Successful HotFire Test Sets SpaceX on Course for Historic Relaunch of 1st ‘Flight-Proven’ Rocket

SpaceX conducts successful static hot fire test of 1st previously flown Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 27 Mar. 2017 as seen from Space View Park, Titusville, FL. History making launch of first recycled rocket is slated for 30 March 2017 with SES-10 telecommunications comsat. Credit: Ken Kremer/Kenkremer.com
SpaceX conducts successful static hot fire test of 1st previously flown Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 27 Mar. 2017 as seen from Space View Park, Titusville, FL. History making launch of first recycled rocket is slated for 30 March 2017 with SES-10 telecommunications comsat. Credit: Ken Kremer/Kenkremer.com

SPACE VIEW PARK/KENNEDY SPACE CENTER, FL – This afternoons (Mar. 27) successful hotfire test of a recycled Falcon 9 booster at the Kennedy Space Center sets SpaceX on course for a rendezvous with history involving the first ever relaunch of a ‘Flight-Proven’ rocket later this week.

The milestone mission to refly the first ever ‘used rocket’ is slated for lift off on Thursday, March 30, at 6 p.m. EDT from seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida, carrying the SES-10 telecommunications payload.

“Static fire test complete,” SpaceX confirmed via social media.

“Targeting Thursday, March 30 for Falcon 9 launch of SES-10.”

SES-10 is to be the first satellite launching on a SpaceX flight-proven rocket, gushes telecommunications giant SES.

The flight proven SpaceX Falcon 9 rocket will deliver SES-10 to a Geostationary Transfer Orbit (GTO).

The Falcon 9 booster to be recycled was initially launched in April 2016 for NASA on the SpaceX Dragon CRS-8 resupply mission to the International Space Station (ISS) under contract for the space agency.

The Falcon 9 first stage was recovered about 8 and a half minutes after liftoff via a propulsive soft landing on an ocean going droneship in the Atlantic Ocean some 400 miles (600 km) off the US East coast.

The brief engine test lasting approximately three seconds took place at 2 p.m. today, Monday March 27, with the sudden eruption of smoke and ash rushing into the air over historic pad 39A on NASA’s Kennedy Space Center during a picture perfect sunny afternoon – as I witnessed from Space View Park in Titusville, FL.

During today’s static fire test, the rocket’s first and second stages are fueled with liquid oxygen and RP-1 propellants like an actual launch, and a simulated countdown is carried out to the point of a brief engine ignition.

The hold down engine test with the erected rocket involved the ignition of all nine Merlin 1D first stage engines generating some 1.7 million pounds of thrust at pad 39A while the two stage rocket was restrained on the pad.

This is only the third Falcon 9 static fire test ever conducted on Pad 39A.

Pad 39A has been repurposed by SpaceX from its days as a NASA shuttle launch pad.

Watch this video of the March 27 static fire test from colleague Jeff Seibert:

Video Caption: SpaceX Falcon 9 hot fire test on March 27, 2017 for SES-10 launch on March 30 on KSC Pad 39A. Credit: Jeff Seibert

Space View Park is a great place to watch rocket launches from as it offers an unobstructed view across the inland river to the Kennedy Space Center and Cape Canaveral Air Force Station launch pads dotting the Florida Space Coast.

SpaceX, founded by billionaire and CEO Elon Musk, inked a deal in August 2016 with telecommunications giant SES, to refly a ‘Flight-Proven’ Falcon 9 booster.

Luxembourg-based SES and Hawthrone, CA-based SpaceX jointly announced the agreement to “launch SES-10 on a flight-proven Falcon 9 orbital rocket booster.”

Exactly how much money SES will save by utilizing a recycled rocket is not known. But SpaceX officials have been quoted as saying the savings could be between 10 to 30 percent.

This critical engine test opens the door to what will be only the third blastoff of the SpaceX commercial Falcon 9 rocket from seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

So SpaceX is definitely picking up the pace of launch operations as this blastoff comes barely 2 weeks after the prior launch on March 16 with EchoStar XXIII.

The SpaceX Falcon 9 launches the EchoStar 23 telecomsat from historic Launch Complex 39A with countdown clock in foreground at NASA’s Kennedy Space Center as display shows liftoff progress to geosynchronous orbit after post midnight blastoff on March 16 at 2:oo a.m. EDT. Credit: Ken Kremer/Kenkremer.com

Liftoff of the Falcon 9 carrying the SES-10 telecommunications satellite is now slated for 6 p.m. EDT at the opening of the launch window

The two and a half hour launch window closes at 8:30 p.m. EDT.

SES-10 will replace AMC-3 and AMC-4 to provide enhanced coverage and significant capacity expansion over Latin America, says SES.

“The satellite will be positioned at 67 degrees West, pursuant to an agreement with the Andean Community (Bolivia, Colombia, Ecuador and Peru), and will be used for the Simón Bolivar 2 satellite network.”

SES-10 satellite mission artwork. Credit: SES

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX SES-10, EchoStar 23 and CRS-10 launches to ISS, ULA SBIRS GEO 3 launch, GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 29/31, Apr 1: “SpaceX SES-10, EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 arrives at mouth of Port Canaveral, FL on June 2, 2016. Credit: Ken Kremer/kenkremer.com

NASA Test Fires New Engine Controlling ‘Brain’ for First SLS MegaRocket Mission

NASA engineers conduct a test of the first RS-25 engine controller that will be used on an actual Space Launch System flight on the A-2 Test Stand at Stennis Space Center on March 23, 2017. The RS-25 engine, with the flight controller, was test fired for a full-duration 500 seconds. Credits: NASA/SSC
NASA engineers conduct a test of the first RS-25 engine controller that will be used on an actual Space Launch System flight on the A-2 Test Stand at Stennis Space Center on March 23, 2017. The RS-25 engine, with the flight controller, was test fired for a full-duration 500 seconds. Credits: NASA/SSC

Engineers carried out a critical hot fire engine test firing with the first new engine controlling ‘brain’ that will command the shuttle-era liquid fueled engines powering the inaugural mission of NASA’s new Space Launch System (SLS) megarocket.

The first integrated SLS launch combining the SLS-1 rocket and Orion EM-1 deep space crew capsule could liftoff as soon as late 2018 on a mission around the Moon and back.

The full duration static fire test involved an RS-25 engine integrated with the first engine controller flight unit that will actually fly on the maiden SLS launch and took place on Thursday, March 23 at the agency’s Stennis Space Center in Bay St. Louis, Mississippi.

The 500 second-long test firing was conducted with the engine controller flight unit installed on RS-25 development engine no. 0528 on the A-2 Test Stand at Stennis.

The RS-25 engine controller is the ‘brain’ that commands the RS-25 engine and communicates between the engine and the SLS rocket. It is about the size of a dorm refrigerator.

RS-25 new engine controller. Credit: NASA/SSC

The newly developed engine controller is a modern version from the RS-25 controller that helped propel all 135 space shuttle missions to space.

“This an important – and exciting – step in our return to deep space missions,” Stennis Director Rick Gilbrech said. “With every test of flight hardware, we get closer and closer to launching humans deeper into space than we ever have traveled before.”

The modernized RS-25 engine controller was funded by NASA and created in a collaborative effort of engineers from NASA, RS-25 prime contractor Aerojet Rocketdyne of Sacramento, California, and subcontractor Honeywell of Clearwater, Florida.

“The controller manages the engine by regulating the thrust and fuel mixture ratio and monitors the engine’s health and status – much like the computer in your car,” say NASA officials.

“The controller then communicates the performance specifications programmed into the controller and monitors engine conditions to ensure they are being met, controlling such factors as propellant mixture ratio and thrust level.”

A quartet of RS-25 engines, leftover from the space shuttle era and repeatedly reused, will be installed at the base of the core stage to power the SLS at liftoff, along with a pair of extended solid rocket boosters.

The four RS-25 core stage engine will provide a combined 2 million pounds of thrust at liftoff.

In addition to being commanded by the new engine controller, the engines are being upgraded in multiple ways for SLS. For example they will operate at a higher thrust level and under different operating conditions compared to shuttle times.

To achieve the higher thrust level required, the RS-25 engines must fire at 109 percent of capability for SLS compared to operating at 104.5 percent of power level capability for shuttle flights.

The RS-25 engines “also will operate with colder liquid oxygen and engine compartment temperatures, higher propellant pressure and greater exhaust nozzle heating.”
SLS will be the world’s most powerful rocket and send astronauts on journeys into deep space, further than human have ever travelled before.

For SLS-1 the mammoth booster will launch in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

NASA engineers conduct a test of the first RS-25 engine controller that will be used on an actual Space Launch System flight on the A-2 Test Stand at Stennis Space Center on March 23, 2017. The RS-25 engine, with the flight controller, was test fired for a full-duration 500 seconds. Credits: NASA/SSC

The next step is evaluating the engine firing test results, confirming that all test objectives were met and certifying that the engine controller can be removed from the RS-25 development engine and then be installed on one of four flight engines that will help power SLS-1.

During 2017, two additional engine controllers for SLS-1 will be tested on the same development engine at Stennis and then be installed on flight engines after certification.

Finally, “the fourth controller will be tested when NASA tests the entire core stage during a “green run” on the B-2 Test Stand at Stennis. That testing will involve installing the core stage on the stand and firing its four RS-25 flight engines simultaneously, as during a mission launch,” says NASA.

Numerous RS-25 engine tests have been conducted at Stennis over more than 4 decades to certify them as flight worthy for the human rated shuttle and SLS rockets.

NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18, 2016 at NASA’s Stennis Space Center near Bay St. Louis, Miss. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars. Credit: Ken Kremer/kenkremer.com

Although NASA is still targeting SLS-1 for launch in Fall 2018 on an uncrewed mission, the agency is currently conducting a high level evaluation to determine whether the Orion EM-1 capsule can be upgraded in time to instead fly a human crewed mission with two astronauts before the end of 2019 – as I reported here.

The Orion EM-1 capsule is currently being manufactured at the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center by prime contractor Lockheed Martin.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Aerojet Rocketdyne technicians inspect the engine controller that will be used for the first integrated flight of NASA’s Space Launch System and Orion in late 2018. The engine controller was installed on RS-25 development engine no. 0528 for testing at Stennis Space Center on the A-2 Test Stand on March 23, 2017. The RS-25 engine, with the flight controller, was test fired for a full-duration 500 seconds. Credits: NASA/SSC

Nighttime Delta IV Blastoff Powers Military Comsat to Orbit for U.S. Allies: Photo/Video Gallery

Blastoff of ULA Delta IV rocket carrying the Wideband Global SATCOM (WGS-9) comsat to orbit for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com
Blastoff of ULA Delta IV rocket carrying the Wideband Global SATCOM (WGS-9) comsat to orbit for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – The second round of March Launch Madness continued with the thunderous nighttime blastoff of a ULA Delta IV rocket powering a super swift military communications satellite to orbit in a collaborative effort of U.S. Allies from North America, Europe and Asia and the U.S. Air Force.

The next generation Wideband Global SATCOM-9 (WGS-9) military comsat mission for the U.S. Force lifted off atop a United Launch Alliance (ULA) Delta IV from Space Launch Complex-37 (SLC-37) on Saturday, March 18 at 8:18 p.m. EDT at Cape Canaveral Air Force Station, Florida.

Check out this expanding gallery of spectacular launch photos and videos gathered from my space journalist colleagues, myself and spectators ringing the space coast under crystal clear early evening skies.

A key feature in this advanced Block II series WGS satellite is inclusion of the upgraded digital channelizer that nearly doubles the available bandwidth of earlier satellites in the series.

WGS-9 can filter and downlink up to 8.088 GHz of bandwidth compared to 4.410 GHz for earlier WGS satellites. It supports communications links in the X-band and Ka-band spectra.

ULA Delta IV rocket streaks to orbit carrying WGS-9 tactical communications satellite for the U.S. Air Force and international partners from Cape Canaveral Air Force Station, Fl, at 8:18 p.m. EDT on Mar. 18, 2017. Credit: Julian Leek

Note that Round 3 of March Launch Madness is tentatively slated for March 29 with the SpaceX liftoff of the first ever reused Falcon 9 first stage from historic pad 39 on NASA’s Kennedy Space Center.

The WGS-9 satellite was paid for by a six nation consortium that includes Canada, Denmark, Luxembourg, the Netherlands, New Zealand and the United States. It joins 8 earlier WGS satellites already in orbit.

The partnership was created back in 2012 when the ‘WGS-9 Memorandum of Understanding (MOU)’ was signed by Defense organizations of the six countries.

The WGS-9 MOU agreement to fund the satellite enabled the expansion of the WGS system with this additional satellite added to the existing WGS constellation.

“The agreement provides all signatories with assured access to global wideband satellite communications for military use,” according to the US Air Force.

Watch this launch video compilation from Jeff Seibert:

Video Caption: Launch of WGS-9 satellite continues USAF Breaking Barriers heritage. This ULA Delta 4 launch of the WGS-9 satellite on Mar 18, 2017 marks the start of the 70th anniversary of the United States Air Force. That was also the year that U.S. Air Force Captain Chuck Yeager broke the sound barrier. Credit: Jeff Seibert

Watch this launch video from Ken Kremer:

Video Caption: ULA/USAF Delta IV launch of Wideband Global SATCOM (WGS-9) from pad 37 on Cape Canaveral Air Force Station, Fl, on 18 Mar. 2017 – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

WGS-9 was built by Boeing.

The 217 foot tall Delta IV Medium+ rocket launched in the 5,4 configuration with a 5 meter diameter payload fairing that stands 47 feet tall, and 4 solid rocket boosters to augment the first stage thrust of the single common core booster.

The payload fairing was emblazoned with decals commemorating the 70th anniversary of the USAF, as well as Air Force, mission and ULA logos.

A United Launch Alliance (ULA) Delta IV rocket carrying the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force launches at 8:18 p.m. EDT on Mar. 18, 2017 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl – reflecting beautifully in the pad pond. Credit: Ken Kremer/kenkremer.com
Blastoff of ULA Delta IV rocket carrying the Wideband Global SATCOM (WGS-9) comsat to orbit for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

Orbital ATK manufactures the four solid rocket motors. The Delta IV common booster core was powered by an RS-68A liquid hydrogen/liquid oxygen engine producing 705,250 pounds of thrust at sea level.
A single RL10B-2 liquid hydrogen/liquid oxygen engine powered the second stage, known as the Delta Cryogenic Second Stage (DCSS).

The booster and upper stage engines are both built by Aerojet Rocketdyne. ULA constructed the Delta IV Medium+ (5,4) launch vehicle in Decatur, Alabama.

Launch of USAF WGS-8 milsatcom on ULA Delta IV rocket from pad 37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Julian Leek

The DCSS will also serve as the upper stage for the maiden launch of NASA heavy lift SLS booster on the SLS-1 launch slated for late 2018. That DCSS/SLS-1 upper stage just arrived at the Cape last week – as I witnessed and reported here.

Saturday’s launch marks ULA’s 3rd launch in 2017 and the 118th successful launch since the company was formed in December 2006 as a joint venture between Boeing and Lockheed Martin.

Blastoff of ULA Delta IV rocket carrying the Wideband Global SATCOM (WGS-9) comsat to orbit for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Launch of USAF WGS-8 milsatcom on ULA Delta IV rocket from pad 37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Dawn Leek Taylor
Two AF Generals and a Delta! Major General David D. Thompson, Vice Commander Air Force Space Command, Peterson Air Force Base, CO, and Brig. Gen. Wayne R. Monteith, Commander of the 45th Space Wing Commander and Eastern Range Director at Patrick Air Force Base, Fla, celebrate successful Wideband Global SATCOM (WGS-9) launch for the U.S. Air Force on ULA Delta IV from Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017, with the media gaggle on base post launch with Delta pad 37 in background right. Credit: Ken Kremer/kenkremer.com
Liftoff of ULA Delta IV with WGS-9 milsatcom on Mar 18, 2017 as seen soaring above the pool at the Quality Inn Kennedy Space Center in Titusville, FL. Credit: Wesley Baskin
Eerie view of ULA Delta IV blastoff of WGS-9 milsatcom on Mar 18, 2017 as seen soaring over residential area in Titusville, FL. Credit: Melissa Bayles
ULA Delta IV rocket prior to blastoff with the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force from Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com
ULA Delta IV blastoff of WGS-9 satcom on Mar 18, 2017 from Cape Canaveral AFS with long vapor exhaust trail as seen roaring over residential area in Titusville, FL. Credit: Ashley Carrillo
ULA Delta IV blastoff of WGS-9 satcom on Mar 18, 2017 from Cape Canaveral AFS with long vapor exhaust trail as seen roaring over residential area in Titusville, FL. Credit: Ashley Carrillo
ULA Delta IV blastoff of WGS-9 satcom on Mar 18, 2017 from Cape Canaveral AFS with long vapor exhaust trail as seen roaring over residential area in Titusville, FL. Credit: Ashley Carrillo
ULA Delta IV blastoff of WGS-9 satcom on Mar 18, 2017 from Cape Canaveral AFS with long vapor exhaust trail as seen roaring over residential area in Titusville, FL. Credit: Ashley Carrillo

SpaceX Outbids ULA for Military GPS Contract Igniting Fierce Launch Competition

Successful SpaceX Falcon 9 launch of ABS/Eutelsat-2 launch on June 15, 2016, at 10:29 a.m. EDT from Space Launch Complex 40 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The fierce competition for lucrative launch contracts from the U.S. Air Force just got more even intense with the announcement that SpaceX outbid arch rival United Launch Alliance (ULA) to launch an advanced military Global Positioning System (GPS III) navigation satellite to orbit in approx. 2 years.

The U.S. Air Force has announced that SpaceX has won the national security contract to launch a single next generation GPS III satellite to Earth orbit in the first half of 2019. The contract award is valued at $96.5 million.

“SpaceX is proud to have been selected to support this important National Security Space Mission,” Gwynne Shotwell, President & COO, told Universe Today in a statement in response to the GPS III award.

The GPS constellation of navigation satellites is vital to both military and civilian users on a 24/7 basis.

“Space Exploration Technologies Corp., Hawthorne, California, has been awarded a $96,500,490 firm-fixed-price contract for launch services to deliver a GPS III satellite to its intended orbit,” the Air Force announced in a statement.

There could be as many as 15 Air Force launch contracts awarded this year in competitive bidding between ULA and SpaceX.

The upshot is that ULA’s decade long near monopoly on national security launches has now been broken several times in the past year with SpaceX outbidding ULA based on the price of their newer Falcon family of rockets compared to ULA’s long established Atlas and Delta rocket families.

Last year SpaceX won the competition to launch the first GPS-III satellite on a Falcon 9 rocket in 2018 with a bid of $82.7 million after ULA decided not to enter a bid.

“We appreciate the confidence that the U.S. Air Force has placed in our company and we look forward to working together towards the successful launch of another GPS-III mission,” Shotwell elaborated to Universe Today.

SpaceX President Gwynne Shotwell meets the media at Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 to discuss a wide range of space launch plans. Credit: Julian Leek

ULA did not bid on the first GPS III contract citing the lack of availability of “any Atlas engines available to bid” and other contract factors as the reason for not submitting a bid for the 2018 launch based on the request for proposals (RFP) for the global positioning satellite.

The Atlas V is powered by Russian made RD-180 engines, who’s import for military uses had been temporarily restricted by Congress following the Russian invasion of the Crimea.

The launch price was a deciding factor in the winning bid.

“Each contractor had to prove through their proposal that they could meet the technical, the schedule and the risk criteria,” said Claire Leon, director of the launch enterprise directorate at the Air Force’s Space and Missile Systems Center, during a media briefing.

“SpaceX was able to do that. I wouldn’t say that they were necessarily better. They adequately met our criteria.”

SpaceX has been snatching away numerous launch contracts from ULA other launch providers across the globe with their substantially lower rocket prices. SpaceX has been hiring while other firms including ULA have suffered layoffs.

So in response to competitive pressures from SpaceX, ULA took concrete steps to dramatically cut launch costs and end dependency on the RD-180s when CEO Tory Bruno announced in April 2015 that the company would develop the new all-American made Vulcan rocket.

Vulcan is slated for an inaugural liftoff in 2019.

The Air Force expects SpaceX to achieve a rapid turnaround from winning the bid to actually launching the GPS satellite by April 2019.

“Contractor will provide launch vehicle production, mission integration, launch operations, spaceflight worthiness and mission unique activities for a GPS III mission. Work will be performed at Hawthorne, California; Cape Canaveral Air Force Station, Florida; and McGregor, Texas, and is expected to be complete by April 30, 2019,” said the Air Force.

Only SpaceX and ULA bid on the GPS III satellite launch contract.

“This award is the result of a competitive acquisition with two offers received. Fiscal 2016 space procurement funds in the amount of $96,500,490 are being obligated at the time of award.”

The Air Force opened up military launch contracts to competitive bidding in 2015 after certifying SpaceX as a qualified bidder to launch the nation’s most critical and highly valuable national security satellites on their Falcon 9 booster.

Until 2015, ULA had a near sole source contract with the USAF as the only company certified to bid on and launch those most critical national security satellites. New space upstart SpaceX, founded by billionaire CEO Elon Musk, then forced the bidding issue by filing a lawsuit suing the Air Force.

In response to the lost GPS-III bid, ULA touted their demonstrated record of 100 percent success launching more than 115 satellites.

“United Launch Alliance continues to believe a best value launch service competition with evaluation of mission success and assurance, and past performance including demonstrated schedule reliability, is appropriate and needed for the Phase 1A missions given the technical complexities of rocket launch services and their critical significance to the war fighter and U.S. national security,” ULA spokeswoman Jessica Rye told Universe Today.

“Over the past decade, ULA has provided unmatched reliability with 100 percent mission success and ensured more than 115 satellites were delivered safely to their orbits each and every time. We look forward to continuing to provide the best value launch services to enable our customers’ critical missions.”

ULA Delta IV rocket streaks to orbit carrying the Wideband Global SATCOM (WGS-9) tactical communications satellite for the U.S. Air Force and international partners from Cape Canaveral Air Force Station, Fl, at 8:18 p.m. EDT on Mar. 18, 2017, in this long exposure photo taken on base. Credit: Ken Kremer/kenkremer.com

The most recent ULA launch for the Air Force took place days ago involving the stunning Delta blastoff of the WGS-9 high speed communications satellite on March 18, 2017.

SpaceX has suffered a pair of calamitous Falcon 9 rocket failures in June 2015 and Sept. 2016, destroying both the rocket and payloads for NASA and the AMOS-6 communications satellite respectively.

So the U.S. Air Force should definitely be balancing risk vs. reward with regard to lower pricing and factoring in rocket robustness and reliability, regarding launches of national security satellites which could cost into the multi-billions of dollars, take years to manufacture and are not swiftly replaceable in case of catastrophic launch failures.

ULA’s workhorse Atlas V rocket successfully delivered the final GPS satellite in the IIF series to orbit for the US Air Force on Feb 5, 2016.

United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission lifted off at 8:38 a.m. EST on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

At that time the Global Positioning System (GPS) IIF-12 navigation satellite completed the constellation of GPS IIF satellites that are critical to both military and civilian users on a 24/7 basis.

The Atlas V rocket delivered the GPS IIF-12 satellite to a semi-synchronous circular orbit at an altitude of approximately 11,000 nautical miles above Earth.

“GPS III is the next generation of GPS satellites that will introduce new capabilities to meet the higher demands of both military and civilian users,” according to the USAF.

“GPS III is expected to provide improved anti-jamming capabilities as well as improved accuracy for precision navigation and timing. It will incorporate the common L1C signal which is compatible with the European Space Agency’s Galileo global navigation satellite system and compliment current services with the addition of new civil and military signals.”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Dragon Splashes Down in Pacific with Treasure Trove of Space Station Science

The SpaceX Dragon CRS-10 spacecraft is pictured seconds before splashing down in the Pacific Ocean on Mar. 19, 2017 after departing the International Space Station (ISS). Credit: SpaceX
The SpaceX Dragon CRS-10 spacecraft is pictured seconds before splashing down in the Pacific Ocean on Mar. 19, 2017 after departing the International Space Station (ISS). Credit: SpaceX

KENNEDY SPACE CENTER, FL – SpaceX’s tenth contracted resupply mission to the International Space Station came to a safe conclusion with a splashdown of the Dragon spacecraft in the Pacific Ocean Sunday and successfully returned a treasure trove of more than two tons of precious science experiments and research samples from the space station.

Researchers on Earth are eagerly awaiting the science data and samples in order to carry out high powered laboratory analysis that will eventually yield the fruits of the hard won labor – years in the making.

The Dragon CRS-10 cargo freighter departed the International Space Station (ISS) Sunday morning after Expedition 50 astronauts Thomas Pesquet of ESA (European Space Agency) and Shane Kimbrough of NASA released the spacecraft from the grip of the station’s 57.7-foot-long(17.6-meter) Canadian-built Canadarm2 robotic arm as planned at 5:11 a.m. EDT, March 19.

After carefully maneuvering away from the orbiting outpost and six person international crew at an altitude of appox. 250 miles (400 km), Dragon eased away to a safe distance.

SpaceX’s Dragon CRS-10 cargo vehicle is attached to the International Space Station on Feb 23, 2017 after early morning capture by astronauts Shane Kimbrough and Thomas Pesquet using the robotic arm and subsequent berthing at Earth facing port on the Harmony module. It will stay for a month. Credit: NASA

The vessel then fired its braking thrusters a few hours later to initiate the reentry burn that would set the craft on course for a fiery plummet through the Earth’s atmosphere.

Some five and a half hours later the spaceship carried out a parachute assisted splashdown in the Pacific Ocean at 10:46 a.m. EDT, about 200 miles southwest of Long Beach, California.

The highest priority research and technology cargo will be removed from Dragon immediately and returned to NASA.

SpaceX CRS-10 Dragon supply ship launched on Feb. 19, 2017 from NASA’s Kennedy Space Center in Florida successfully arrives at the International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

The rest will travel back to port and be prepared for a return trip to SpaceX’s test facility in McGregor, Texas, where the remaining scientific samples, research experiments and technology gear and hardware will be unloaded for NASA.

Dragon had spent nearly a month berthed at the Earth-facing port on the station’s Harmony module, since arriving on Feb 23.

Dragon begun its space voyage after it was launched from the Kennedy Space Center (KSC) on Sunday, Feb. 19 on the first Falcon 9 rocket ever to blast off from historic launch pad 39A in a blaze of glory – as I reported here.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

At liftoff, the Dragon CRS-10 space freighter was carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload to the low Earth orbiting station in support of the Expedition 50 and 51 crew members.

After a four day chase, Dragon was captured and attached to the station using the Canadian arm on Feb 23 by the same two astronauts who released it on Sunday.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere. It is one of NASA’s longest running earth science programs.

The LIS lightning mapper will measure the amount, rate and energy of lightning as it strikes around the world from the altitude of the ISS as it orbits Earth. Its data will complement that from the recently orbited GLM lighting mapper lofted to geosynchronous aboard the NASA/NOAA GOES-R spacecraft instrument.

NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

SAGE III and RAVEN were stowed in the Dragon’s unpressurized truck. Astronauts plucked them out of the trunk using the robotic arm and attached them to specified locations on the stations exterior to carry out their objectives.

For the return trip to Earth, the astronaut crew loaded Dragon with more than 5,400 pounds of NASA cargo, and science and technology demonstration samples gathered and collected by the stations crewmembers.

“A variety of technological and biological studies are returning in Dragon. The Microgravity Expanded Stem Cells investigation had crew members observe cell growth and other characteristics in microgravity,” said NASA.

“This information will provide insight into how human cancers start and spread, which aids in the development of prevention and treatment plans. Results from this investigation could lead to the treatment of disease and injury in space, as well as provide a way to improve stem cell production for human therapy on Earth.”

“Samples from the Tissue Regeneration-Bone Defect study, a U.S. National Laboratory investigation sponsored by the Center for the Advancement of Science in Space (CASIS) and the U.S. Army Medical Research and Materiel Command, studied what prevents vertebrates such as rodents and humans from re-growing lost bone and tissue, and how microgravity conditions affect the process. Results will provide a new understanding of the biological reasons behind a human’s inability to grow a lost limb at the wound site, and could lead to new treatment options for the more than 30 percent of the patient population who do not respond to current options for chronic non-healing wounds.”

Dragon departed in order to make way for the arrival of the next cargo ship.

The ‘SS John Glenn’ Cygnus cargo freighter built by Orbital Sciences is due to lift off no earlier than March 27 on a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral Air Force Station.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s onsite launch and mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Delta IV Delivers Daunting Display Powering International Military WGS-9 SatCom to Orbit

ULA Delta IV rocket streaks to orbit carrying the Wideband Global SATCOM (WGS-9) tactical communications satellite for the U.S. Air Force and international partners from Cape Canaveral Air Force Station, Fl, at 8:18 p.m. EDT on Mar. 18, 2017, in this long exposure photo taken on base. Credit: Ken Kremer/kenkremer.com
ULA Delta IV rocket streaks to orbit carrying the Wideband Global SATCOM (WGS-9) tactical communications satellite for the U.S. Air Force and international partners from Cape Canaveral Air Force Station, Fl, at 8:18 p.m. EDT on Mar. 18, 2017, in this long exposure photo taken on base. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – On the 70th anniversary year commemorating the United States Air Force, a ULA Delta IV rocket put on a daunting display of nighttime rocket fire power shortly after sunset Saturday, March 19 – powering a high speed military communications satellite to orbit that will significantly enhance the targeting firepower of forces in the field; and was funded in collaboration with America’s strategic allies.

The next generation Wideband Global SATCOM-9 (WGS-9) military comsat mission for the U.S. Force lifted off atop a United Launch Alliance (ULA) Delta IV from Space Launch Complex-37 (SLC-37) on Saturday, March 18 at 8:18 p.m. EDT at Cape Canaveral Air Force Station, Florida.

The launch and separation of the payload form the Delta upper stage was “fully successful,” said Major General David D. Thompson, Vice Commander Air Force Space Command, Peterson Air Force Base, CO, to our media gaggle soon after launch at the press view site on base.

“The WGS-9 mission is key event celebrating the 70th anniversary of the U.S. Air Force as a separate service. The USAF was created two years after World War II ended.”

“The theme of this year is ‘breaking Barriers.’”

A United Launch Alliance (ULA) Delta IV rocket carrying the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force launches at 8:18 p.m. EDT on Mar. 18, 2017from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

WGS-9 was delivered to a supersynchronous transfer orbit atop the ULA Delta IV Medium+ rocket.

The WGS-9 satellite was paid for by a six nation consortium that includes Canada, Denmark, Luxembourg, the Netherlands amd the United States. It joins 8 earlier WGS satellite already in orbit.

“WGS-9 was made possible by funding from our international partners,” Thompson emphasized.

Major General David D. Thompson, Vice Commander Air Force Space Command, Peterson Air Force Base, CO, and Brig. Gen. Wayne R. Monteith, Commander of the 45th Space Wing Commander and Eastern Range Director at Patrick Air Force Base, Fla, celebrate successful Wideband Global SATCOM (WGS-9) launch for the U.S. Air Force on ULA Delta IV from Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017, with the media gaggle on base. Credit: Julian Leek

It is the ninth satellite in the WGS constellation that serves as the backbone of the U.S. military’s global satellite communications.

“WGS provides flexible, high-capacity communications for the Nation’s warfighters through procurement and operation of the satellite constellation and the associated control systems,” according to the U.S. Air Force.

“WGS provides worldwide flexible, high data rate and long haul communications for marines, soldiers, sailors, airmen, the White House Communication Agency, the US State Department, international partners, and other special users.”

Launch of USAF WGS-8 milsatcom on ULA Delta IV rocket from pad 37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Dawn Leek Taylor

WGS-9 also counts as the second of at least a trio of launches from the Cape this March – with the possibility for a grand slam fourth at month’s end – if all goes well with another SpaceX Falcon 9 launch from pad 39A.

Blastoff of ULA Delta IV rocket carrying the Wideband Global SATCOM (WGS-9) comsat to orbit for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The 217 foot tall Delta IV Medium+ rocket launched in the 5,4 configuration with a 5 meter diameter payload fairing that stands 47 feet tall, and 4 solid rocket boosters to augment the first stage thrust of the single common core booster.

The payload fairing was emblazoned with decals commemorating the 70th anniversary of the USAF, as well as Air Force, mission and ULA logos.

Orbital ATK manufactures the four solid rocket motors. The Delta IV common booster core was powered by an RS-68A liquid hydrogen/liquid oxygen engine producing 705,250 pounds of thrust at sea level.

A single RL10B-2 liquid hydrogen/liquid oxygen engine powered the second stage, known as the Delta Cryogenic Second Stage (DCSS).

The booster and upper stage engines are both built by Aerojet Rocketdyne. ULA constructed the Delta IV Medium+ (5,4) launch vehicle in Decatur, Alabama.

The DCSS will also serve as the upper stage for the maiden launch of NASA heavy lift SLS booster on the SLS-1 launch slated for late 2018. That DCSS/SLS-1 upper stage just arrived at the Cape last week – as I witnessed and reported here.

Saturday’s launch marks ULA’s 3rd launch in 2017 and the 118th successful launch since the company was formed in December 2006 as a joint venture between Boeing and Lockheed Martin.

The is the seventh flight in the Medium+ (5,4) configuration; all of which were for prior WGS missions.

ULA Delta IV rocket poised for sunset blastoff with the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about USAF/ULA WGS satellite, SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 21-25: “USAF/ULA WGS satellite launch, SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Close-up view of nose cone encapsulating the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force slated to launch from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

Sunset Delta Set to Dazzle Cape with Mighty Air Force SatCom Launch March 18 – Watch Live

ULA Delta IV rocket poised for sunset blastoff with the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com
ULA Delta IV rocket poised for sunset blastoff with the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force from Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – As sunset dawns on the venerable Delta rocket program, the sole Delta slated to launch from the Cape this year is set to dazzle at sunset tonight, Saturday, March 18.

And the launch site is drenched with brilliant blue skies this afternoon as I watched the Delta rocket exposed to the heavens as the mobile service tower rolled away from on site at pad 37.

Florida’s Space Coast will light up with a spectacular sunset burst of fire and fury as a United Launch Alliance (ULA) Delta rocket roars to space with a super advanced tactical satcom for the U.S. Air Force that will provide a huge increase in communications bandwidth for American forces around the globe.

Blastoff of the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force is slated for 7:44 p.m. EDT on Saturday, Mar. 18, 2017 from Space Launch Complex-37 at Cape Canaveral Air Force Station, Florida.

Close-up view of nose cone encapsulating the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force slated to launch from Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

WGS-9 will be delivered to a supersynchronous transfer orbit atop a ULA Delta IV Medium+ rocket.

Thus ‘March Launch Madness’ continues unabated tonight – with a dizzying pace of launches.

Because it’s been barely two and a half days since a SpaceX Falcon 9 successfully dazzled sky watchers and launch enthusiasts on Thursday, March 16, just after midnight by delivering the EchoStar XXIII commercial television satellite to geosynchronous orbit – as I witnessed and reported on here.

So it’s past time to ‘get your ass to the Cape’ – because the weather is glorious in central Florida. And … a Atlas rocket is slated to launch in only five or six days – late next week! in six next Friday.

Saturday’s sunset launch window runs for one hour and 15 minutes from 7:44-8:59 p.m. EDT.

You can watch the Delta launch live on a ULA webcast. The live launch broadcast will begin approximately 20 minutes prior to liftoff at 7:24 p.m. EST here:

http://www.ulalaunch.com/webcast.aspx

The weather forecast for Saturday, Mar. 18, calls for a 90 percent chance of acceptable ‘GO’ weather conditions at launch time.

The primary concern is for cumulus clouds.

In case of a scrub for any reason the chances for a favorable launch dip just slightly to 80% GO on Sunday, March 19.

WGS-9 and her two sisters are the most powerful US Air Force military communications satellite ever built.

WGS-8 was launched on a Delta in December 2016.

A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission lifts off from Space Launch Complex-37 at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

It is the ninth satellite in the WGS constellation that serves as the backbone of the U.S. military’s global satellite communications.

“WGS provides flexible, high-capacity communications for the Nation’s warfighters through procurement and operation of the satellite constellation and the associated control systems,” according to the U.S. Air Force.

“WGS provides worldwide flexible, high data rate and long haul communications for marines, soldiers, sailors, airmen, the White House Communication Agency, the US State Department, international partners, and other special users.”

United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission for the U.S. Air Force launches at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The 217 foot tall Delta IV Medium+ rocket will launch in the 5,4 configuration with a 5 meter diameter payload fairing and 4 solid rocket boosters to augment the first stage.

The is the seventh flight in the Medium+ (5,4) configuration; all of which were for prior WGS missions.

WGS-9 also counts as the first of at least a trio of launches from the Cape this March- with the possibility for a grand slam fourth at month’s end – if all goes well with another SpaceX Falcon 9 launch from pad 39A.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about USAF/ULA WGS satellite, SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 21-25: “USAF/ULA WGS satellite launch, SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Stunning Imagery Shows 1st Nighttime Falcon 9 Launch off Pad 39A; EchoStar XXIII Photo/Video Gallery

Blastoff of SpaceX Falcon 9 with EchoStar XXIII TV satellite for Brazil from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Photo from camera at the pad perimeter. Credit: Ken Kremer/Kenkremer.com
Blastoff of SpaceX Falcon 9 with EchoStar XXIII TV satellite for Brazil from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Photo from camera at the pad perimeter. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – The opening volley of March Launch Madness started brilliantly as showcased by stunning imagery of the inaugural nighttime launch of a SpaceX Falcon 9 off historic pad 39A under moonlit skies along the Florida Space Coast on Thursday, March 15.

The 229 foot tall Falcon 9 rocket thundered to life at 2:00 a.m. EDT Thursday, March 16 on a commercial liftoff from Launch Complex 39A on NASA’s Kennedy Space Center and successfully delivered the high capacity EchoStar XXIII TV broadcast satellite to geosynchronous orbit for Brazil.

Check out the expanding spectacular gallery of launch photos and videos gathered from my space journalist colleagues, myself and spectators ringing the space coast.

Besides being the first night launch of a Falcon 9 from pad 39A, the mission also goes down as the first fully commercial launch from pad 39A.

Overall the EchoStar XXIII launch counts as only the second Falcon 9 ever to blast off from pad 39A.

The inaugural Falcon 9 blastoff successfully took place last month on Feb. 19 on a contracted cargo resupply mission for NASA that delivered over 2.7 tons of science experiments, crew supplies and research gear to the International Space Station (ISS) on the SpaceX CRS-10 Dragon spaceship – as I reported here.

SpaceX’s billionaire CEO Elon Musk leased historic pad 39A from NASA back in April 2014 for launches of the firms Falcon 9 and Falcon Heavy carrying both robotic vehicles as well as humans on missions to low Earth orbit, the Moon and ultimately the Red Planet.

Streak shot of SpaceX Falcon 9 carrying EchoStar 23 TV satellite to orbit from pad 39A at the Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT, as seen from the KSC press site. Credit: Julian Leek

Watch this video compilation from Jeff Seibert:

Video Caption: Echostar-23 launch on a Falcon 9 rocket. The launch of the Echostar-23 satellite is the first commercial launch to take place from historic Pad 39A. Credit: Jeff Seibert

After a short delay due to wind issues, the Falcon 9’s nine Merlin 1D first stage engines ignited at 2:00 a.m. EDT March 16, generating 1.7 million pounds of liftoff thrust to propel the commercial EchoStar 23 telecommunications satellite off pad 39A and on its way to a Geostationary Transfer Orbit (GTO) for EchoStar Corporation.

The satellite was deployed approximately 34 minutes after launch.

If all goes well, March features a triple header of launches with launch competitor and arch rival United Launch Alliance (ULA) planning a duo of nighttime blastoffs from their Delta and Atlas rocket families.

With Falcon away, the launch dates have been rescheduled for Saturday, March 18 and Friday, March 24 respectively.

Indeed the potential for a grand slam of launches also exists with another Falcon 9 blastoff at the very end of this month – if all goes well. But first we have to get through the Delta and Atlas launches and deal with finicky Florida weather.

SpaceX Falcon 9 rocket streaks to orbit with EchoStar XXIII TV satellite in this long exposure photo taken in front of NASA’s countdown clock under moonlit skies at the Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Credit: Ken Kremer/Kenkremer.com

SpaceX announced that this was the last launch of an expendable Falcon 9.

Streak shot of SpaceX Falcon 9 carrying EchoStar 23 TV satellite to orbit from pad 39A at the Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT, as seen from the turn basin at the KSC press site. Credit: Jeff Seibert

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Blastoff of SpaceX Falcon 9 with EchoStar 23 TV satellite from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Photo from camera inside the pad perimeter. Credit: Ken Kremer/Kenkremer.com
Composite panoramic view of seaside Launch Complex 39A with SpaceX hangar and Falcon rocket 9 raised vertical to deliver the EchoStar 23 telecom satellite to geostationary orbit overnight March 16, 2017. Pad 39B at center. Credit: Ken Kremer/Kenkremer.com
The SpaceX Falcon 9 launches the EchoStar 23 telecomsat from historic Launch Complex 39A with countdown clock in foreground at NASA’s Kennedy Space Center as display shows liftoff progress to geosynchronous orbit after post midnight blastoff on March 16 at 2:oo a.m. EDT. Credit: Ken Kremer/Kenkremer.com
Liftoff of SpaceX Falcon 9 with EchoStar XXIII as seen through the trees from a house in Titusville, FL. Credit: Wesley Baskin
Liftoff of SpaceX Falcon 9 with EchoStar XXIII as seen through the trees from a house in Titusville, FL. Credit: Wesley Baskin

Flawless SpaceX Falcon 9 Takes Rousing Night Flight Delivery of EchoStar TV Sat to Orbit

SpaceX Falcon 9 rocket streaks to orbit in this long exposure photo taken in front of NASA’s countdown clock under moonlit skies at the Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket streaks to orbit in this long exposure photo taken in front of NASA’s countdown clock under moonlit skies at the Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – Under stellar moonlit Florida skies, a private SpaceX Falcon 9 took flight overnight and flawlessly delivered the commercial EchoStar 23 television satellite to geosynchronous orbit after high winds delayed the rockets roar to orbit by two days from Tuesday. Breaking News: Check back for updates

The post midnight spectacle thrilled spectators who braved the wee hours this morning and were richly rewarded with a rousing rush as the 229 foot tall Falcon 9 rocket thundered to life at 2:00 a.m. EDT Thursday, March 16 from historic Launch Complex 39A on NASA’s Kennedy Space Center and sped to orbit.

Rising on the power of 1.7 million pounds of liftoff thrust generated by nine Marlin 1D first stage engines, the two stage Falcon 9 rocket successfully delivered the commercial EchoStar 23 telecommunications satellite to a Geostationary Transfer Orbit (GTO) for EchoStar Corporation.

The satellite was deployed approximately 34 minutes after launch.

Thus began March Launch Madness !!

If all goes well, March features a triple header of launches with launch competitor and arch rival United Launch Alliance (ULA) planning a duo of nighttime blastoffs from their Delta and Atlas rocket families. The exact dates are in flux due to the earlier postponement of the SpaceX Falcon 9. They have been rescheduled for March 18 and 24 respectively.

The SpaceX Falcon 9 launches the EchoStar 23 telecomsat from historic Launch Complex 39A with countdown clock in foreground at NASA’s Kennedy Space Center as display shows liftoff progress to geosynchronous orbit after post midnight blastoff on March 16 at 2:oo a.m. EDT. Credit: Ken Kremer/Kenkremer.com

EchoStar 23 will be stationed over Brazil for direct to home television broadcasts and high speed voice, video and data communications to millions of customers for EchoStar.

It was designed and built by Space Systems Loral (SSL).

“EchoStar XXIII is a highly flexible, Ku-band broadcast satellite services (BSS) satellite with four main reflectors and multiple sub-reflectors supporting multiple mission profiles,” according to a description from EchoStar Corporation.

EchoStar XXIII will initially be deployed in geosynchronous orbit at 45° West. The Satellite End of Life (EOL) Power is 20 kilowatts (kW).

Blastoff of SpaceX Falcon 9 with EchoStar 23 TV satellite from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Photo from camera inside the pad perimeter. Credit: Ken Kremer/Kenkremer.com

The entire launch sequence was broadcast live on a SpaceX hosted webcast that began about 20 minutes before the revised liftoff time of 2:00 a.m. from the prelaunch countdown, blastoff and continued through the dramatic separation of the EchoStar 23 private payload from the second stage.

The EchoStar 23 launch counts as only the second Falcon 9 ever to blast off from pad 39A.

Liftoff of SpaceX Falcon 9 with EchoStar 23 TV satellite from pad 39A at the Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Credit: Julian Leek

SpaceX’s billionaire CEO Elon Musk leased historic pad 39A from NASA back in April 2014 for launches of the firms Falcon 9 and Falcon Heavy carrying both robotic vehicles as well as humans on missions to low Earth orbit, the Moon and ultimately the Red Planet.

Composite panoramic view of seaside Launch Complex 39A with SpaceX hangar and Falcon 9 rocket raised vertical to deliver the EchoStar 23 telecom satellite to geostationary orbit overnight March 16, 2017. Pad 39B at center. Credit: Ken Kremer/Kenkremer.com

The inaugural Falcon 9 blastoff successfully took place last month on Feb. 19, as I reported here.

However unlike most recent SpaceX missions, the legless Falcon 9 first stage will not be recovered via a pinpoint propulsive landing either on land or on a barge at sea.

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 16 Mar 2017 at 1:35 a.m. Credit: Ken Kremer/Kenkremer.com

Because of the satellite delivery to GTO, there are insufficient fuel reserves to carry out the booster landing.

“SpaceX will not attempt to land Falcon 9’s first stage after launch due to mission requirements,” officials said.

Therefore the first stage is not outfitted with either landing legs or grid fins to maneuver it back to a touchdown.

SpaceX announced that this was the last launch of an expendable Falcon 9.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

High Winds Scrub Legless SpaceX Falcon 9 Liftoff Reset to March 16 – Live Webcast

The countdown clock at NASA’s Kennedy Space Center shows the progress of the SpaceX Falcon launch attempt with the EchoStar 23 telecomsat from historic Launch Complex 39A after midnight March 14. Liftoff has been rescheduled for March 16 at 1:35 a.m. EDT. Credit: Ken Kremer/Kenkremer.com
The countdown clock at NASA’s Kennedy Space Center shows the progress of the SpaceX Falcon launch attempt with the EchoStar 23 telecomsat from historic Launch Complex 39A after midnight March 14. Liftoff has been rescheduled for March 16 at 1:35 a.m. EDT. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – High winds halted SpaceX’s early morning attempt to launch a legless Falcon 9 rocket and the EchoStar XXIII commercial communications satellite soon after midnight Tuesday, Mar. 14, from the Florida Space Coast amidst on and off rain showers and heavy cloud cover crisscrossing central Florida all afternoon Monday, Mar. 13 and into the overnight hours.

SpaceX then decided to reschedule the EchoStar 23 telecommunications satellite launch for post-midnight Thursday, March 16, at 1:35 a.m. EDT.

Tuesday’s launch scrub was called some 40 minutes prior to the scheduled opening of the two and a half hour long launch window at 1:34 a.m. EDT.

“Standing down due to high winds; working toward next available launch opportunity,” SpaceX tweeted just as engineers had started fueling the two stage rocket poised for blastoff from historic launch pad 39A from NASA’s Kennedy Space Center.

After further evaluating when to schedule a second attempt, SpaceX then stuck to their original plan of a 48 hour turnaround.

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com

If all goes well, March features a triple header of launches with launch competitor and arch rival United Launch Alliance (ULA) planning a duo of nighttime blastoffs from their Delta and Atlas rocket families. The exact dates are in flux due to the postponement of the SpaceX Falcon 9. They had been slated for March 17 and 21 respectively.

Since continuing high winds have plagued the space coast region all day today and the weather is forecast to improve significant tomorrow, a two day delay to Thursday seemed rather prudent – solely from a weather standpoint.

“After standing down due to high winds, SpaceX is now targeting Thursday, March 16th for the EchoStar XXIII launch.” SpaceX officials announced via their website and social media.

“The launch window opens at 1:35 am ET and weather conditions are expected to be 90% favorable.”

The two and a half hour launch window closes at 4:05 a.m. EDT.

You can watch the launch live on a SpaceX dedicated webcast starting about 20 minutes prior to the 1:35 a.m. liftoff time.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 1:14 a.m. EDT.

Watch at: SpaceX.com/webcast

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 16 Mar 2017 at 1:35 a.m. Credit: Ken Kremer/Kenkremer.com

The two stage Falcon rocket will deliver the commercial EchoStar 23 telecommunications satellite to a Geostationary Transfer Orbit (GTO) for EchoStar Corporation.

The satellite will be deployed approximately 34 minutes after launch.

The EchoStar 23 launch counts as only the second Falcon 9 ever to blastoff from pad 39A – which SpaceX’s billionaire CEO Elon Musk leased from NASA back in April 2014.

The inaugural Falcon 9 blastoff successfully took place last month on Feb. 19, as I reported here.

The nighttime lunge to space should offer spectacular viewing. But unlike most recent SpaceX missions, the first stage will not be recovered via a pinpoint propulsive landing either on land or on a barge at sea.

Because of the satellite delivery to GTO, there are insufficient fuel reserves to carry out the booster landing.

“SpaceX will not attempt to land Falcon 9’s first stage after launch due to mission requirements,” officials said.

Therefore the first stage is not outfitted with either landing legs or grid fins to maneuver it back to a touchdown.

However, SpaceX has announced that this Falcon 9 will be the last expendable first stage.

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com

Musk hopes to dramatically cut the cost of access to space by recovering and recycling the boosters for reuse with a new paying customer.

Indeed the SES-10 payload is already slated to fly on the first ‘flight proven’ rocket sometime in the next few weeks.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer