NASA Tribute Exhibit Honors Fallen Apollo 1 Crew 50 Years After Tragedy

The new tribute to Apollo 1 at NASA’s Kennedy Space Center was opened during a dedication ceremony on Jan. 27, 2017, 50 years after the crew was lost - with a keynote speech by Kennedy Space Center Director and former astronaut Bob Cabana. The entrance to the Apollo 1 tribute shows the three astronauts who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. The astronauts are, from left, Gus Grissom, Ed White II and Roger Chaffee. Credit: Ken Kremer/kenkremer.com
The new tribute to Apollo 1 at NASA’s Kennedy Space Center was opened during a dedication ceremony on Jan. 27, 2017, 50 years after the crew was lost – with a keynote speech by Kennedy Space Center Director and former astronaut Bob Cabana. The entrance to the Apollo 1 tribute shows the three astronauts who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. The astronauts are, from left, Gus Grissom, Ed White II and Roger Chaffee. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – NASA unveiled a new tribute exhibit honoring three fallen astronaut heroes 50 years to the day of the Apollo 1 tragedy on January 27, 1967 when the three man crew perished in a flash fire on the launch pad during a capsule test that was not considered to be dangerous.

The Apollo 1 prime crew comprising NASA astronauts Gus Grissom, Ed White II and Roger Chaffee were killed during routine practice countdown testing when a fire suddenly erupted inside the cockpit as they were strapped to their seats in their Apollo command module capsule, on a Friday evening at 6:31 p.m. on January 27, 1967.

“It’s been 50 years since the crew of Apollo 1 perished in a fire at the launch pad, but the lives, accomplishments and heroism of the three astronauts are celebrated in a dynamic, new tribute that is part museum, part memorial and part family scrapbook,” says a NASA narrative that aptly describes the exhibit and the memorial ceremony I attended at the Apollo/Saturn V Center at NASA’s Kennedy Space Center in Florida on Friday, Jan. 27, 2017 on behalf of Universe Today.

It was the first disaster with a human crew and the worst day in NASA’s storied history to that point.

The tribute is named called “Ad Astra Per Aspera – A Rough Road Leads to the Stars.”

A new tribute to the crew of Apollo 1, who perished in a fire at the launch pad on Jan. 27, 1967, opened at NASA’s Kennedy Space Center on the 50th anniversary of that fatal day that cost the lives of all three crewmembers. The tribute exhibit at the Apollo/Saturn Center highlights the lives and careers of NASA astronauts Gus Grissom, Ed White II and Roger Chaffee with artifacts and photos. Credit: Ken Kremer/kenkremer.com

At the tribute dedication ceremony Kennedy Space Center Director and former astronaut Bob Cabana said the families of the fallen crew gave their approvals and blessing to the efforts that would at last tell the story of Apollo 1 to all generations – those who recall it and many more to young or not yet born to remember the tragedy of the early days of America’s space program.

“It’s long overdue,” said KSC center director and former astronaut Bob Cabana at the KSC dedication ceremony to family, friends and invited guests colleagues. “I’m proud of the team that created this exhibit.”

“Ultimately, this is a story of hope, because these astronauts were dreaming of the future that is unfolding today,” said Cabana. Generations of people around the world will learn who these brave astronauts were and how their legacies live on through the Apollo successes and beyond.”

The exhibit “showcases clothing, tools and models that define the men as their parents, wives and children saw them as much as how the nation viewed them.”

The main focus was to introduce the astronauts to generations who never met them and may not know much about them or the early space program, says NASA.

“This lets you now meet Gus Grissom, Ed White and Roger Chaffee as members of special families and also as members of our own family,” said NASA’s Luis Berrios, who co-led the tribute design that would eventually involve more than 100 designers, planners and builders to realize.

“You get to know some of the things that they liked to do and were inspired by. You look at the things they did and if anyone does just one of those things, it’s a lifetime accomplishment and they did all of it and more.”

Apollo 1 astronauts Gus Grissom, Ed White II and Roger Chaffee stand near Cape Kennedy’s Launch Complex 34 during mission training in January 1967. On Jan. 27, 1967, the three astronauts were preparing for what was to be the first manned Apollo flight. The astronauts were sitting atop the launch pad for a pre-launch test when a fire broke out in their Apollo capsule and they perished. Credit: NASA

The crew and the Apollo 1 command module were stacked atop the Saturn 1B rocket at Launch Complex 34 on what is now Cape Canaveral Air Force Station in Florida.

During the “plugs out” test the Saturn 1B rocket was not fueled. But the fatal flaw was the atmosphere of pure oxygen for the astronauts to breath inside the sealed Apollo 1 command module which was pressurized to 16.7 psi.

The three-part hatch that was in place on the Apollo 1 spacecraft is shown in a tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. This is the first time any part of the Apollo 1 spacecraft has been displayed publicly and is part of the tribute exhibit at NASA’s Kennedy Space Center, Florida. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon. Credit: Ken Kremer/kenkremer.com

Another significantly contributing fatal flaw was the inward opening three layered hatch that took some 90 seconds to open under the best of conditions.

After working all afternoon through the practice countdown and encountering numerous problems, something went terribly awry. Without warning a flash fire erupted in the cockpit filled with 100 percent oxygen and swiftly spread uncontrollably creating huge flames licking up the side of the capsule, acrid smoke and a poisonous atmosphere that asphyxiated, burned and killed the crew.

With the scorching temperatures spiking and pressures rapidly rising in a closed system, the capsule exploded some 20 seconds after the fire started. And because of the pressure buildup inside with flames licking up the sides and the toxic atmosphere generated from burning materials, the crew succumbed and could not turn the latch to pull open the hatch against the pressure.

The pad crew tried bravely in vain to save them, fighting heavy smoke and fire and fearing that the attached launch abort system on top of the capsule would ignite and kill them all too.

An investigation would determine that the fire was likely caused by a spark from frayed wiring, perhaps originating under Grissom’s seat.

“An electrical short circuit inside the Apollo Command Module ignited the pure oxygen environment and within a matter of seconds all three Apollo 1 crewmembers perished,” NASA concluded.

NASA and contractor North American Aviation completely redesigned the capsule with major engineering changes including an atmosphere of 60 percent oxygen and 40 percent nitrogen at 5 psi blower pressure, new hatch that could open outwards in 5 seconds, removing flammable materials among many others that would make the Apollo spacecraft much safer for the upcoming journeys to the moon.

The multi-layed hatch serves as the centerpiece of the tribute exhibit. No piece of Apollo 1 has ever before been put on public display. Alongside the old hatch, the new hatch is displayed that was used on all the remaining Apollo missions.

The three-part hatch that was in place on the Apollo 1 spacecraft is shown in a tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. This is the first time any part of the Apollo 1 spacecraft has been displayed publicly and is part of the tribute exhibit at NASA’s Kennedy Space Center, Florida. A version of the hatch after it was redesigned is also showcased (right) as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon. Credit: Ken Kremer/kenkremer.com

Display cases highlights the lives and careers of the three astronauts in these NASA descriptions.

Gus Grissom was “one of NASA’s Original Seven astronauts who flew the second Mercury mission, a hunting jacket and a pair of ski boots are on display, along with a small model of the Mercury spacecraft and a model of an F-86 Sabre jet like the one he flew in the Korean War. A slide rule and engineering drafts typify his dedication to detail.”

“The small handheld maneuvering thruster that Ed White II used to steer himself outside his Gemini capsule during the first American spacewalk features prominently in the display case for the West Point graduate whose athletic prowess nearly equaled his flying acumen. An electric drill stands alongside the “zip gun,” as he called the thruster.”

“It was great to juxtaposition it with a drill which was also a tool that Ed loved to use,” Berrios said. “He had a tremendous passion for making things for his family.”

“Roger Chaffee, for whom Apollo 1 would have been his first mission into space, was an esteemed Naval aviator who became a test pilot in his drive to qualify as an astronaut later. Displayed are board games he played with his wife and kids on rare evenings free of training.”

Grissom, White and Chaffee composed NASA’s first three person crew following the one man Mercury program and two man Gemini program, that had just concluded in November 1966 with Gemini 12.

The trio had been scheduled to blastoff on February 21, 1967 on a 14 day long mission in Earth orbit to thoroughly check out the Apollo command and service modules.

Apollo 1 was to be the first launch in NASA’s Apollo moon landing program initiated by President John F. Kennedy in 1961.

Apollo 1 was planned to pave the way to the Moon so that succeeding missions would eventually “land a man on the Moon and return him safely to Earth before this decade is out” as Kennedy eloquently challenged the nation to do.

Legendary Gemini and Apollo astronaut General Thomas Stafford speaks at dedication of new tribute exhibit at NASA’s Kennedy Space Center about the heroic Apollo 1 crew and their contributions to getting us to the Moon on the 50th anniversary of their deaths in the flash fire on Jan. 27, 1967. Stafford was the backup commander of Apollo 1. Credit: Ken Kremer/kenkremer.com

I remember seeing the first news flashes about the Apollo 1 fire on the TV as a child, as it unfolded on the then big three networks. It is indelibly marked in my mind. This new exhibit truly tells the story of these astronaut heroes vividly to those with distant memories and those with little or no knowledge of Apollo 1.

Exit walkway passing through misty projection of Apollo 1 mission patch and crossing over to mock capsule and crew of Grissom, White and Chaffee seated in Apollo 1 Command Module. Family member quotes at left. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Boeing Unveils Blue Spacesuits for Starliner Crew Capsule

Chris Ferguson, Boeing director of Starliner Crew and Mission Systems and a former NASA astronaut and Space Shuttle commander wears the brand new spacesuit from Boeing and David Clark that crews will wear on Starliner missions to the ISS. Credit: Boeing
Chris Ferguson, Boeing director of Starliner Crew and Mission Systems and a former NASA astronaut and Space Shuttle commander wears the brand new spacesuit from Boeing and David Clark that crews will wear on Starliner missions to the ISS. Credit: Boeing

Boeing has unveiled the advanced new lightweight spacesuits that astronauts will sport as passengers aboard the company’s CST-100 Starliner space taxi during commercial taxi journey’s to and from and the International Space Station (ISS) and other low Earth orbit destinations.

The signature ‘Boeing Blue’ spacesuits will be much lighter, as well as more flexible and comfortable compared to earlier generations of spacesuits worn by America’s astronauts over more than five decades of human spaceflight, starting with the Mercury capsule to the latest gear worn by Space Shuttle astronauts.

“The suit capitalizes on historical designs, meets NASA requirements for safety and functionality, and introduces cutting-edge innovations,” say NASA officials.

The suits protect the astronauts during both launch and reentry into the Earth’s atmosphere during the return home.

Indeed, Chris Ferguson, a former NASA Space Shuttle Commander who now works for Boeing as a Starliner program director, helped reveal the ‘Boeing Blue’ spacesuits during a Facebook live event, where he modeled the new suit.

“We slogged through some of the real engineering challenges and now we are getting to the point where those challenges are largely behind us and it’s time to get on to the rubber meeting the road,” Ferguson said.

The suits offer superior functionality, comfort and protection for astronauts who will don them when crewed Starliner flights to the space station begin as soon as next year.

Astronaut Eric Boe evaluates Boeing Starliner spacesuit in mockup of spacecraft cockpit. Credits: Boeing

At roughly half the weight (about 10 pounds vs. 20 pounds) compared to the launch-and-entry suits worn by space shuttle astronauts, crews look forward to wearing the ‘Boeing Blue’ suits.

“Spacesuits have come in different sizes and shapes and designs, and I think this fits the Boeing model, fits the Boeing vehicle,” said Chris Ferguson.

Among the advances cited are:

• Lighter and more flexible through use of advanced materials and new joint patterns
• Helmet and visor incorporated into the suit instead of detachable. The suit’s hood-like soft helmet sports a wide polycarbonate visor to give Starliner passengers better peripheral vision throughout their ride to and from space.
• A communications headset within the helmet also helps connect astronauts to ground and space crews
• Touchscreen-sensitive gloves that allow astronauts to interact with the capsule’s tablets screens overhead
• Vents that allow astronauts to be cooler, but can still pressurize the suit immediately
• Breathable, slip resistant boots
• Zippers in the torso area will make it easier for astronauts to comfortably transition from sitting to standing
• Innovative layers will keep astronauts cooler

“The most important part is that the suit will keep you alive,” astronaut Eric Boe said, in a statement. “It is a lot lighter, more form-fitting and it’s simpler, which is always a good thing. Complicated systems have more ways they can break, so simple is better on something like this.”

The astronauts help the designers to perfect the suits very practically by wearing them inside Starliner mock-ups, moving around to accomplish tasks, reaching for the tablets screens, and climbing in and out of the capsule repeatedly, says Boe “so they can establish the best ways for astronauts to work inside the spacecraft’s confines.”

Astronaut Sunni Williams puts on the communications carrier of Boeing’s new Starliner spacesuit. Credits: Boeing

“The spacesuit acts as the emergency backup to the spacecraft’s redundant life support systems,” said Richard Watson, subsystem manager for spacesuits for NASA’s Commercial Crew Program.

“If everything goes perfectly on a mission, then you don’t need a spacesuit. It’s like having a fire extinguisher close by in the cockpit. You need it to be effective if it is needed.”

Boeing graphic of Starliner spacesuit features. Credit: NASA/Boeing

Boe is one of four NASA astronauts that form the core cadre of astronauts training for the initial flight tests aboard either the Boeing Starliner or SpaceX Crew Dragon now under development as part of NASA’s Commercial Crew program.

The inaugural flight tests are slated to begin in 2018 under contract to NASA.

The procedure on launch day will be similar to earlier manned launches. For Starliner, however, the capsule will launch atop a United Launch Alliance Atlas V rocket – currently being man-rated.

Fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket carrying the EchoStar XIX satellite from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Note recently installed crew access tower and arm to be used for launches of Boeing Starliner crew spacecraft. Credit: Ken Kremer/kenkremer.com

Astronauts will don the new ‘Boeing Blue’ suit in the historic Crew Quarters. The will ride out to the rocket inside an astrovan. After reaching Space Launch Complex 41, they will take the elevator up, stride across the recently installed Crew Access Arm and board Starliner as it stands atop a United Launch Alliance Atlas V rocket.

The first test flight will carry a crew of two. Soon thereafter the crew size will grow to four when regular crew rotation flights to the ISS starting as soon as 2019.

“To me, it’s a very tangible sign that we are really moving forward and we are a lot closer than we’ve been,” Ferguson said. “The next time we pull all this together, it might be when astronauts are climbing into the actual spacecraft.”

Boeing is currently manufacturing the Starliner spacecraft at the company’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida.

Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

A crane lifts the Crew Access Arm and White Room for Boeing’s CST-100 Starliner spacecraft for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016. Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com

NASA Webb Telescope Resumes Rigorous Vibration Qualification Tests

NASA engineers and technicians position the James Webb Space Telescope (inside a large tent) onto the shaker table used for vibration testing. Credits: NASA/Chris Gunn
NASA engineers and technicians position the James Webb Space Telescope (inside a large tent) onto the shaker table used for vibration testing. Credits: NASA/Chris Gunn

Engineers have resumed a series of critical and rigorous vibration qualification tests on NASA’s mammoth James Webb Space Telescope (JWST) at NASA’s Goddard Space Flight Center, in Greenbelt, Maryland to confirm its safety, integrity and readiness for the unforgiving environment of space flight, after pausing due to a testing ‘anomaly’ detected in early December 2016.

The vibration tests are conducted by the team on a shaker table at Goddard to ensure Webb’s worthiness and that it will survive the rough and rumbling ride experienced during the thunderous rocket launch to the heavens slated for late 2018.

“Testing on the ground is critical to proving a spacecraft is safe to launch,” said Lee Feinberg, an engineer and James Webb Space Telescope Optical Telescope Element Manager at Goddard, in a statement.

“The Webb telescope is the most dynamically complicated article of space hardware that we’ve ever tested.”

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

Testing of the gargantuan Webb Telescope had ground to a halt after a brief scare in early December when technicians initially detected “anomalous readings” that raised potential concerns about the observatories structural integrity partway through a preplanned series of vibration tests.

“On December 3, 2016, vibration testing automatically shut down early due to some sensor readings that exceeded predicted levels,” officials said.

Thereafter, engineers and technicians carried out a new batch of intensive inspections of the observatory’s structure during December.

Shortly before Christmas, NASA announced on Dec. 23 that JWST was deemed “sound” and apparently unscathed after engineers conducted both “visual and ultrasonic examinations” at NASA’s Goddard Space Flight Center in Maryland. Officials said the telescope was found to be safe at this point with “no visible signs of damage.”

As it turned out the culprit of the sensor anomaly was the many “tie-down … restraint mechanisms ” that hold the telescope in place.

“After a thorough investigation, the James Webb Space Telescope team at NASA Goddard determined that the cause was extremely small motions of the numerous tie-downs or “launch restraint mechanisms” that keep one of the telescope’s mirror wings folded-up for launch,” NASA officials explained in a statement.

Furthermore engineers revealingly discovered that “the ground vibration test itself is more severe than the launch vibration environment.”

Technicians work on the James Webb Space Telescope in the massive clean room at NASA’s Goddard Space Flight Center, Greenbelt, Maryland, on Nov. 2, 2016, as the completed golden primary mirror and observatory structure stands gloriously vertical on a work stand, reflecting incoming light from the area and observation deck. Credit: Ken Kremer/kenkremer.com

NASA reported today (Jan. 25) that the testing resumed last week at the point where it had been paused. Furthermore the testing was completed along the first of three axis.

“In-depth analysis of the test sensor data and detailed computer simulations confirmed that the input vibration was strong enough and the resonance of the telescope high enough at specific vibration frequencies to generate these tiny motions. Now that we understand how it happened, we have implemented changes to the test profile to prevent it from happening again,” explained Feinberg.

“We have learned valuable lessons that will be applied to the final pre-launch tests of Webb at the observatory level once it is fully assembled in 2018. Fortunately, by learning these lessons early, we’ve been able to add diagnostic tests that let us show how the ground vibration test itself is more severe than the launch vibration environment in a way that can give us confidence that the launch itself will be fully successful.”

The next step is to resume and complete shaking the telescope in the other two axis, or “two directions to show that it can withstand vibrations in all three dimensions.”

“This was a great team effort between the NASA Goddard team, Northrop Grumman, Orbital ATK, Ball Aerospace, the European Space Agency, and Arianespace,” Feinberg said. “We can now proceed with the rest of the planned tests of the telescope and instruments.”

NASA’s James Webb Space Telescope is the most powerful space telescope ever built and is the scientific successor to the phenomenally successful Hubble Space Telescope (HST). The mammoth 6.5 meter diameter primary mirror has enough light gathering capability to scan back over 13.5 billion years and see the formation of the first stars and galaxies in the early universe.

The Webb telescope will launch on an ESA Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.

But Webb and its 18 segment “golden” primary mirror have to be carefully folded up to fit inside the nosecone of the Ariane V booster.

“Due to its immense size, Webb has to be folded-up for launch and then unfolded in space. Prior generations of telescopes relied on rigid, non-moving structures for their stability. Because our mirror is larger than the rocket fairing we needed structures folded for launch and moved once we’re out of Earth’s atmosphere. Webb is the first time we’re building for both stability and mobility.” Feinberg said.

“This means that JWST testing is very unique, complex, and challenging.”

View showing actual flight structure of mirror backplane unit for NASA’s James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration. JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com

The environmental testing is being done at Goddard before shipping the huge structure to NASA’s Johnson Space Center in February 2017 for further ultra low temperature testing in the cryovac thermal vacuum chamber.

The 6.5 meter diameter ‘golden’ primary mirror is comprised of 18 hexagonal segments – looking honeycomb-like in appearance.

And it’s just mesmerizing to gaze at – as I had the opportunity to do on a few occasions at Goddard this past year – standing vertically in November and seated horizontally in May.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.

All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

Gold coated primary mirrors newly exposed on spacecraft structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms. Credit: Ken Kremer/kenkremer.com

Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

James Webb Space Telescope. Image credit: NASA/JPL

New Age in Weather Forecasting Begins with Spectacular 1st Images from NASA/NOAA GOES-16 Observatory

GOES-16 (previously known as GOES-R) captured this view of the moon as it looked across the surface of the Earth on January 15, 2017. Like earlier GOES satellites, GOES-16 will use the moon for calibration. Credit: NOAA/NASA
GOES-16 (previously known as GOES-R) captured this view of the moon as it looked across the surface of the Earth on January 15, 2017. Like earlier GOES satellites, GOES-16 will use the moon for calibration. Credit: NOAA/NASA

KENNEDY SPACE CENTER, FL – A new age has begun in the nations weather forecasting capabilities with the release today (Jan. 23) of the spectacular first images gathered by the recently launched NASA/NOAA GOES-16 observatory.

The highly advanced Geostationary Operational Environmental Satellite-16 (GOES-16) weather observatory lifted off two months ago atop a ULA Atlas V rocket on Nov. 19, 2016 from Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station, Florida.

GOES-16 (formerly known as GOES-R through the launch) is the first in a new series of revolutionary NASA/NOAA geostationary weather satellites that entails the first significant instrument upgrade to US weather forecasting capabilities in more than two decades.

“It will be like high-definition from the heavens,” says NOAA.

“Today’s release of the first images from #GOES16 signals the start of a new age in satellite weather observation!!!”

Thus the newly obtained and published imagery has been anxiously awaited by scientists, meteorologists and ordinary weather enthusiasts.

“This is such an exciting day for NOAA! One of our GOES-16 scientists compared this to seeing a newborn baby’s first pictures — it’s that exciting for us,” said Stephen Volz Ph.D. director of NOAA’s Satellite and Information Service, in a statement.

“These images come from the most sophisticated technology ever flown in space to predict severe weather on Earth. The fantastically rich images provide us with our first glimpse of the impact GOES-16 will have on developing life-saving forecasts.”

This image clearly shows the significant storm system that crossed North America that caused freezing and ice that resulted in dangerous conditions across the United States on January 15, 2017 resulting in loss of life. Credit: NOAA/NASA

An especially eye-popping image taken by GOES -16 from its equatorial vantage point situated in geostationary orbit 22,300 miles (35,800 kilometers) above Earth and published today, shows both the Earth and the Moon together – as the lead image here.

The Earth/Moon combo shot is not only fantastically pleasing to the eye, but also serves a significant scientific purpose.

“Like earlier GOES satellites, GOES-16 will use the moon for calibration,” say NOAA officials.

“GOES-16 will boost the nation’s weather observation network and NOAA’s prediction capabilities, leading to more accurate and timely forecasts, watches and warnings.”

GOES-16 is the most advanced and powerful weather observatory ever built and will bring about a ‘quantum leap’ in weather forecasting.

“Seeing these first images from GOES-16 is a foundational moment for the team of scientists and engineers who worked to bring the satellite to launch and are now poised to explore new weather forecasting possibilities with this data and imagery,” said Volz.

“The incredibly sharp images are everything we hoped for based on our tests before launch. We look forward to exploiting these new images, along with our partners in the meteorology community, to make the most of this fantastic new satellite.”

It’s dramatic new imagery will show the weather in real time enabling critical life and property forecasting, help pinpoint evacuation zones and also save people’s lives in impacted areas of severe weather including hurricanes and tornadoes.

And the huge satellite can’t come online soon enough, as demonstrated by the severe winter weather and tornadoes that just wreaked havoc and death in various regions of the US.

Another breathtaking image product (seen below) produced by the GOES-16 Advanced Baseline Imager (ABI) instrument, built by Harris Corporation, shows a full-disc view of the Western Hemisphere in high detail — at four times the image resolution of existing GOES spacecraft.

This composite color full-disk visible image shows North and South America and was taken on January 15, 2017. It was created using several of the 16 spectral channels available on the GOES-16 Advanced Baseline Imager (ABI) instrument. Credit: NOAA/NASA

The 11,000 pound satellite was built by prime contractor Lockheed Martin and is the first of a quartet of four identical satellites – comprising GOES-R, S, T, and U – at an overall cost of about $11 Billion. This will keep the GOES satellite system operational through 2036.

This next generation of GOES satellites will replace the currently operating GOES East and GOES West satellites.

NOAA will soon decide whether GOES-16 will replace either the East or West satellites. A decision from NOAA is expected in May. GOES-16 will be operational by November 2017 as either the GOES-East or GOES-West satellite. Of course everyone wants it first.

The next satellite is nearing assembly completion and will undergo about a year of rigorous environmental and acoustic testing before launch. It will go to whichever slot was not selected this year.

This 16-panel image shows the continental United States in the two visible, four near-infrared and 10 infrared channels on the Advanced Baseline Imager (ABI). These channels help forecasters distinguish between differences in the atmosphere like clouds, water vapor, smoke, ice and volcanic ash. Credit: NOAA/NASA

The six instrument science suite includes the Advanced Baseline Imager (ABI) built by Harris Corporation, the Geostationary Lightning Mapper (GLM) built by Lockheed Martin, Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS), and the Magnetometer (MAG).

ABI is the primary instrument and will collect 3 times more spectral data with 4 times greater resolution and scans 5 times faster than ever before – via the primary Advanced Baseline Imager (ABI) instrument – compared to the current GOES satellites.

Northeast Coast and New York Metropolitan region. On January 15, 2017 severe weather moved across the central United States before passing through the Northeast on the 16th and 17th where it resulted in wet and wintry weather for travelers across the region. Credit: NOAA/NASA

“The higher resolution will allow forecasters to pinpoint the location of severe weather with greater accuracy. GOES-16 can provide a full image of Earth every 15 minutes and one of the continental U.S. every five minutes, and scans the Earth at five times the speed of NOAA’s current GOES imagers.”

The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of successful launch on a ULA Atlas V on Nov. 19, 2016. GOES-R/GOES-16 will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com

GOES-R launched on the massively powerful Atlas V 541 configuration vehicle, augmented by four solid rocket boosters on the first stage. As I witnessed and reported here.

Blastoff of revolutionary NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) on ULA Atlas V from Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station, Florida on Nov. 19, 2016. GOES-R will deliver a quantum leap in America’s weather forecasting capabilities. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Florida and The Caribbean. In May 2017, NOAA will announce the planned location for GOES-16. By November 2017, GOES-16 will be operational as either the GOES-East or GOES-West satellite. At its current check out location the satellite captured this image of the Caribbean and Florida. Here the satellite captures the shallows waters of the Caribbean. Credit: NOAA/NASA

Vital Air Force Missile Reconnaissance Satellite SBIRS GEO 3 Launched – Photo/Video Gallery

United Launch Alliance (ULA) Atlas V rocket carrying SBIRS GEO Flight 3 early missile warning satellite for USAF lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
United Launch Alliance (ULA) Atlas V rocket carrying SBIRS GEO Flight 3 early missile warning satellite for USAF lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – A vital missile reconnaissance satellite for the U.S. Force soared to space atop an Atlas V rocket from Cape Canaveral at dinnertime Friday night, Jan. 20, 2017.

The United Launch Alliance Atlas V rocket carrying the $1.2 Billion Space Based Infrared System (SBIRS) GEO Flight 3 infrared imaging satellite lifted off at 7:42 p.m. ET from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fla.

Check out this expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

Nighttime blastoff of ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile defense satellite to orbit on Jan. 20, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Julian Leek

“GEO Flight 3 delivery and launch marks a significant milestone in fulfilling our commitment to the missile-warning community, missile defense and the intelligence community. It’s an important asset for the warfighter and will be employed for years to come,” says Lt. Gen. Samuel Greaves, SMC commander and Air Force program executive officer for space, in a statement.

The Space Based Infrared System is designed to provide global, persistent, infrared surveillance capabilities to meet 21st century demands in four national security mission areas: missile warning, missile defense, technical intelligence and battlespace awareness.

“The hard work and dedication of the launch team has absolutely paid off,” Col. Dennis Bythewood, director of the Remote Sensing Directorate said in a statement.

“Today’s launch of GEO Flight 3 culminates years of preparation by a broad team of government and industry professionals.”

ULA Atlas V launch of USAF SBIRS GEO 3 missile defense satellite on Jan. 20, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Joe Sekora

The SBIRS GEO Flight 3 missile defense observatory built for the USAF will detect and track the infrared signatures of incoming enemy missiles twice as fast as the prior generation of satellites and is vital to America’s national security.

United Launch Alliance (ULA) Atlas V rocket carrying SBIRS GEO Flight 3 missile detection satellite for USAF lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

SBIRS GEO Flight 3 was launched to geosynchronous transfer orbit to an altitude approx 22,000 miles (36,000 kilometers) above Earth.

The Atlas V was launched southeast at an inclination of 23.29 degrees. SBIRS GEO Flight 3 separated from the 2nd stage as planned 43 minutes after liftoff.

Following separation, the spacecraft began a series of orbital maneuvers to propel it to a geosynchronous earth orbit. Once in its final orbit, engineers will deploy the satellite’s solar arrays and antennas. The engineers will then complete checkout and tests in preparation for operational use, USAF officials explained.

Watch these eyepopping launch videos as the Atlas V rocket thunders to space – showing different perspectives of the blastoff from remote cameras ringing the pad and from the media’s launch viewing site on Cape Canaveral Air Force Station.

Video Caption: ULA Atlas 5 launch of the SBIRS GEO Flight 3 satellite from Pad 41 of the Cape Canaveral Air Force Station on January 20, 2017. Credit: Jeff Seibert

Video Caption: Launch of SBIRS GEO Flight 3 early missile warning satellite for USAF on a United Launch Alliance (ULA) Atlas V rocket from SLC-41 on Cape Canaveral Air Force Station, Fl., at 7:42 p.m. ET on Jan. 20, 2017 – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

Lockheed Martin is the prime contractor, with Northrop Grumman as the payload integrator.

The SBIRS team is led by the Remote Sensing Systems Directorate at the U.S. Air Force Space and Missile Systems Center. Air Force Space Command operates the SBIRS system.

United Launch Alliance (ULA) Atlas V rocket carrying SBIRS GEO Flight 3 early missile warning satellite for USAF lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
ULA Atlas V rocket carrying SBIRS GEO Flight 3 missile tracking observatory lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile warning satellite awaits blastoff from pad 41 at Cape Canaveral Air Force Station in Florida on Jan. 20 , 2017. Credit: Dawn Taylor
A United Launch Alliance (ULA) Atlas V rocket carrying SBIRS GEO Flight 3 satellite lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile warning satellite awaits blastoff from pad 41 at Cape Canaveral Air Force Station in Florida on Jan. 20 , 2017. Credit: Ken Kremer/kenkremer.com
ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile defense satellite streaks to orbit on Jan. 20, 2017 after nighttime blastoff at 7:42 p.m. ET from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Julian Leek
Banner announcing imminent launch of ULA Atlas V and USAF SBIRS GEO 3 from CCAFS on Jan. 20, 2017. Credit: Dawn Taylor
Launch of Atlas V and USAF SBIRS GEO 3 missile defense satellite from CCAFS on Jan. 20, 2017 as seen from Titusville, Fl neighborhood. Credit: Melissa Bayles
ULA Atlas V rocket stands erect alongside newly built crew access tower at Cape Canaveral Air Force Station’s Space Launch Complex-41 ahead of Jan. 19, 2017 blastoff. Credit: Ken Kremer/kenkremer.com
Launch of Atlas V and USAF SBIRS GEO 3 missile defense satellite from CCAFS on Jan. 20, 2017 as seen from Titusville, Fl neighborhood. Credit: Melissa Bayles
Pad 41 gets hosed down about 1 hour post launch of ULA Atlas V rocket delivering USAF SBIRS GEO 3 missile defense satellite to orbit on Jan. 20, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Julian Leek
Atlas V/SBIRS GEO 3 awaits liftoff from pad 41 on Jan. 20, 2017 at Cape Canaveral Air Force Station in Florida. Credit: Lane Hermann

USAF Missile Defense SBIRS Observatory Streaks to Orbit during Spectacular Evening Blastoff

ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile defense satellite streaks to orbit on Jan. 20, 2017 after nighttime blastoff at 7:42 p.m. ET from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida Credit: Ken Kremer/kenkremer.com
ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile defense satellite streaks to orbit on Jan. 20, 2017 after nighttime blastoff at 7:42 p.m. ET from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – A U.S. Air Force missile defense reconnaissance observatory that will track the telltale infrared signatures of incoming enemy missiles and is vital to America’s national security blasted off in spectacular fashion this evening, Jan. 20, 2017, as it streaked to orbit from the Florida Space Coast.

The United Launch Alliance Atlas V rocket carrying the $1.2 Billion Space Based Infrared System (SBIRS) GEO Flight 3 infrared imaging satellite lifted off at 7:42 p.m. ET from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fla. – marking the first US east coast launch of 2017.

The SBIRS GEO Flight 3 was launched to geosynchronous transfer orbit to an altitude approx 22,000 miles (36,000 kilometers) above Earth.

The Atlas V was launched southeast at an inclination of 23.29 degrees. SBIRS GEO Flight 3 separated from the 2nd stage as planned 43 minutes after liftoff.

It is also the first of at least eleven launches of Atlas and Delta rockets by the aerospace firm this year.

The on time launch took place at the opening of the 40 minute launch window and after a 24 hour delay – when the launch was scrubbed yesterday (Jan. 19) after an aircraft flew into the Cape’s restricted airspace and could not be diverted in time before the launch window closed.

ULA also had to address sensor issues with the Atlas rockets RD-180 main engine during Thursday’s countdown.

Due to the scrub, the Atlas liftoff counts as the first launch of the Trump Administration rather the last of the Obama Administration.

With the unpredictable North Korean dictator Kim John Un threatening to launch an upgraded long range intercontinental ballistic missile this year that could potentially strike the United States west coast, SBIRS GEO 3 is more important than ever for our national defense.

ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile defense satellite streaks to orbit on Jan. 20, 2017 after nighttime blastoff at 7:42 p.m. ET from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Julian Leek

The SBIRS GEO Flight 3 is considered to be one of the highest priority military space programs in defense of the homeland.

The Space Based Infrared System is designed to provide global, persistent, infrared surveillance capabilities to meet 21st century demands in four national security mission areas: missile warning, missile defense, technical intelligence and battlespace awareness.

SBIRS will supplement and replace the legacy Defense Support Program (DSP) satellites currently in orbit and features vastly increased early missile detection and warning capabilities.

“ULA is proud to deliver this critical satellite which will improve surveillance capabilities for our national decision makers,” said Laura Maginnis, ULA vice president of Government Satellite Launch, in a statement.

“I can’t think of a better way to kick off the new year.”

A United Launch Alliance (ULA) Atlas V rocket carrying SBIRS GEO Flight 3 satellite lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

ULA is a joint venture of Boeing and Lockheed Martin with 116 successful launches under its belt after today’s liftoff.

The 194-foot-tall commercial Atlas V booster launched in the 401 rocket configuration with approximately 860,000 pounds of sea level first stage thrust powered by the dual nozzle Russian-built RD AMROSS RD-180 engine. There are no thrust augmenting solids attached to the first stage.

The satellite is housed inside a 4-meter diameter large payload fairing (LPF). The Centaur upper stage is powered by the Aerojet Rocketdyne RL10C engine.

Watch this video showing the detailed mission profile:

Video Caption: An Atlas V 401 configuration rocket will deliver the Air Force’s third Space-Based Infrared System (SBIRS) satellite to orbit. SBIRS, considered one of the nation’s highest priority space programs, is designed to provide global, persistent, infrared surveillance capabilities to meet 21st century demands. Credit: ULA

This mission marks the 34th Atlas V mission in the 401 configuration.

“The Atlas V 401 configuration has become the workhorse of the Atlas V fleet, delivering half of all Atlas V missions to date” said Maginnis.

“ULA understands that even with the most reliable launch vehicles, our sustained mission success is only made possible with seamless integration between our customer and our world class ULA team.”

ULA Atlas V rocket carrying SBIRS GEO Flight 3 missile tracking observatory lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

The two prior SBIRS GEO missions also launched on the ULA Atlas V 401 rocket.

The SBIRS team is led by the Remote Sensing Systems Directorate at the U.S. Air Force Space and Missile Systems Center. Lockheed Martin is the prime contractor, with Northrop Grumman as the payload integrator. Air Force Space Command operates the SBIRS system, according to a ULA description.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile warning satellite is poised for blastoff from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Jan. 20, 2017. Credit: Ken Kremer/kenkremer.com
Artwork for ULA Atlas V launch of SBIRS GEO Flight 3 mission on Jan. 19, 2017 from Canaveral Air Force Station, Florida. Credit: ULA

Gene Cernan, Last Man on the Moon, Honored at Kennedy Space Center Visitor Complex

Remembrance Ceremony honoring the life of astronaut Eugene Cernan, last Man to walk on the Moon during NASA’s Apollo 17 moon landing mission in Dec. 1972, was held at the Kennedy Space Center Visitor Complex, Florida, on Jan. 18, 2017. Cernan passed away on Jan. 16, 2017. Credit: Ken Kremer/kenkremer.com
Remembrance Ceremony honoring the life of astronaut Eugene Cernan, last Man to walk on the Moon during NASA’s Apollo 17 moon landing mission in Dec. 1972, was held at the Kennedy Space Center Visitor Complex, Florida, on Jan. 18, 2017. Cernan passed away on Jan. 16, 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Gene Cernan, the last man to walk on the Moon, and one of America’s most famous and renowned astronauts, was honored in a ceremony held at Kennedy Space Center Visitor Complex, Florida, on Jan. 18. [Story/photos expanded]

Cernan passed away earlier this week on Monday, January 16, 2017 at age 82, after a long illness, surrounded by his family.

Cernan, a naval aviator, flew on three groundbreaking missions for NASA during the Gemini and Apollo programs that paved the way for America’s and humanity’s first moon landing missions.

His trio of historic space flights ultimately culminated with Cernan stepping foot on the moon in Dec. 1972 during the Apollo 17 mission- NASA final moon landing of the Apollo era.

No human has set foot on the Moon since Apollo 17 – an enduring disappointment to Cernan and all space fans worldwide.

Cernan also flew on the Gemini 9 and Apollo 10 missions, prior to Apollo 17.

The Gemini 9 capsule is on display at the KSC Visitor Complex. Cernan was the second NASA astronaut to perform an EVA – during Gemini 9.

The Cernan remembrance ceremony was held at the U.S. Astronaut Hall of Fame inside the newly opened ‘Heroes & Legends’ exhibit at the KSC Visitor Complex – two days after Cernan died. It included remarks from two of his fellow NASA astronauts from the Space Shuttle era, Kennedy Space Center Director Bob Cabana, and space shuttle astronaut Jon McBride, as well as Therrin Protze, chief operating officer, Kennedy Space Center Visitor Complex.

Robert Cabana, director of NASA’s Kennedy Space Center and space shuttle astronaut Jon McBride, following remarks at the Jan 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring the life of astronaut Eugene Cernan. Credit: Julian Leek

A NASA portrait and floral wreath were on display for visitors during the ceremony inside and outside of the ‘Heroes and Legends’ exhibit.

“He was an advocate for the space program and hero that will be greatly missed,” said Kennedy Space Center Director Bob Cabana during the ceremony inside.

“I don’t believe that Gene is going to be the last man on the moon. And one of the things that he was extremely passionate about was our exploring beyond our own planet, and developing that capability that would allow us to go back to the moon and go beyond.

“I feel badly that he wasn’t able to stay alive long enough to actually see this come to fruition,” Cabana said.

Portrait of NASA astronaut Gene Cernan and floral wreath displayed during the Jan. 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring his life as the last Man to walk on the Moon. Credit: Ken Kremer/kenkremer.com

NASA is now developing the SLS heavy lift rocket and Orion deep space capsule to send our astronauts to the Moon, Mars and Beyond. The maiden launch of SLS-1 on the uncrewed EM-1 mission to the Moon is slated for Fall 2018.

“We are saddened of the loss of our American hero, Astronaut Gene Cernan. As the last man to place footsteps on the surface of the moon, he was a truly inspiring icon who challenged the impossible,” said Therrin Protze, chief operating officer of Kennedy Space Center Visitor Complex.

“People throughout generations have been and will forever be inspired by his actions, and the underlying message that what we can achieve is limited only by our imaginations. He will forever be known as ‘The Last Man on the Moon,” and for the extraordinary impact he had on our country and the world.”

Cernan was one of only 12 astronauts to walk on the moon. Neil Armstong and Buzz Aldrin were the first during the Apollo 11 moon landing mission in 1969 that fulfilled President Kohn F. Kennedy’s promise to land on the Moon during the 1960’s.

Launch of Apollo 17 – NASA’s last lunar landing mission – on 7 December 1972 from Launch Complex-39A on the Kennedy Space Center, Florida. Credit: Julian Leek

Cernan retired from NASA and the U.S. Navy in 1976. He continued to advise NASA as a consultant and appeared frequently on TV news programs during NASA’s manned space missions as an popular guest explaining the details of space exploration and why we should explore.

He advocated for NASA, space exploration and science his entire adult life.

The prime crew for the Apollo 17 lunar landing mission are: Commander, Eugene A. Cernan (seated), Command Module pilot Ronald E. Evans (standing on right), and Lunar Module pilot, Harrison H. Schmitt (left). They are photographed with a Lunar Roving Vehicle (LRV) trainer. Cernan and Schmitt used an LRV during their exploration of the Taurus-Littrow landing site. The Apollo 17 Saturn V Moon rocket is in the background. This picture was taken during October 1972 at Launch Complex 39A, Kennedy Space Center (KSC), Florida. Credit: Julian Leek

“As an astronaut, Cernan left an indelible impression on the moon when he scratched his daughter’s initials in the lunar surface alongside the footprints he left as the last human to walk on the moon. Guests of Kennedy Space Center Visitor Complex can learn more about Cernan’s legacy at the new Heroes & Legends exhibit, where his spacewalk outside the actual Gemini IX space capsule is brought to life through holographic imagery.”

Actual Gemini 9 capsule piloted by Gene Cernan with Commander Thomas P. Stafford on a three-day flight in June 1966 on permanent display in the Heroes and Legends exhibit at the Kennedy Space Center Visitor Complex, Florida. Cernan logged more than two hours outside the orbiting capsule, as depicted in description. Credit: Ken Kremer/kenkremer.com

From NASA’s profile page:

“Cernan was born in Chicago on March 14, 1934. He graduated from Proviso Township High School in Maywood, Ill., and received a bachelor of science degree in electrical engineering from Purdue University in 1956. He earned a master of science degree in aeronautical engineering from the U.S. Naval Postgraduate School in Monterey, Calif.

Cernan is survived by his wife, Jan Nanna Cernan, his daughter and son-in-law, Tracy Cernan Woolie and Marion Woolie, step-daughters Kelly Nanna Taff and husband, Michael, and Danielle Nanna Ellis and nine grandchildren.”

The following is a statement released by NASA on the behalf of Gene Cernan’s family:

A funeral service for Capt. Eugene A. Cernan, who passed away Monday at the age of 82, will be conducted at 2:30 p.m. CST on Tuesday, Jan. 24, at St. Martin’s Episcopal Church, 717 Sage Road in Houston.

NASA Television will provide pool video coverage of the service.

The family will gather for a private interment at the Texas State Cemetery in Austin at a later date, where full military honors will be rendered.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Grand opening ceremony for the ‘Heroes and Legends’ attraction on Nov. 11, 2016 at the Kennedy Space Center Visitor Complex in Florida and attended by more than 25 veteran and current NASA astronauts. Credit: Ken Kremer/kenkremer.com

Air Force Missile Warning SBIRS GEO 3 Satellite Set for Spectacular Night Liftoff Jan. 19; 1st 2017 Cape Launch-Watch Live

ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile warning satellite is poised for blastoff from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Jan. 19 , 2017. Credit: Ken Kremer/kenkremer.com
ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile warning satellite is poised for blastoff from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Jan. 19 , 2017. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – A U.S. Air Force satellite that will provide vital early warnings on incoming enemy missiles that are critical to the defense of our homeland is set for a spectacular nighttime blastoff on Thursday Jan. 19 from the Florida Space Coast. Update: Launch reset to Jan 20 at 7:42 pm EST

The Atlas V rocket carrying the $1.2 Billion SBIRS GEO Flight 3 infrared imaging satellite counts as the first launch of 2017 by rocket builder United Launch Alliance (ULA) as well as the years first liftoff from Cape Canaveral.

The ULA Atlas V rocket is set for liftoff on Thursday, Jan. 19 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida.

The Space Based Infrared System (SBIRS) satellite will be launched to geosynchronous transfer orbit.

It is the third satellite in this series of infrared surveillance satellites that will provide rapid and accurate warning of attacking enemy strategic missiles via infrared signatures – as well as critical targeting data to US missile defense systems to enable swiftly responding launches that will hopefully destroy the attackers in the battle space arena before impacting US cities, infrastructure and military installations.

USAF SBIRS GEO 3 missile warning satellite under construction by prime contractor Lockheed Martin. Credit: Lockheed Martin

The 20 story tall rocket and payload were rolled out vertically this morning some 1800 feet (600 m) from the Vertical Integration Facility (VIF) processing hangar to pad 41.

With the unpredictable North Korean dictator Kim John Un threatening to launch an upgraded long range intercontinental ballistic missile this year that could potentially strike the United States west coast, SBIRS GEO 3 is more important than ever for our national defense.

The launch window opens at 7:46 p.m. EST (0046 GMT).

The launch window extends for 40 minutes from 7:46-8:26 p.m. EST.

Spectators are flocking into Space Coast area hotels for the super convenient dinnertime blastoff. And they will have a blast ! – if all goes well.

You can watch the Atlas launch live via a ULA webcast. The live launch broadcast will begin about 20 minutes before the planned liftoff at 7:26 p.m. EST here:

http://www.ulalaunch.com/webcast.aspx
www.youtube.com/unitedlaunchalliance and www.ulalaunch.com

The current launch weather forecast for Thursday, Jan. 18, calls for an 80 percent chance of acceptable weather conditions at launch time. The primary concern is for cumulus clouds.

The backup launch opportunity is on Friday.

In case of a scrub for any reason, technical or weather, the chances for a favorable launch drop slightly to 70% GO.

ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile warning satellite is poised for blastoff from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Jan. 19 , 2017. Credit: Julian Leek

“SBIRS, considered one of the nation’s highest priority space programs, is designed to provide global, persistent, infrared surveillance capabilities to meet 21st century demands in four national security mission areas including: missile warning, missile defense, technical intelligence and battlespace awareness.”

The first SBIRS satellite was launched in 2011.

SBIRS GEO 3 will launch southeast at an inclination of 23.29 degrees. It separate from the 2nd stage 43 minutes after liftoff.

ULA has enjoyed a 100% success rate for this 69th Atlas V launch stretching back to the company’s founding back in 2006.

ULA is a joint venture of Boeing and Lockheed Martin with 116 successful launches under its belt.

ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile warning satellite is poised for blastoff from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Jan. 19 , 2017. Credit: Ken Kremer/kenkremer.com

The 194-foot-tall commercial Atlas V booster launched in the 401 rocket configuration with approximately 860,000 pounds of sea level first stage thrust powered by the dual nozzle Russian-built RD AMROSS RD-180 engine. There are no thrust augmenting solids attached to the first stage.

The satellite is housed inside a 4-meter diameter large payload fairing (LPF). The Centaur upper stage is powered by the Aerojet Rocketdyne RL10C engine.

Watch this video showing the detailed mission profile:

Video Caption: An Atlas V 401 configuration rocket will deliver the Air Force’s third Space-Based Infrared System (SBIRS) satellite to orbit. SBIRS, considered one of the nation’s highest priority space programs, is designed to provide global, persistent, infrared surveillance capabilities to meet 21st century demands. Credit: ULA

This mission marks the 34th Atlas V mission in the 401 configuration.

The two prior SBIRS GEO missions also launched on the ULA Atlas V 401 rocket.

Up close look at the payload fairing housing SBIRS GEO 3atop ULA Atlas V rocket set for launch from pad 41 at Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann

The SBIRS team is led by the Remote Sensing Systems Directorate at the U.S. Air Force Space and Missile Systems Center. Lockheed Martin is the prime contractor, with Northrop Grumman as the payload integrator. Air Force Space Command operates the SBIRS system, according to a ULA description.

ULA Atlas V rocket stands erect alongside newly built crew access tower at Cape Canaveral Air Force Station’s Space Launch Complex-41 ahead of Jan. 19, 2017 blastoff. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Mission patch for SBIRS GEO Flight 3. Credit: USAF

………….

Learn more about ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6 & CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Jan. 18/20/21: “ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 Comes Roaring Back to Life with Dramatically Successful Iridium Fleet Launch and Ocean Ship Landing

Picture perfect blastoff of SpaceX Falcon 9 on Jan. 14, 2017, Return to Flight launch from Vandenberg Air Force Base in California carrying fleet of ten advanced Iridium NEXT comsats to low Earth orbit. Credit: SpaceX
Picture perfect blastoff of SpaceX Falcon 9 on Jan. 14, 2017, Return to Flight launch from Vandenberg Air Force Base in California carrying fleet of ten advanced Iridium NEXT comsats to low Earth orbit. Credit: SpaceX

With Billions and Billions of dollars at stake and their reputation riding on the line, SpaceX came roaring back to life by dramatically executing a picture perfect Falcon 9 rocket launch this morning (Jan. 14) that successfully delivered a fleet of ten advanced Iridium NEXT mobile voice and data relay satellites to orbit while simultaneously recovering the first stage on a ship at sea off the west coast of California.

BREAKING NEWS – check back for updates.

The primary goal of SpaceX’s Falcon 9 launch from Space Launch Complex 4E on Vandenberg Air Force Base in California was to deploy the payload of the first ten Iridium Next communication satellites to low Earth orbit on the Iridium-1 mission.

“Thanks @elonmusk – a perfect flight! Loved watching sats deploy with you in the control room,” tweeted Matt Desch, Iridium Communications CEO, soon after receiving full confirmation that all 10 Iridium NEXT satellites were successfully deployed from their second stage satellite dispensers.

“More to go, but now to celebrate!!”

The inaugural ten will serve as the vanguard of a fleet that will eventually comprise 81 satellites.

SpaceX Falcon 9 first stage successfully soft lands on drone ship stationed in the Pacific Ocean off California coast after launching on Jan. 14, 2017, from Vandenberg Air Force Base in California carrying fleet of ten advanced Iridium NEXT comsats to low Earth orbit. Credit: SpaceX

Today’s successful blastoff took place barely four and a half months after another Falcon 9 and its $200 million Israeli commercial payload were suddenly destroyed during a prelaunch fueling test on the Florida Space Coast on Sept. 1, 2016.

Another launch failure would have dealt a devastating blow to confidence in SpaceX’s hard won reputation.

The Sept. 1, 2016 calamity was the second Falcon 9 failure within 15 months time. Both occurred inside the second stage and called into question the rockets reliability.

The 229-foot (70-meter) Falcon 9 rocket was rolled out from its processing hangar to the launch pad and raised vertically yesterday.

Picture perfect blastoff of SpaceX Falcon 9 on Jan. 14, 2017, Return to Flight launch from Vandenberg Air Force Base in California carrying fleet of ten advanced Iridium NEXT comsats to low Earth orbit. Credit: SpaceX

Today’s entire land, landing and satellite deployment event was shown live on a SpaceX hosted webcast. It offered extremely sharp views of Saturdays on time liftoff at 9:54:34 a.m. PST or 12:54:34 p.m. EST, and unbelievably clear images of the first stage descending back to Earth towards a tiny drone ship.

“Overall a wonderfully nominal mission,” gushed the SpaceX commentator during the webcast.

Since the Iridium 1 mission only had an instantaneous launch opportunity precisely at 9:54:34 a.m. PST or 12:54:34 p.m. EST, there was no margin for any technical or weather delays. And none happened. Although an errant boat had to be quickly escorted out of the exclusion zone less than 20 minutes before blastoff.

Confirmation of a successful deployment of all 10 Iridium NEXT satellites came at about T plus 1 hour and 17 minutes after liftoff from Vandenberg.

“So, so excited – finally breathing again!” tweeted Desch.

“Thanks for all the great vibes – I felt it! All 10 sats deployed; good orbit; good telemetry! WOW.”

The mobile relay satellites were delivered into a circular orbit at an altitude of 625 kilometers (388 miles) above Earth.

They were released one at a time from a pair of specially designed satellite dispensers at approximately 100 second intervals.

“It was a clean sweep, 10 for 10,” said SpaceX commentator John Insprucker during the live webcast.

“All the bridge wires show open, and that is a conclusion of the primary mission today, a great one for the first stage, second stage, and the customer’s satellites deployed into a good orbit.”

The Iridium NEXT satellites were built by Thales Alenia and Orbital ATK.

In the final moments before the propulsive landing, you could read the lettering on the “Just Read the Instructions” drone ship as the engine was firing to slow the descent and the landing legs deployed.

Really there was no cutout or loss of signal the whole way down. So the world could watch every key moment as it happened in real time.

The first stage softly landed approx. 8 minutes and 18 seconds after the California liftoff.

“First stage has landed on Just Read the Instructions,” SpaceX tweeted post landing.

This was the first launch by SpaceX since last August from the Florida Space Coast, and it came off without a hitch.

Iridium 1 is the first of seven planned Falcon 9 launches to establish the Iridium NEXT constellation which will eventually consist of 81 advanced satellites.

At least 70 will be launched by SpaceX.

The inaugural launch of the advanced Iridium NEXT satellites will start the process of replacing an aging Iridium fleet in orbit for nearly two decades.

SpaceX Falcon 9 poised for Jan. 14, 2017, Return to Flight launch from Vandenberg Air Force Base in California carrying ten Iridium NEXT comsats to orbit. Credit: SpaceX

This Falcon 9 was been outfitted with four landing lags and grid fins for a controlled landing on the tiny barge prepositioned in the Pacific Ocean several hundred miles off the west coast of California.

SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 arrives at mouth of Port Canaveral, FL on June 2, 2016. Credit: Ken Kremer/kenkremer.com

Watch this space for continuing updates on SpaceX.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium
Mission patch for Iridium-1 mission showing launch of the first 10 Iridium NEXT voice and data relay satellites on SpaceX Falcon 9 from Vandenberg Air Force Base, California, for Iridium Communications, and planned landing of the first stage on a droneship in the Pacific Ocean. Credit: SpaceX/Iridium

SpaceX Set for High Stakes Falcon 9 Blastoff Resumption with Iridium Satellite Fleet on Jan. 14 – Watch Live

SpaceX Falcon 9 poised for Jan. 14, 2017, Return to Flight launch from Vandenberg Air Force Base in California carrying ten Iridium NEXT comsats to orbit. Credit: SpaceX
SpaceX Falcon 9 poised for Jan. 14, 2017, Return to Flight launch from Vandenberg Air Force Base in California carrying ten Iridium NEXT comsats to orbit. Credit: SpaceX

The stakes could almost not be higher for SpaceX as the firm readies their twice failed Falcon 9 rocket for a blastoff resumption on Saturday morning, Jan. 14 carrying the vanguard of the commercial Iridium NEXT satellite fleet to orbit from their California rocket base.

Barely four and a half months after another Falcon 9 and its $200 million Israeli commercial payload were suddenly destroyed during a prelaunch fueling test on the Florida Space Coast on Sept. 1, 2016, SpaceX says all systems are GO for the ‘Return to Flight’ launch of a new Falcon 9 on the Iridium-1 mission from the California coast tomorrow.

Another launch failure would deal a devastating blow to confidence in SpaceX’s hard won reputation – so ‘Failure is Not an Option’ as they say in the space business.

The Sept. 1, 2016 calamity was the second Falcon 9 failure within 15 months time. Both occurred inside the second stage and called into question the rockets reliability.

The 229-foot (70-meter) Falcon 9 rocket has been rolled out from its processing hangar to the launch pad and raised vertically.

“Beautiful picture of our ride to space tomorrow on the launch pad this morning!” tweeted Matt Desch, Iridium Communications CEO, featuring the lead photo in this story.

A license for permission to proceed with the launch originally last Sunday was only granted by the FAA last Friday, Jan. 6. But poor California weather in the form of stormy rains and high winds forced further delays to Saturday.

Today, Friday the 13th, it’s T-Minus 1 Day to the inaugural launch of the advanced Iridium NEXT voice and data relay satellites.

Liftoff of the SpaceX Falcon 9 with the payload of 10 identical next generation Iridium NEXT communications satellites is slated for 9:54:39 am PST or 5:54:39 pm UTC from Space Launch Complex 4E on Vandenberg Air Force Base in California.

The Iridium 1 mission only has an instantaneous launch opportunity precisely at 9:54:34 a.m. PST or 12:54:34 p.m. EST.

You can watch the launch live via a SpaceX webcast starting about 20 minutes prior to the planned liftoff time:

The launch will be broadcast at : http://www.spacex.com/webcast

Weather forecasters currently predict about a 60 percent chance of favorable conditions at launch time.

Sunday, Jan. 15 is available as a back-up launch opportunity in case of a delay for any reason including technical and weather related issues.

The Iridium NEXT payload has been secured to the SpaceX Falcon 9 rocket at T-2 days to launch. Credit: SpaceX/Iridium

“The teams from Iridium, SpaceX and our partners are in the homestretch for the first launch of the Iridium NEXT satellite constellation,” said satellite owner Iridium Communications.

Meanwhile the launch teams have completed the countdown dress rehearsal’ and Launch Readiness Review in anticipation of the morning liftoff.

“Final preparations are being made for tomorrow’s inaugural launch, and with that comes a number of high-stakes verifications, involving all parties. Traditionally referred to as the ‘countdown dress rehearsal’ and ‘Launch Readiness Review’ (LRR), these milestones represent the final hurdles to clearing the path for the January 14th launch.”

“The countdown dress rehearsal and LRR include several prelaunch inspections and quality control measures. These include final clearances for the SpaceX Falcon 9 rocket, Iridium NEXT payload, SpaceX and Iridium® ground infrastructure and associated team member responsibilities.”

Iridium says that every precaution has been taken to ensure a successful launch.

“There are so many variables that need to be considered when finalizing launch preparations, and a slight deviation or unexpected behavior by any of them can jeopardize the launch integrity,” said Iridium COO Scott Smith, in a statement.

“We’ve perfected the necessary procedures, taken every precaution we can imagine, and tomorrow, after what has felt like centuries, we’ll take the first step on a long-awaited journey to revolutionize satellite communications. The success of today’s events has brought us to an apex moment.”

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

Iridium 1 is the first of seven planned Falcon 9 launches to establish the Iridium NEXT constellation which will eventually consist of 81 advanced satellites.

At least 70 will be launched by SpaceX.

The inaugural launch of the advanced Iridium NEXT satellites will start the process of replacing an aging Iridium fleet in orbit for nearly two decades.

Mission patch for Iridium-1 mission showing launch of the first 10 Iridium NEXT voice and data relay satellites on SpaceX Falcon 9 from Vandenberg Air Force Base, California, for Iridium Communications, and planned landing of the first stage on a droneship in the Pacific Ocean. Credit: SpaceX/Iridium

After the Sept .1 calamity SpaceX conducted a four month long investigation seeking to determine the root cause.

And it was just last Friday, Jan. 6, that the FAA finally granted SpaceX a license to launch the ‘Return to Flight’ Falcon 9 mission – as I confirmed with the FAA.

“The FAA accepted the investigation report on the AMOS-6 mishap and has closed the investigation,” FAA spokesman Hank Price confirmed to Universe Today.

“SpaceX applied for a license to launch the Iridium NEXT satellites from Vandenberg Air Force Base. The FAA has granted a license for that purpose.”

The SpaceX investigation report into the total loss of the Falcon 9 rocket and AMOS-6 payload has not been released at this time. The FAA has oversight responsibility to encourage, facilitate, and promote U.S. commercial space transportation and ensure the protection of public safety.

Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

In addition to the launch, SpaceX plans to continue its secondary objective of recovering the Falcon 9 first stage via a propulsive soft landing – as done several times previously and witnessed by this author.

The Iridium-1 mission patch featured herein highlights both the launch and landing objectives.

The goal is to eventually recycle and reuse the first stage – and thereby dramatically slash launch costs per Musk’s vision.

This Falcon 9 has been outfitted with four landing legs and grid fins for a controlled landing on a tiny barge prepositioned in the Pacific Ocean several hundred miles off the west coast of California.

Watch this space for continuing updates on SpaceX.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer