done “by eye” and thus subject to potential bias) and casts doubt on long lived spiral structure as predicted by the Lin-Shu theory. Instead, this finding is in agreement with the possibility of transient spiral arms that break apart and reform periodically.

Another option, one that salvages the density wave theory is that there are multiple “pattern speeds” producing more complex density waves and thus blurs the expected offsets. This possibility is supported by a 2009 study which mapped these speeds and found that several spiral galaxies are likely to exhibit such behavior. Lastly, the team notes that the technique itself may be flawed and underestimating the emission from each zone of star formation. To settle the question, astronomers will need to produce more refined models and explore the regions in greater detail and in more galaxies.

Want to Make Planets? Better Hurry.

Artist's impression of planetary formation. Image credit: NASA

[/caption]

Currently, astronomers have two competing models for planetary formation. In one, the planets form in a single, monolithic collapse. In the second, the core forms first and then slowly accretes gas and dust. However, in both situations, the process must be complete before the radiation pressure from the star blows away the gas and dust. While this much is certain, the exact time frames have remained another matter of debate. It is expected that this amount should be somewhere in the millions of years, but low end estimates place it at only a few million, whereas upper limits have been around 10 million. A new paper explores IC 348, a 2-3 million year old cluster with many protostars with dense disks to determine just how much mass is left to be made into planets.

The presence of dusty disks is frequently not directly observed in the visible portion of the spectra. Instead, astronomers detect these disks from their infrared signatures. However, the dust is often very opaque at these wavelengths and astronomers are unable to see through it to get a good understanding of many of the features in which they’re interested. As such, astronomers turn to radio observations, to which disks are partially transparent to build a full understanding. Unfortunately, the disks glow very little in this regime, forcing astronomers to use large arrays to study their features. The new study uses data from the Submillimeter Array located atop Mauna Kea in Hawaii.

To understand how the disks evolved over time, the new study aimed to compare the amount of gas and dust left in IC 348’s disc to younger ones in star forming regions in Taurus, Ophiuchus, and Orion which all had ages of roughly 1 million years. For IC 348, the team found 9 protoplanetary disks with masses from 2-6 times the mass of Jupiter. This is significantly lower than the range of masses in the Taurus and Ophiuchus star forming regions which had protoplanetary clouds ranging to over 100 Jupiter masses.

If planets are forming in IC 348 at the same frequency in which they form in systems astronomers have observed elsewhere, this would seem to suggest that the gravitational collapse model is more likely to be correct since it doesn’t leave a large window in which forming planets could accrete. If the core accretion model is correct, then planetary formation must have begun very quickly.

While this case don’t set any firm pronouncements on which model of planetary formation is dominant, such 2-3 million year old systems could provide an important test bed to explore the rate of depletion of these reservoirs.

Cyanoacetylene in IC 342

IC 342 - Ken and Emilie Siarkiewicz/Adam Block/NOAO/AURA/NSF
IC 342 - Ken and Emilie Siarkiewicz/Adam Block/NOAO/AURA/NSF

[/caption]

Star formation is an incredible process, but also notoriously difficult to trace. The reason is that the main constituent of stars, hydrogen, looks about the same well before a gravitational collapse begins, as it does in the dense clouds where star formation happens. Sure, the temperature changes and the hydrogen glows in a different part of the spectrum, but it’s still hydrogen. It’s everywhere!

So when astronomers want to search for denser regions of gas, they often turn to other atoms and molecules that can only form or be stimulated to emit under these relatively dense conditions. Common examples of this include carbon monoxide and hydrogen cyanide. However, a study published in 2005, led by David Meier at the University of Illinois at Urbana-Champaign, studied inner regions of the nearby face-on spiral by tracing eight molecules and determined that the full extent of the dense regions is not well mapped by these two common molecules. In particular, cyanoacetylene, an organic molecule with a chemical formula of HC3N, was demonstrated to correlate with the most active star forming regions, promising astronomers a peek into the heart of star forming regions and prompting a follow-up study.

The new study was conducted from the Very Large Array in late 2005. Specifically, it studied the emissions due to 5-4, 10-9, and 16-15 transitions which each correspond to different levels of heating and excitation. The dense regions uncovered by this study were consistent with the ones reported in 2005. One, discovered by the previous survey from another tracer molecule, was not found by this most recent study, but the new study also discovered a previously unnoticed giant molecular cloud (GMC) through the presence of HC3N.

Another technique that can be applied is examining the ratios of various levels of excitation. From this, astronomers can determine the temperature and density necessary to produce such emission. This can be performed with any type of gas, but using additional species of molecules provides independent checks on this value. For the area with the strongest emission, the team reported that the gas appeared to be a cool 40 K (-387°F) with a density of 1-10 thousand molecules per cubic centimeter. This is relatively dense for the interstellar medium, but for comparison, the air we breathe has approximately 1025 molecules per cubic centimeter. These findings are consistent with those reported from carbon monoxide.

The team also examined several of the star forming cores independently. By comparing the varying strengths of tracer molecules, the team was able to report that one GMC was well progressed in making stars while another was less evolved, likely still containing hot cores which had not yet ignited fusion. In the former, the HC3N is weaker than in the other cores explored, which the team attributes to the destruction of the molecules or dispersal of the cloud as fusion begins in the newly formed stars.

While using HC3N as a tracer is a relatively new approach (these studies of IC 342 are the first conduced in another galaxy), the results of this study have demonstrated that it can trace various features in dense clouds in similar fashions to other molecules.

Energizing the Filaments of NGC 1275

NGC 1275
NGC 1275 as captured by the Hubble Space Telescope

[/caption]

When examining clusters of galaxies, astronomers often find massive elliptical galaxies lurking at the centers. In some of these, long filaments of gas and dust extend outwards from the core. One of the best examples of this is the relatively nearby galaxy NGC 1275 which lies in the constellation of Perseus. In this galaxy these tendrils are exceptionally narrow, only about 200 light years across, but as long as 20,000 light years in length. While many groups have studied them, their nature is a topic of much debate. The structures tend to be far removed from star forming regions which can cause the gas to glow. So what energy source powers these gaseous ribbons?

Answering this question is the goal of a recent paper by a team of astronomers led by Andrew Fabian at Cambridge University. Previous studies have explored the spectra of these filaments. Although the filaments have strong Hα emission, created by warm hydrogen gas, the spectra of these tendrils are unlike any nebulae within our own galaxy. The closest resemblance to galactic objects was the Crab Nebula, the remnant of a supernova that was witnessed in 1054 AD. Additionally, the spectra also reveal the presence of molecules such as carbon monoxide and H2.

Another, previous challenge astronomers faced with these tendrils was explaining their formation. Since molecules were present, it meant the gas was cooler than the surrounding gas. In this case, the clouds should collapse due to their self gravity to form more stars than are actually present. But surrounding these tendrils is ionized plasma which should interact with the cold gas, heating it and causing it to disperse. While these two forces would counteract one another, it is impossible to consider that they would balance each other perfectly in one case, let alone for the numerous tendrils in numerous central galaxies.

This problem was apparently solved in 2008, when Fabian published a paper in Nature suggesting that these filaments were being columnated by extremely weak magnetic fields (only 0.01% the strength of Earth’s). These field lines could prevent the warmer plasma from directly entering the cold filaments since, upon interaction with the magnetic field, they would be redirected. But could this property help to explain the lesser degree of heating that still causes the emission spectra? Fabian’s team thinks so.

In the new paper, they suggests that some of the particles of the surrounding plasma do eventually penetrate the cold tendrils which explains some of the heating. However, this flow of charged particles also affects the field lines themselves inducing turbulence which also heats the gas. These effects make up the main bulk of the observed spectra. But the tendrils also exhibit an anomalous amount of X-ray flux. The team proposes that some of this is due to charge exchange in which the ionized gas entering the filaments steals electrons from the cold gas. Unfortunately, the interactions are expected to be too infrequent to explain all of the observed X-rays leaving this portion of the spectrum not fully explained by the new model.


In this article I’ve used the words “magnetic field”, “charge”, and “plasma” throughout, so of course the Electric Universe crowd is going to come flocking, declaring this validates everything they’ve ever said, just as they did when magnetic fields were first implicated in 2008. So before closing completely, I want to take a bit to consider how this new study conforms to their predictions. In general, the study agrees with their claims. However, that doesn’t mean their claims are correct. Rather, it implies they’re worthlessly vague and can be made to fit any circumstance that even briefly mentions such words as I listed above.

The EU supporters consistently refuse to provide any quantitative models which could provide true discriminating tests for their propositions. Instead, they leave the claims suspiciously vague and insist that complex physics is completely understandable with no more understanding than high school level E&M. As a result, the mere scale of their claims is horrifically inconsistent wherein they propose things like the paltry field in this article, or the slight charge on lunar craters are indicative of overwhelming currents powering stars and entire galaxies.

So while articles like this one do reinforce the EU position that electromagnetics does play a role in astronomy, it does not support the grandiose claims on entirely different scales. In the meantime, astronomers don’t argue that electromagnetic effects don’t exist (like EU supporters frequently claim). Rather, we analyze them and appreciate them for what they are: Generally weak effects that are important here and there, but they’re not some all powerful energy field pervading the universe.

Examining the Great Wall

Several superclusters revealed by the 2dF Galaxy Redshift Survey. This contains the structure known as the "Sloan Great Wall". Courtesy 2dF Galaxy Redshift Survey.
Several superclusters revealed by the 2dF Galaxy Redshift Survey. This contains the structure known as the "Sloan Great Wall". Courtesy 2dF Galaxy Redshift Survey.

[/caption]

Structure exists on nearly all scales in the universe. Matter clumps under its own gravity into planets, stars, galaxies, clusters, and superclusters. Beyond even these in scale are the filaments and voids. The largest of these filaments is known as the Sloan Great Wall. This giant string of galaxies is 1.4 billion light years across making it the largest known structure in the universe. Yet surprisingly, the Great Wall has never been studied in detail. Superclusters within it have been examined, but the wall as a whole has only come into consideration in a new paper from a team led by astronomers at Tartu Observatory in Estonia.

The Sloan Great Wall was first discovered in 2003 from the Sloan Digital Sky Survey (SDSS). The survey mapped the position of hundreds of millions of galaxies revealing the large scale structure of the universe and uncovering the Great Wall.

Within it, the wall contains several interesting superclusters. The largest of these SCl 126 has been shown previously to be unusual compared to superclusters within other large scale structures. SCl 126 is described as having an exceptionally rich core of galaxies with tendrils of galaxies trailing away from it like an enormous “spider”. Typical superclusters have many smaller clusters connected by these threads. This pattern is exemplified by one of the other rich superclusters in the wall, SCl 111. If the wall is examined in only its densest portions, the tendrils extending away from these cores are quite simple, but as the team explored lower densities, sub filaments became apparent.

Another way the team examined the Great Wall was by looking at the arrangement of different types of galaxies. In particular, the team looked for Bright Red Galaxies (BRGs) and found that these galaxies are often found together in groups with at least five BRGs present. These galaxies were often the brightest of the galaxies within their own groups. As a whole, the groups with BRGs tended to have more galaxies which were more luminous, and have a greater variety of velocities. The team suggests that this increased velocity dispersion is a result of a higher rate of interactions among galaxies than in other clusters. This is especially true for SCl 126 where many galaxies are actively merging. Within SCl 126, these BRG groups were evenly distributed between the core and the outskirts while in SCl 111, these groups tended to congregate towards the high density regions. In both of these superclusters, spiral galaxies comprised about 1/3 of the BRGs.

The study of such properties will help astronomers to test cosmological models that predict galactic structure formation. The authors note that models have generally done a good job of being able to account for structures similar to SCl 111 and most other superclusters we have observed in the universe. However, they fall short in creating superclusters with the size, morphology and distribution of SCl 126. These formations arise from density fluctuations initially present during the Big Bang. As such, understanding the structures they formed will help astronomers to understand these perturbations in greater detail and, in turn, what physics would be necessary to achieve them. To help achieve this, the authors intend to continue mapping the morphology of the Sloan Great Wall as well as other superclusters to compare their features.

Update on Gliese 581d’s Habitability

An artist’s impression of Gliese 581d, an exoplanet about 20.3 light-years away from Earth, in the constellation Libra. Credit: NASA

[/caption]

When last we checked in on Gliese 581d, a team from the University of Paris had suggested that the popular exoplanet, Gliese 581d may be habitable. This super-Earth found itself just on the edge of the Goldilocks zone which could make liquid water present on the surface under the right atmospheric conditions. However, the team’s work was based on one dimensional simulations of a column of hypothetical atmospheres on the day side of the planet. To have a better understanding of what Gliese 581d might be like, a three dimensional simulation was in order. Fortunately, a new study from the same team has investigated the possibility with just such an investigation.

The new investigation was called for because Gliese 581d is suspected to be tidally locked, much like Mercury is in our own solar system. If so, this would create a permanent night side on the planet. On this side, the temperatures would be significantly lower and gasses such as CO2 and H2O may find themselves in a region where they could no longer remain gaseous, freezing into ice crystals on the surface. Since that surface would never see the light of day, they could not be heated and released back into the atmosphere, thereby depleting the planet of greenhouse gasses necessary to warm the planet, causing what astronomers call an “atmospheric collapse.”

To conduct their simulation the team assumed that the climate was dominated by the greenhouse effects of CO2 and H2O since this is true for all rocky planets with significant atmospheres in our solar system. As with their previous study, they performed several iterations, each with varying atmospheric pressures and compositions. For atmospheres less than 10 bars, the simulations suggested that the atmosphere would collapse, either on the dark side of the planet, or near the poles. Past this, the effects of greenhouse gasses prevented the freezing of the atmosphere and it became stable. Some ice formation still occurred in the stable models where some of the CO2 would freeze in the upper atmosphere, forming clouds in much the same way it does on Mars. However, this had a net warming effect of ~12°C.

In other simulations, the team added in oceans of liquid water which would help to moderate the climate. Another effect of this was that the vaporization of water from these oceans also produced warming as it can serve as a greenhouse gas, but the formation of clouds could decrease the global temperature since water clouds increase the albedo of the planet, especially in the red region of the spectra which is the most prevalent form of light from the parent star, a red dwarf. However, as with models without oceans, the tipping point for stable atmospheres tended to be around 10 bars of pressure. Under that, “cooling effects dominated and runaway glaciation occurred, followed by atmospheric collapse.” Above 20 bars, the additional trapping of heat from the water vapor significantly increased temperatures compared to an entirely rocky planet.

The conclusion is that Gliese 581d is potentially habitable. The potential for surface water exists for a “wide range of plausible cases”. Ultimately, they all depend on the precise thickness and composition of any atmosphere. Since the planet does not transit the star, spectral analysis through transmission of starlight through the atmosphere will not be possible. Yet the team suggests that, since the Gliese 581 system is relatively close to Earth (only 20 lightyears), it may be possible to observe the spectra directly in the infrared portion of the spectra using future generations of instruments. Should the observations match the synthetic spectra predicted for the various habitable planets, this would be taken as strong evidence for the habitability of the planet.

A Newly Discovered Planetary Nebula Teaches Us About Galactic Composition

Determining the chemical distribution of the galaxy is a tricky business. The ideal method is spectroscopy but since high quality spectroscopy takes bright targets, the number of potential targets is somewhat reduced. Stars seem like logical choices, but due to differential separation during formation, they don’t provide a true description of the interstellar medium. Clouds of gas and dust are the best choice, but must be illuminated by star formation. Another option is to search for newly formed planetary nebulae which are in the process of enriching the interstellar medium.

A new paper does just this, discovering a new planetary nebula in hopes of mapping the chemical abundance of the galaxy. The new nebula is almost the exact opposite direction of the galactic center when viewed from Earth. It lies at a distance of about 13 kpc (42,400 lightyears) from Earth making it one of the most distant planetary nebulae from the galactic center for which a distance has been determined and currently, the furthest with a measured chemical abundance.

The nebula was originally recorded on images taken by the INT Photometric Hα Survey (IPHAS) in 2003 but the automated program for detecting such objects initially missed the nebula due to its relatively large angular size (10 arcseconds). It was subsequently caught on visual inspection of the mosaics. Follow-up spectroscopy was conducted from 2005 to 2010 and reveal that the nebula is quite regular for planetary nebula, containing strong emission from hydrogen, nitrogen, oxygen, and silicon. The rate of expansion combined with its physical size suggests an age of nearly 18,000 years.

This newly discovered nebula provides a rare data point for the chemical abundance for the outer portions of the galaxy. While the galaxy is known to be enriched towards the galactic center, there has been debate about how quickly, if at all, it falls towards the galactic edge where star formation, and thus, enrichment, is less common. While there aren’t enough known nebulae to determine just yet (only four others are known at similar distances), this planetary nebula suggests that the abundance levels off in the galactic outskirts.

The authors also note that this nebula, as well as potentially the others, aren’t native to the Milky Way. They lie near a structure known as the Monoceros Ring, which is a stream of stars believed to be stretched out as the Milky Way devours the Canis Major Dwarf Galaxy.

Transiting Super-Earth Detected Around Naked Eye Star

55 Cancri. Image credit: NASA/JPL

One of the first known stars to host an extrasolar planet, was that of 55 Cancri. The first planet in this system was reported in 1997 and today the system is known to host at least five planets, the inner most of which, 55 Cnc e, was recently discovered to transit the star, giving new information about this planet.

55 Cnc is an interesting system in many respects. Being a mere 41 lightyears from the Earth, the system is composed of a primary, yellow dwarf star in a wide binary orbit (1,000 AU) with a red dwarf. The planetary system lies within this orbit. The primary star is just brighter than 6th magnitude meaning it is visible to the naked eye under good viewing conditions.

One of these planets, 55 Cnc e, was discovered in this system via radial velocity measurements in 2004. At that point, the planet was reported to have a period of 2.8 days, and a minimum mass of 14.2 times the mass of the Earth. However, in 2010, Rebekah Dawson and Daniel Fabrycky from the Harvard-Smithsonian Center for Astrophysics argued that gaps in the observational period skewed the statistics and the true period the planet should be a short 0.7365 days.

One of the results of this was that the planet would have to orbit closer to the parent star. In turn, this increased the likelihood that the planet could transit the star from 13% to 33%. A team led by Joshua Winn from the Massachusetts Institute of Technology went searching for this faint transit and report its detection in a recent paper. But while the star itself is one of the brightest stars in our sky to harbor known extrasolar planets, the eclipse is far from visible without precise observations, changing by only 0.0002%, one of the smallest changes known. The timing of the eclipses confirms that correction by Dawson and Fabrycky and adds new information about the body.

Given the radius determined as well as the mass, the team was able to estimate the structure of the planet and report that the mass is 8.57 ± 0.64 Earth masses. The reported radius is 1.63 ± 0.16 times that of Earth, and the density is 10.9 ± 3.1 g cm-3 (the average density of Earth is 5.515 g cm-3). This places the planet firmly into the categories of a rocky super-Earth.

The team also explores whether or not the planet could retain an atmosphere in such a close orbit (only three times the radius of the star itself). At this close range, the planet would likely be tidally locked and with an albedo typical of rocky planets, the planet would likely have an average temperature of nearly 2970 K (5,000° F). If the planet were able to redistribute the heat, it may be as low as 2100 K (3,300° F). Either way, a planet of such mass would have difficulty retaining any primordial, gaseous atmosphere. However, the team reports that it may be possible for volcanic activity to create a thin atmosphere of high molecular weight components.

While this new report adds precious little in the grand scheme of the rapidly growing body of knowledge of exoplanets, the authors close with the note that, “there is some pleasure in being able to point to a naked-eye star and know the mass and radius of one of its planets.”

April 9th Fireball

In my time watching the skies, I’ve seen quite a few meteors, fireballs, and bolides. The truly notable ones are few and far between, but last Saturday, I caught one that was among the most interesting I’ve seen. It was a slow moving, bright green one with a nice smoke trail that was easily as bright as Venus from where I saw it in the suburbs of St. Louis. I tweeted about it briefly but didn’t think much more about it until I got a response from another person that saw it along with a link to a collection of observations. As nice as the observation was for me, it was nothing compared to the view some others got.

Heading over to the American Meteor Society page for a meteor around this time, it looks like a meteor matching the one I saw generated a pretty good number of reports from across the country. Several have reactions similar to my initial one: This must be a firework. Many reports confirm the smoke trail and fragmentation as well. But the reports that are really fantastic are the ones from Canada.

At the Lunar Meteorite Hunters blog, several reports have been collected. Several of these reports from various locations in Ontario report the meteor being as bright as a full moon and lighting up the entire sky! One even notes that they could hear a fizzling noise, a rare phenomenon thought to occur when the passage through the atmosphere creates an ionized path that interacts with the Earth’s magnetic field creating radio waves that could induce physical vibrations in the air around the observer. Another comment reports a sonic boom around the same time (although sonic booms would occur well after the meteor was visible due to the sluggish nature of sound waves, much like the delay between lightning and thunder).

It doesn’t look like NASA’s All Sky Fireball Network caught this fireball, but an amateur observatory equipped with an all sky camera for detecting fireballs did catch the event.

The green color for such meteors is uncommon but not unprecedented. The presence of magnesium ions is responsible for this color. Interestingly, another famous meteor, the Peekskill meteor, also had a green color and rivaled the full moon in brightness. This meteor became famous because it was independently captured in at least sixteen videos (here’s one showing the green tint) as well as for surviving intact to the ground and damaging a car.

Meteors of this intensity are quite rare but bright fireballs like this seem to peak around the vernal equinox. In the weeks surrounding that day, the rate of such events increases around 10-30%.