SpaceX Set to Launch Stacked Pair of Electric Propulsion Comsats on June 15 – Watch Live

Predawn view of SpaceX Falcon 9 and Eutelsat/ABS 2A comsats on the morning of launch on June 15, 2016 from Space Launch Complex 40 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 awaits launch of Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 awaits launch of Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — Less than three weeks after their last successful launch and landing attempt involving a Thai payload, SpaceX is set to continue the firms rapid fire pace of satellite deliveries to orbit with a new mission involving a stacked pair of all-electric propulsion commercial comsats that are due to liftoff tomorrow, Wednesday morning.

Working off a hefty back log of lucrative launch contracts SpaceX is targeting Wednesday, June 15 for the launch of the Boeing-built EUTELSAT 117 West B and ABS-2A satellites for Latin American and Asian customers from Cape Canaveral Air Force Station in Florida on an upgraded Falcon 9 rocket.

SpaceX is aiming to launch at the opening of Wednesday’s launch window at 10:29 a.m. EDT (2:29 UTC) which closes at 11:13 a.m. EDT.

Two Boeing built satellies named Eutelsat SA 117 West B and ABS 2A are due to launch on June 15, 2015 atop a SpaceX Falcon 9 rocket  from Cape Canaveral, FL. Credit: SpaceX
Two Boeing built satellies named Eutelsat SA 117 West B and ABS 2A are due to launch on June 15, 2015 atop a SpaceX Falcon 9 rocket from Cape Canaveral, FL. Credit: Boeing

SpaceX most recently scored a stellar success with the double headed launch of Thaicom-8 and sea based first stage landing on May 27 – as I reported here from the Cape.

And Wednesday’s launch comes just 5 days after Saturday’s (June 11) launch from the Cape of the world’s most powerful rocket – the Delta 4 Heavy – which delivered a huge spy satellite to orbit for the NRO in support of US national defense.

Indeed what makes this flight especially interesting is that the satellites are based on Boeing’s 702SP series program and were the first all-electric propulsion satellites when Boeing introduced it in 2012, a Boeing spokesperson Joanna Climer told Universe Today.

The 229 foot-tall (70 meter) Falcon 9 will deliver the roughly 5000 pound commercial telecommunications satellites to a Geostationary Transfer Orbit (GTO) for Eutelsat based in Paris and Asia Broadcast Satellite of Bermuda and Hong Kong.

SpaceX Falcon 9 poised for launch on June 15, 2016 from Cape Canaveral Air Force Station, Fl.   Credit: Julian Leek
SpaceX Falcon 9 poised for launch on June 15, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

For the fourth time in a row, the spent first stage booster will again attempt to propulsively soft land on a platform at sea some nine minutes later.

You can watch the Falcon launch live on Wednesday via a special live webcast directly from SpaceX HQ in Hawthorne, Ca.

The SpaceX webcast will be available starting about 20 minutes before liftoff, at approximately 10:09 a.m. EDT at SpaceX.com/webcast

The two stage Falcon 9 rocket has a 44-minute long launch window that extends until 11:13 a.m. EDT on Wednesday, June 15.

The path to launch was cleared after SpaceX engineers successfully carried out a brief static fire test of the first stages engines with the rocket erect at pad 40. The customary test lasts a few seconds and was conducted headless – without the two satellites bolted on top.

Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL,  atop droneship platform on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

The vertically stacked pair of comsats are “very similar, but not identical,” Climer told me.

They are already encased inside the Falcon 9 payload fairing and stacked in a Boeing-patented and customized interface configuration – as seen in the photo herein.

They were tested at the Boeing Satellite Development Center in El Segundo, Calif., to ensure they could withstand the rigors of the launch environment. They have a design lifetime of a minimum of 15 years.

“They vary slightly in mass, but have similar payload power. The satellite on top weighs less than the one on the bottom.”

The Eutelsat satellite is carrying a hosted payload for the FAA.

They will detached and separate from one another in space. The top satellite will separate first while the pair are still attached to the second stage. Then the bottom satellite will detach completing the spacecraft separation event.

They will be deployed at about 30 minutes and 35 minutes after liftoff.

Eutelsat 117 West B will provide Latin America with video, data, government and mobile services for Paris-based Eutelsat.

ABS 2A will distribute direct-to-home television, mobile and maritime communications services across Russia, India, the Middle East, Africa, Southeast Asia and the Indian Ocean region for Asia Broadcast Satellite of Bermuda and Hong Kong.

The satellites have no chemical thrusters. They will maneuver to their intended orbit entirely using a use xenon-based electric thruster propulsion system known as XIPS.

XIPS stands for xenon-ion propulsion system.

“XIPS uses the impulse generated by a thruster ejecting electrically charged particles at high velocities. XIPS requires only one propellant, xenon, and does not require any chemical propellant to generate thrust,” according to Boeing officials.

“XIPS is used for orbit raising and station-keeping for the 702SP series.”

Diagram of the Xenon propulsion system aboard the Boeing-built EUTELSAT 117 West B and ABS-2A satellites.  Credit: Boeing
Diagram of the Xenon propulsion system aboard the Boeing-built EUTELSAT 117 West B and ABS-2A satellites. Credit: Boeing

The ASDS drone ship landing platform known as “Of Course I Still Love You” or OCISLY was already dispatched several days ago.

It departed Port Canaveral for the landing zone located approximately 420 miles (680 kilometers) off shore and east of Cape Canaveral, Florida surrounded by the vastness of the Atlantic Ocean.

As I witnessed and reported here first hand, the Thaicom-8 first stage arrived on OCISLY six days after the ocean landing, in a tilted configuration. It was craned off the drone ship onto a ground support cradle two days later.

Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Atlas and Delta rockets, SpaceX Falcon 9 rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 14/15: “ULA Delta 4 Heavy spy satellite, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Up close view of landing legs at base of SpaceX Falcon 9 that launched on June 15, 2016 from Cape Canaveral Air Force Station, Fl.   Credit: Lane Hermann
Up close view of landing legs at base of SpaceX Falcon 9 that launched on June 15, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann
Logo for EUTELSAT 117 West B and ABS-2A satellite mission launch. Credit: SpaceX
Logo for EUTELSAT 117 West B and ABS-2A satellite mission launch. Credit: SpaceX

Triple Barreled Powerhouse Plows Dazzling Path to Orbit for Clandestine NRO Eavesdropper – Gallery

United Launch Alliance Delta 4 Heavy rocket blasts off with NROL-37 spy satellite on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
United Launch Alliance Delta 4 Heavy rocket blasts off with NROL-37 spy satellite on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl.   Credit: Ken Kremer/kenkremer.com
United Launch Alliance Delta 4 Heavy rocket blasts off with NROL-37 spy satellite on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — A top secret eavesdropping satellite constructed to support America’s national defense plowed a dazzling path to orbit Saturday riding atop the immense firepower of the mightiest rocket in the world – the triple barreled Delta IV Heavy powerhouse.

Note: Story expanding with more photos/videos !!

A United Launch Alliance (ULA) Delta IV Heavy rocket carrying a classified payload for the National Reconnaissance Office (NRO) soared to space under mostly sunny sunshine state skies from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fla., on June 11 at 1:51 p.m. EDT.

Although the actual launch time was classified, liftoff of the 24 story tall monster rocket came right at the opening of the publicly announced launch window – on its ninth mission overall.

The clandestine surveillance satellite with the nondescript name NROL-37 blazed to space on over two million pounds of liftoff thrust – putting on a stunning display of one of the biggest and baddest launches in many years from the Florida Space Coast.

“We are so honored to deliver the NROL-37 payload to orbit for the National Reconnaissance Office during today’s incredible launch,” said Laura Maginnis, ULA vice president of Custom Services, in a statement.

“This was the ninth time ULA launched the Delta IV Heavy, the most powerful launch vehicle in existence today.”

United Launch Alliance Delta 4 Heavy rocket blasts off with NROL-37 spy satellite on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl.   Credit: Ken Kremer/kenkremer.com
Ignition and liftoff … United Launch Alliance Delta 4 Heavy rocket blasts off with NROL-37 spy satellite on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

To the eyes and ears of myself and many space journalist friends it was among the very the best and loudest blastoffs since the retirement of NASA’s space shuttle orbiter fleet back it 2011.

Spectators ringing the beaches and packing the hotels along the Atlantic Ocean shore and beyond could hear the engines roar reverberating for more than 5 minutes, even after it disappeared far far way in the distant clouds.

Spectators east of the Cape and watching from more than 20 miles away told me they hear the rockets roar and feel the rumbling in their houses and apartments even after it disappeared from sight.

The 235-foot-tall rocket arced over eastwards towards the African continent on its path skywards, providing clues to its intended orbit.

Although a preplanned communications blackout was instituted by ULA and the US military some five minutes after liftoff, it is believed that the Delta IV Heavy successfully delivered NROL-37 to a geostationary orbit and an altitude of approximately 22,300 miles.

Launch of ULA Delta 4 Heavy with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl.   Credit: Julian Leek
Launch of ULA Delta 4 Heavy with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Saturdays successful liftoff came 48 hours after gloomy weather related to Tropical Storm Colin in the so called ‘sunshine state’ forced a postponement for the mammoth satellite valued at over $1.5 Billion.

“The team worked together through many challenges this flow including, overcoming the aftereffects of Tropical Storm Colin,” said Maginnis.

“We are proud of the outstanding teamwork between the ULA, NRO and Air Force partners to ensure mission success for this critical national security asset.”

The most powerful rocket in existence today was required for this launch since the immense payload reportedly weighs in excess of 17,000 pounds.

Double ignition of United Launch Alliance Delta 4 Heavy booster and birds carrying NROL 37 spysat to orbit on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl.   Credit: Ken Kremer/kenkremer.com
Double ignition of United Launch Alliance Delta 4 Heavy booster and birds carrying NROL 37 spysat to orbit on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

NROL-37 is being launched for the NRO on an intelligence gathering mission in support of US national defense.

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

Reports indicate it may be one of the largest satellites ever launched, weigh some 17,000 pounds and may deploy an antenna over 300 feet wide for eavesdropping purposes.

The NRO was formed in response to the Soviet launch of Sputnik and secretly created on September 6, 1961.

“The purpose is overseeing all satellite and overflight reconnaissance projects whether overt or covert. The existence of the organization is no longer classified today, but we’re still pressing to perform the functions necessary to keep American citizens safe,” according to the official NRO website.

Launch of ULA Delta 4 Heavy with NROL-37 spysat on June 11, 2016 from Cape Canaveral Air Force Station, Fl.   Credit: SpaceHeadNews/Lane Hermann
Launch of ULA Delta 4 Heavy with NROL-37 spysat on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: SpaceHeadNews/Lane Hermann

Witnessing a Delta IV Heavy rumble to orbit is a rather rare treat since they launch infrequently.

The last of these to launch from the Cape was for NASA’s inaugural test flight of the Orion crew capsule on the EFT-1 launch in Dec. 5, 2014. No other rocket was powerful enough.

Watch these spectacular launch videos from remote video cameras set at the pad:

Video Caption: NROL-37 launch on ULA Delta IV Heavy from the front pond camera location at CCAFS on June 11, 2016. Credit: Jeff Seibert

The Delta IV Heavy employs three Common Core Boosters (CBCs). Two serve as strap-on liquid rocket boosters (LRBs) to augment the first-stage CBC and 5-m-diameter payload fairing housing the payload.

Each first stage CBC is powered by an upgraded RS-68A engine generating 702,000 pounds of thrust.

The three CBCs generate a combined 2.1 million pounds of thrust fueled by cryogenic liquid oxygen and liquid hydrogen.

A single RL10 liquid hydrogen/liquid oxygen engine powers the Delta second stage.

The secret satellite was enclosed in a 5 meter diameter payload fairing.

Launch of ULA Delta 4 Heavy with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl.   Credit: Julian Leek
Launch of ULA Delta 4 Heavy with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

ULA manufactures the Delta rocket family in Decatur, Alabama. Aerojet Rocketdyne builds the booster and upper stage engines.

ULA Delta 4 Heavy rocket delivers NROL-37 spy satellite to orbit on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl.   Credit: Ken Kremer/kenkremer.com
ULA Delta 4 Heavy rocket delivers NROL-37 spy satellite to orbit on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Atlas and Delta rockets, SpaceX Falcon 9 rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 14/15: “ULA Delta 4 Heavy spy satellite, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Riding a Fountain of Fire the Delta IV Heavy makes ‘First Contact’ with Space - after launching on June 11, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
Riding a Fountain of Fire the Delta IV Heavy makes ‘First Contact’ with Space – after launching on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
ULA Delta 4 Heavy rides to orbit on a massive spongy looking vapor trail after blastoff with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
ULA Delta 4 Heavy rides to orbit on a massive spongy looking vapor trail after blastoff with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Massive vapor trail to orbit after blastoff of ULA Delta 4 Heavy with top secret NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Jillian Laudick
Massive vapor trail to orbit after blastoff of ULA Delta 4 Heavy with top secret NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Jillian Laudick
Delta rocket at dawn at launch pad 37 on launch day June 11, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
Delta rocket at dawn at launch pad 37 on launch day June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Flock of 5 pelicans fly close recon over unveiled Delta 4 Heavy rocket set to launch NROL-37 spy satellite to orbit on June 11, 2016 from Cape Canaveral Air Force Station at Space Launch Complex-37.  Credit: Ken Kremer/kenkremer.com
Flock of 5 pelicans fly close recon over unveiled Delta 4 Heavy rocket set to launch NROL-37 spy satellite to orbit on June 11, 2016 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com

World’s Largest Rocket Ready to Rumble Saturday With Secret NRO Spy Satellite – Watch Live

Flock of 5 pelicans fly close recon over unveiled Delta 4 Heavy rocket set to launch NROL-37 spy satellite to orbit on June 11, 2016 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com
Flock of 5 pelicans fly close recon over unveiled Delta 4 Heavy rocket set to launch NROL-37 spy satellite to orbit on June 11, 2016 from Cape Canaveral Air Force Station at Space Launch Complex-37.  Credit: Ken Kremer/kenkremer.com
Flock of 5 pelicans fly close recon over unveiled Delta 4 Heavy rocket set to launch NROL-37 spy satellite to orbit on June 11, 2016 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — The world’s largest rocket was ready to rumble with a secret spy satellite for the NRO until Thursday’s stormy weather across the so-called ‘sunshine state’ postponed the engines roar by 48 hours to Saturday, June 11.

After a forlorn four hour wait in hopes of a parting of the gloomy gray rainy skies around the Florida Space Coast, launch officials with rocker maker United Launch Alliance (ULA) threw in the towel at 6 p.m. EDT and kept the triple barreled Delta 4 Heavy rocket and its over $1.5 Billion clandestine cargo critical to national defense prudently grounded for a better day.

An early afternoon blastoff of the classified NROL-37 spy satellite for the National Reconnaissance Office (NRO) atop the powerful ULA Delta IV Heavy rocket is now slated for 1:51 p.m. EDT from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Saturday, June 11.

The Delta 4 Heavy carrying NROL-37 clandestine intelligence satellite reflecting in the pond around Space Launch Complex-37 at Cape Canaveral Air Force Station prior to planned launch on June 11, 2016.  Credit: Ken Kremer/kenkremer.com
The Delta 4 Heavy carrying NROL-37 clandestine intelligence satellite reflecting in the pond around Space Launch Complex-37 at Cape Canaveral Air Force Station prior to planned launch on June 11, 2016. Credit: Ken Kremer/kenkremer.com

In an unusual move, the launch time of America’s newest spy satellite on America’s most powerful rocket had been announced in advance of Thursday’s plans by ULA. Liftoff of the NROL-37 surveillance satellite had been slated for 1:59 p.m. June 9. Saturdays launch time has moved up 8 minutes.

The good news is you can watch the now weekend launch live via a ULA broadcast which starts 20 minutes prior to the given launch time at 1:31 p.m. EDT June 11.

Webcast link: http://bit.ly/div_nrol37

Or – if you are free and mobile – you can watch this truly impressive feat with your own eyes as a rarely afforded treat – by making your way to the many excellent viewing locations surrounding Cape Canaveral.

Since this is a national security launch, the exact launch time and launch window are both actually classified. So the liftoff could easily occur later than 1:51 p.m. EDT Saturday.

Although the announced ‘launch period’ on Thursday extended until 6:30 p.m. EDT (2230 GMT), the actual launch window was also classified and fell somewhere within that lengthy launch period.

Due to Thursday’s weather scrub at 6 p.m. , we can now probably conclude that the actual launch window for NROL-37 lasts about 4 hours. So Saturday’s full launch window should run until shortly before 6 p.m. EDT.

Unfortunately the weather outlook has deteriorated from earlier indications and may be as trying as Thursday’s launch attempt.

The official Air Forces prognosis calls for only a 40% chance of favorable weather conditions on June 11.

The primary concerns are for Anvil Clouds, Cumulus Clouds and Lightning – quite similar to those on June 9.

“The trough that lingered in the area all week and caused multiple weather Launch Commit Criteria violations yesterday will continue to plague the area today.

Meteorological models are now showing the boundary still lingering in the area Saturday, and an upper-level short wave will also move through during the launch window,” according to the official Air Force forecast for June 11.

“Showers and thunderstorms are still likely along the trough. Also, anvils from inland thunderstorms will migrate toward the Space Coast.”

In case of a scrub for any reason related to technical or weather issues, ULA has NOT announced the next launch opportunity, a ULA spokesperson told Universe Today.

The Air Force did say that the weather odds rise significantly to an 80% chance of favorable weather conditions in case of a potential 48 hour scrub turnaround for potential on Monday, June 13.

Whenever the 24 story tall rocket soars skyward it will put on a spectacular sky show.

Virtually nothing is known about the clandestine payload, since its mission, purpose and goals are classified top secret – but it is absolutely vital to America’s national security.

The 235-foot-tall rocket will likely launch the classified NROL-37 surveillance satellite into a geosynchronous orbit and an altitude of 22,300 miles.

NROL-37 is being launched for the NRO on an intelligence gathering mission in support of US national defense.

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

Reports indicate it may be one of the largest satellites ever launched, weigh some 17,000 pounds and may deploy an antenna over 300 feet wide for eavesdropping purposes.

Delta 4 Heavy carrying NROL-37 spy satellite awaits launch from Space Launch Complex-37 at Cape Canaveral Air Force.  Credit: Lane Herman
Delta 4 Heavy carrying NROL-37 spy satellite awaits launch from Space Launch Complex-37 at Cape Canaveral Air Force. Credit: Lane Herman

Seeing a Delta 4 Heavy soar to space is a rare treat since they launch infrequently.

The last of these to launch from the Cape was for NASA’s inaugural test flight of the Orion crew capsule on the EFT-1 launch in Dec. 5, 2014. No other rocket was powerful enough.

The Delta IV Heavy employs three Common Core Boosters (CBCs). Two serve as strap-on liquid rocket boosters (LRBs) to augment the first-stage CBC and 5-m-diameter payload fairing housing the payload.

Each first stage CBC is powered by an upgraded RS-68 engine, which generates a combined 2.1 million pounds of thrust fueled by cryogenic liquid oxygen and liquid hydrogen.

Watch this up close video tour of the Delta 4 Heavy on pad 37 after retraction of the Mobile Service Structure from my space friends at USLaunchReport.

Video Caption: ULA is launching the 2.1 million lbs thrust “Heavy” on June 11, 2016 from Pad 37 on CCAFS. Credit: USLaunchReport

The NRO was formed in response to the Soviet launch of Sputnik and secretly created on September 6, 1961.

“The purpose is overseeing all satellite and overflight reconnaissance projects whether overt or covert. The existence of the organization is no longer classified today, but we’re still pressing to perform the functions necessary to keep American citizens safe,” according to the official NRO website.

Credit: Julian Leek
Credit: Julian Leek

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Atlas and Delta rockets, SpaceX Falcon 9 rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 10/11: “ULA Delta 4 Heavy spy satellite, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

The Delta 4 Heavy carrying NROL-37 clandestine intelligence satellite reflecting in the pond around Space Launch Complex-37 at Cape Canaveral Air Force Station prior to planned launch on June 11, 2016.  Credit: Ken Kremer/kenkremer.com
The Delta 4 Heavy carrying NROL-37 clandestine intelligence satellite reflecting in the pond around Space Launch Complex-37 at Cape Canaveral Air Force Station prior to planned launch on June 11, 2016. Credit: Ken Kremer/kenkremer.com
The June 9 launch of the ULA Delta 4 Heavy carrying the classified NROL-37 spy satellite is planned for 1:59 p.m.  EDT.  Broadcast starts at 1:39 p.m. EDT  Watch the live webcast:  http://bit.ly/div_nrol37
The June 9 launch of the ULA Delta 4 Heavy carrying the classified NROL-37 spy satellite is planned for 1:59 p.m. EDT. Broadcast starts at 1:39 p.m. EDT Watch the live webcast: http://bit.ly/div_nrol37

Surveillance Satellite Set for June 9 Launch on Mighty Delta 4 Heavy

Sun rises behind Delta 4 Heavy launch of NROL-15 for the NRO on June 29, 2012 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com
Sun rises behind Delta 4 Heavy launch of  NROL-15 for the NRO on June 29, 2012 from Cape Canaveral Air Force Station at Space Launch Complex-37.  Credit: Ken Kremer/kenkremer.com
Sun rises behind Delta 4 Heavy launch of NROL-15 for the NRO on June 29, 2012 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL, FL — A classified surveillance satellite set to fortify the reconnaissance capabilities of America’s spy masters is now scheduled to launch this Thursday afternoon, June 9, atop America’s most powerful rocket – the Delta 4 Heavy.

Lift off of the United Launch Alliance (ULA) Delta 4 Heavy carrying the classified NROL-37 spy satellite for the National Reconnaissance Office (NRO) on Thursday, June 9 is slated for 1:59 p.m. EDT from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

This follows a four day delay from June 5 to deal with a last minute and unspecified payload issue.

“Spacecraft, rocket and support systems are ready!” tweeted the NRO.

Although almost everything about the clandestine payload, its mission, purpose and goals are classified top secret, it is certainly vital to America’s national security.

We do know that NROL-37 will be launched for the NRO on an intelligence gathering mission in support of US national defense.

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

The NRO runs a vast fleet of powerful orbital assets hosting a multitude of the most advanced, wide ranging and top secret capabilities.

The payload is named NROL-37 and will be carried to an undisclosed orbit, possibly geostationary, by the triple barreled ULA Delta 4 Heavy rocket – currently the largest and most powerful rocket in the world.

It is manufactured and launched by ULA as part of the Delta rocket family. This includes the Delta 4 Medium which can launch with strap on solid rocket boosters. ULA also builds and launches the Atlas V rocket family.

Delta 4 Heavy cutaway diagram. Credit: ULA
Delta 4 Heavy cutaway diagram. Credit: ULA

To date nine NRO payloads have flown on Delta 4 rockets. NROL-37 will be the 32nd Delta IV mission since the vehicle’s inaugural launch.

The NRO was formed in response to the Soviet launch of Sputnik and secretly created on September 6, 1961.

“The purpose is overseeing all satellite and overflight reconnaissance projects whether overt or covert. The existence of the organization is no longer classified today, but we’re still pressing to perform the functions necessary to keep American citizens safe,” according to the official NRO website.

Precisely because this is a launch of the mighty triple barreled Delta 4 Heavy, the view all around is sure to be spectacular and is highly recommended – in case you are in the Florida Space Coast area or surrounding regions.

One thing for sure is the top secret payload is huge and weighty since it requires the heaviest of the heavies to blast off.

Watch this ULA video showing the mating of the classified reconnaissance payload to the rocket.

Video Caption: The NROL-37 payload is mated to a Delta IV Heavy rocket inside the Mobile Service Tower or MST at Cape Canaveral Air Force Station’s Space Launch Complex-37. Credit: ULA

Another unclassified aspect we know about this flight is that the weather forecast is rather iffy.

The official Air Forces prognosis calls for only a 40% chance of favorable weather conditions.

The primary concerns are for Anvil Clouds, Cumulus Clouds and Lightning.

In case of a scrub for any reason related to technical or weather issues, the next launch opportunity is 48 hours later on Saturday. June 11.

The weather odds rise significantly to an 80% chance of favorable weather conditions on June 11.

Somewhat surprisingly ULA has just announced the launch time – which is planned for 1:59 p.m. EDT (1759 GMT).

And you can even watch a ULA broadcast which starts 20 minutes prior to the given launch time at 1:39 p.m. EDT.

Webcast link: http://bit.ly/div_nrol37

The June 9 launch of the ULA Delta 4 Heavy carrying the classified NROL-37 spy satellite is planned for 1:59 p.m.  EDT.  Broadcast starts at 1:39 p.m. EDT  Watch the live webcast:  http://bit.ly/div_nrol37
The June 9 launch of the ULA Delta 4 Heavy carrying the classified NROL-37 spy satellite is planned for 1:59 p.m. EDT. Broadcast starts at 1:39 p.m. EDT Watch the live webcast: http://bit.ly/div_nrol37

Since this is a national security launch, the exact launch time is actually classified and could easily occur later than 1:59 p.m.

The launch period extends until 6:30 p.m. EDT (2230 GMT). The actual launch window is also classified and somewhere within the launch period.

Seeing a Delta 4 Heavy soar to space is a rare treat since they launch infrequently.

The last of these to launch from the Cape was for NASA’s inaugural test flight of the Orion crew capsule on the EFT-1 launch in Dec. 5, 2014. No other rocket was powerful enough.

Inaugural Orion crew module launches at 7:05 a.m. on Delta 4 Heavy Booster from pad 37 at Cape Canaveral on Dec. 5, 2014.   Credit: Ken Kremer - kenkremer.com
Inaugural Orion crew module launches at 7:05 a.m. on Delta 4 Heavy Booster from pad 37 at Cape Canaveral on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

The Delta IV Heavy employs three Common Core Boosters (CBCs). Two serve as strap-on liquid rocket boosters (LRBs) to augment the first-stage CBC and 5-m-diameter payload fairing housing the payload.

Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37.   Credit: Ken Kremer/kenkremer.com
Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Atlas and Delta rockets, SpaceX Falcon 9 rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 8/9: “SpaceX, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Recovered SpaceX Falcon 9 ‘Lifts Off’ 2nd Time After ‘Baby Made it Home!” – Gallery

With US flag flying in background below, the base of recovered SpaceX Falcon 9 booster with 4 deployed landing legs and 9 Merlin 1 D engines is lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 after sailing at midday through Port Canaveral. The rocket successfully launched Thaicom-8 satellite on May 27, 2016 from Cape Canaveral Air Force Station, Fl and landed on sea based platform minutes later. Credit: Ken Kremer/kenkremer.com
With US flag flying in background below, the base of recovered SpaceX Falcon 9 booster with 4 deployed landing legs and 9 Merlin 1 D engines is lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 after sailing at  midday through Port Canaveral. The rocket  successfully launched Thaicom-8 satellite on May 27, 2016 from Cape Canaveral Air Force Station, Fl and landed on sea based platform minutes later.  Credit: Ken Kremer/kenkremer.com
With US flag proudly flying in background below, the base of recovered SpaceX Falcon 9 booster with 4 deployed landing legs and 9 Merlin 1 D engines is lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 after sailing at midday through Port Canaveral. The rocket successfully launched Thaicom-8 satellite on May 27, 2016 from Cape Canaveral Air Force Station, Fl and landed on sea based platform minutes later. Credit: Ken Kremer/kenkremer.com

PORT CANAVERAL, FL – The spent SpaceX Falcon 9 first stage booster that sped to space and back and landed safely at sea, ‘lifted off’ for a second time so to speak after CEO Elon Musk’s “Baby Made it Home” to her home port around lunchtime on June 2 – as I witnessed and reported here for Universe Today.

“Yay, baby made it home,” SpaceX CEO and billionaire founder Elon Musk exuberantly tweeted with a link to my port arrival story and photos showing the tilted booster radiantly floating atop the droneship landing platform.

Photos above and below from myself and colleagues capture Falcon’s 2nd ‘lift off’ – this time at dusk on June 2, via crane power as workers hoisted it off its ocean landing platform – with an American flag flying proudly below – onto a ground based work platform to carry out initial processing.

3 image sequence shows SpaceX Falcon 9 ‘lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 and moved to ground processing cradle at Port Canaveral, FL following May 27, 2016 launch/landing to deliver Thaicom-8 satellite to orbit. Credit: Ken Kremer/kenkremer.com
3 image sequence shows SpaceX Falcon 9 ‘lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 and moved to ground processing cradle at Port Canaveral, FL following May 27, 2016 launch/landing to deliver Thaicom-8 satellite to orbit. Credit: Ken Kremer/kenkremer.com

The booster triumphantly entered the waterway into Port Canaveral, Fl by way of the ocean mouth at Jetty Park pier at about 11: 45 a.m. on June 2 under clear blue skies.

It continued sailing serenely along the Port Canaveral channel – towed behind the Elsbeth III tugboat – making a picture perfect tour for lucky spectators for another 30 minutes or so until docking at the SpaceX ground processing facility.

All in all it was quite appropriately an ‘otherworldly’ scene reminiscent of a great scifi movie.

Watch this video from my photojournalist colleague Jeff Seibert.

Video caption: The SpaceX F9 booster from the Thaicom-8 launch returns to Cape Canaveral on June 2, 2016 after completing an at sea landing on the OCISLY drone ship 6 days earlier. A hard landing caused a leg to activate a crush structure and it is tilting about 4 degrees. That is half the booster tilt angle that Elon Musk expected should be recoverable. Credit: Jeff Seibert

The beaming 156-foot-tall Falcon 9 booster had propulsively landed six days earlier atop the specially designed SpaceX ‘droneship’ named “Of Course I Still Love You” or “OCISLY” less than 9 minutes after the spectacular May 27 blastoff.

The Falcon 9 was leaning some 5 degrees or so on the droneship upon which it had landed on May 27 while it was stationed approximately 420 miles (680 kilometers) off shore and east of Cape Canaveral, Florida, surrounded by the vastness of the Atlantic Ocean.

Recovered SpaceX Falcon 9 sails into Port Canaveral atop droneship on June 2, 2016. Credit: John Krauss
Recovered SpaceX Falcon 9 from Thaicom 8 mission sails into Port Canaveral atop droneship on June 2, 2016. Credit: John Krauss

After docking, SpaceX workers then spent the next few hours carefully maneuvering and attaching a pyramidal shaped metal hoisting cap by crane to the top of the 15 story tall first stage – as it was firmly secured to the deck of the droneship via multiple tie downs.

It was a delicately choreographed and cautiously carried out operation, complicated by the fact that this used, returned booster was tilted. The prior two sea landed Falcon 9 boosters landed perfectly upright in April and May.

Recovered SpaceX Falcon 9 from Thaicom 8 mission sails into Port Canaveral atop droneship on June 2, 2016. Credit: John Krauss
Recovered SpaceX Falcon 9 from Thaicom 8 mission sails into Port Canaveral atop droneship on June 2, 2016. Credit: John Krauss

Indeed a pair of technicians had to ride a cherry picker lift to the very top to help fasten the cap securely in place as it was slowly lowered in the late afternoon.

Workers then spent several more hours undoing and removing the tiedowns to the droneship deck, one by one.

Finally and with no fanfare the ‘GO’ command was suddenly given.

At dusk, Falcons 2nd ‘ascent’ began at around 8 p.m. The small group of us patiently watching and waiting all day from across the channel had no warning or advance notice. My guestimate is Falcon rose perhaps 30 to 40 feet.

It was craned over to the right and lowered onto the waiting ground based retention work platform. Altogether the whole movement took some 10 minutes.

in Port Canaveral, FL prior to craning it to ground processing cradle on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
in Port Canaveral, FL prior to craning it to ground processing cradle on June 2, 2016. Credit: Ken Kremer/kenkremer.com

The SpaceX Falcon 9 began its rapid journey to space and back roaring to life at 5:39 p.m. EDT last Friday, May 27, from Space Launch Complex-40 at Cape Canaveral Air Force Station, FL, ascending into sky blue sunshine state skies.

The Falcon 9 was carrying the Thaicom-8 telecommunications satellite to orbit as its primary goal for the commercial launch from a paying customer.

It roared to life with 1.5 million pounds of thrust from the first stage Merlin 1 D engines and successfully propelled the 7000 pound (3,100 kilograms) commercial Thai communications satellite to a Geostationary Transfer Orbit (GTO).

Landing on the droneship was a secondary goal of SpaceX’s visionary CEO and founder Elon Musk.

It was leaning due to the high speed reentry and a touchdown landing speed near the maximum sustainable by the design.

“Rocket landing speed was close to design max & used up contingency crush core, hence back & forth motion,” tweeted SpaceX CEO Elon Musk.

“Prob ok, but some risk of tipping.”

That tilting added significant extra technical efforts by the SpaceX workers to stabilize it at sea and bring it back safely and not tip over calamitously during the six day long sea voyage back to home port.

““Rocket back at port after careful ocean transit. Leaning back due to crush core being used up in landing legs,” SpaceX explained.

What is the crush core?

“Crush core is aluminum honeycomb for energy absorption in the telescoping actuator. Easy to replace (if Falcon makes it back to port),” Musk tweeted during the voyage home.

The landing leg design follows up and improves upon on what was used and learned from NASA’s Apollo lunar landers in the 1960s and 1970s.

“Falcon’s landing leg crush core absorbs energy from impact on touchdown. Here’s what it looked like on Apollo lander,” noted SpaceX

Check out this graphic tweeted by SpaceX.

Falcon's landing leg crush core absorbs energy from impact on touchdown. Here's what it looked like on Apollo lander. Credit: SpaceX
Falcon’s landing leg crush core absorbs energy from impact on touchdown. Here’s what it looked like on Apollo lander. Credit: SpaceX

Technicians started removing the quartet of landing legs on Friday. I observed the first one being detached late Friday, June 3.

Recovered SpaceX Falcon 9 from Thaicom-8 mission after craning off ‘OCISLY’ droneship to ground processing cradle at Port Canaveral, FL.  Workers had removed the first of four landing legs in this view from June 3, 2016. Credit: Ken Kremer/kenkremer.com
Recovered SpaceX Falcon 9 from Thaicom-8 mission after craning off ‘OCISLY’ droneship to ground processing cradle at Port Canaveral, FL. Workers had removed the first of four landing legs in this view from June 3, 2016. Note: NASA’s VAB in background. Credit: Ken Kremer/kenkremer.com

The booster was rotated horizontally after all the legs were removed and transported back to the SpaceX processing hangar at the Kennedy Space Center at Launch Complex 39A.

The three prior landed boosters were all moved to 39 A for thorough inspection, analysis and engine testing. One will be refurbished and recycled for reuse.

Video caption: Thaicom 8 booster is lifted from autounomous drone ship to dry land for transport on 2 June 2016. Time Lapse. Credit: USLaunchReport

Later this year, SpaceX hopes to relaunch one of the recovered first stage boosters.

The SpaceX rockets and recovery technology are all being developed so they will one day lead to establishing a ‘City on Mars’ – according to the SpaceX’s visionary CEO and founder Elon Musk.

Musk aims to radically slash the cost of launching future rockets by recycling them and using them to launch new payloads for new paying customers.

Musk hopes to launch humans to Mars by the mid-2020s.

Technicians work to attach hoisting cap to top of used SpaceX Falcon 9 from Thaicom-8 mission that was secured atop ‘OCISLY’ droneship in Port Canaveral, FL prior to craning it over to ground processing cradle on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Technicians work to attach hoisting cap to top of used SpaceX Falcon 9 from Thaicom-8 mission that was secured atop ‘OCISLY’ droneship in Port Canaveral, FL prior to craning it over to ground processing cradle on June 2, 2016. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 8/9: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Recovered SpaceX Falcon 9 basks in nighttime glow after arriving into Port Canaveral on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Recovered SpaceX Falcon 9 basks in nighttime glow after arriving into Port Canaveral on June 2, 2016. Credit: Ken Kremer/kenkremer.com
4 natural made pelicans and a manmade SpaceX Falcon 9 with 4 landing legs at Port Canaveral, FL on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
4 natural made pelicans and a manmade SpaceX Falcon 9 with 4 landing legs at Port Canaveral, FL on June 2, 2016. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
Tow boat passing in front of the used SpaceX rocket waiting offshore. Credit: Julian Leek
Tow boat passing in front of the used SpaceX rocket waiting offshore. Credit: Julian Leek
Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016. Credit: Ken Kremer/kenkremer.com

Mars at Closest Earth Approach Over SpaceX Recovered Falcon 9 at Sea – Photo

Mars Close Approach over recovered SpaceX Falcon 9 atop droneship at sea on June 1, 2016 as seen from Jetty Park Pier in Port Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Mars Close Approach over recovered SpaceX Falcon 9 atop droneship at sea on June 1, 2016 as seen from Jetty Park Pier in Port Canaveral, FL.  Credit: Ken Kremer/kenkremer.com
Mars Close Approach over recovered SpaceX Falcon 9 atop droneship at sea on June 1, 2016 as seen from Jetty Park Pier in Port Canaveral, FL. Credit: Ken Kremer/kenkremer.com

PORT CANAVERAL, FL – As you may have heard its Mars opposition season. What you may not have heard is that Mars made its closest Earth approach high in the Sunshine states nighttime skies coincidentally at the same time as a sea landed SpaceX Falcon 9 was visible just offshore floating on the horizon below.

Rather miraculously this regular natural occurrence of the dance of the planets Earth and Mars making a close embrace as they orbit around our Sun, was taking place simultaneously with a most unnatural event – namely the return of a used SpaceX Falcon 9 landed on a platform at sea that was briefly hugging the Florida coastline.

And better yet you can see them celebrating this first-of-its-kind celestial event together in the photo above of ‘Mars Close Approach over Falcon’ – captured by this author around 11 p.m. EDT on Wednesday, June 1 from the rock wall along Jetty Park Pier in Port Canaveral, Fl.

By sheer coincidence, the Red Planet was making its closest approach to Earth of this orbital cycle just as the most recently launched and recovered SpaceX Falcon 9 first stage booster was arriving just offshore of Cocoa Beach and the Florida Space Coast earlier this week.

As luck would have it, when I ventured out to watch the boosters hoped for nighttime arrival from Jetty Park Pier in Port Canaveral on Wednesday, June 1, I noticed that Mars and the floating Falcon 9 were lined up almost perfectly.

Mars is visible at the head of the large constellation Scorpius.

The Falcon 9 was standing atop the droneship upon which it had landed on May 27 while it was stationed approximately 420 miles (680 kilometers) off shore and east of Cape Canaveral, Florida, surrounded by the vastness of the Atlantic Ocean.

The SpaceX Falcon 9 began its rapid journey to space and back roaring to life at 5:39 p.m. EDT last Friday, May 27, from Space Launch Complex-40 at Cape Canaveral Air Force Station, FL, ascending into sky blue sunshine state skies.

The Falcon 9 was carrying the Thaicom-8 telecommunications satellite to orbit.

On Wednesday night, June 1, Mars was high in the southern night sky, shining brightly almost directly over the spent Falcon 9 booster sailing some 3 miles (5 km) offshore of Cocoa Beach.

Thankfully the weather gods even cooperated by delivering crystal clear nighttime skies.

So with Mars at Opposition and Falcon 9 in view and while awaiting the droneship bringing the booster into Port Canaveral I took some exposure shots of this first totally unique opportunity.

Mars Close Approach took place on May 30, 2016. That is the point in Mars’ orbit when it comes closest to Earth.

The Red Planet was only 46.8 million miles (75.3 million kilometers) from Earth.

“Mars reaches its highest point around midnight — about 35 degrees above the southern horizon, or one third of the distance between the horizon and overhead,” according to a NASA description and the graphic shown below.

 Mars closest approach to Earth this cycle is May 30, 2016.  That is the point in Mars' orbit when it comes closest to Earth. Mars will be at a distance of 46.8 million miles (75.3 million kilometers).  Credit: NASA/JPL-Caltech

Mars closest approach to Earth this cycle is May 30, 2016. That is the point in Mars’ orbit when it comes closest to Earth. Mars will be at a distance of 46.8 million miles (75.3 million kilometers). Credit: NASA/JPL-Caltech

Mars is currently visible for much of the night.

Mars oppositions happen about every 26 months when Mars and the sun are on directly opposite sides of Earth.

The 156 foot tall Falcon 9 booster had landed atop the specially designed SpaceX ‘droneship’ named “Of Course I Still Love You” or “OCISLY” less than 9 minutes after the May 27 blastoff.

Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL,  atop droneship platform on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

The Thaicom-8 mission marked the third time SpaceX nailed a booster landing on an ocean going platform.

But unlike the prior two sea landings, this booster came to rest at noticeable tilt.

This caused SpaceX some headaches and concern it might fall over and be destroyed in transit before reaching land.

So the booster didn’t make it back into port Wednesday night as onlookers had hoped. And SpaceX did not announce a return schedule.

It actually would up station keeping and hugging the shoreline for nearly 2 extra days while workers stabilized the booster.

Tow boat passing in front of the used SpaceX rocket waiting offshore. Credit: Julian Leek
Tow boat passing in front of the used SpaceX rocket waiting offshore. Credit: Julian Leek

The 15 story tall spent first stage was secured with multiple tie downs to the droneships deck.

Up close view of base of recovered SpaceX Falcon 9 atop droneship during arrival on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Up close view of base of recovered SpaceX Falcon 9 atop droneship during arrival on June 2, 2016 shows ties down securing booster to deck. Credit: Ken Kremer/kenkremer.com

As I witnessed and reported here, the booster finally sailed triumphantly into the mouth of Port Canaveral around lunchtime on Thursday, June 2.

SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

Mars and the recovered Falcon 9 actually tie in rather neatly.

The SpaceX rockets launch and recovery technology are all being developed so they will one day lead to establishing a ‘City on Mars’ – according to the SpaceX’s visionary CEO and founder Elon Musk.

Musk aims to radically slash the cost of launching future rockets by recycling them and using them to launch new payloads for new paying customers.

Musk hopes to launch humans to Mars by the mid-2020s.

And this author is also a well known Mars lover.

NASA’s Opportunity rover discovers a beautiful Martian dust devil moving across the floor of Endeavour crater as wheel tracks show robots path today exploring the steepest ever slopes of the 13 year long mission, in search of water altered minerals at Knudsen Ridge inside Marathon Valley on 1 April 2016. This navcam camera photo mosaic was assembled from raw images taken on Sol 4332 (1 April 2016) and colorized.  Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo
NASA’s Opportunity rover discovers a beautiful Martian dust devil moving across the floor of Endeavour crater as wheel tracks show robots path today exploring the steepest ever slopes of the 13 year long mission, in search of water altered minerals at Knudsen Ridge inside Marathon Valley on 1 April 2016. This navcam camera photo mosaic was assembled from raw images taken on Sol 4332 (1 April 2016) and colorized. Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo

Watch for Ken’s continuing on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 8/9: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Daylight Arrival Affords Eye-popping view of Radiant SpaceX Recovered Booster Sailing Victoriously into Port Canaveral

Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com
Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL,  atop droneship platform on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

Port Canaveral, FL- The first ever daylight arrival afforded endless eye-popping views of what can only be described as a truly radiant SpaceX Falcon 9 recovered first stage booster sailing victoriously into Port Canaveral, Florida, at lunchtime today, Thursday, June 2.

The beaming 156 foot tall booster was traveling triumphantly atop the specially designed SpaceX ‘droneship’ aptly named “Of Course I Still Love You” or “OCISLY.”

Because unlike all three prior perfectly erect upright landings, this booster came to rest noticeably titled, perhaps by about 5 degrees.

It was leaning due to the high speed reentry and a touchdown landing speed near the maximum sustainable by the design.

“Rocket landing speed was close to design max,” tweeted SpaceX CEO Elon Musk.

That tilt gave it a distinctive character – compared to the other three – as well as significant extra technical work by the SpaceX workers to stabilize it at sea and bring it back safely and not tip over calamitously during the six day long sea voyage back to home port.

“Leaning back due to crush core being used up in landing legs,” Musk explained.

And since Port Canaveral and the Atlantic Ocean are public waterways, the day was filled with incredible scenes on numerous pleasure boats passing by on the seas throughout the day. Since this was the first daytime ocean arrival, there’s never been a scene quite like this.

The booster landed on “OCISLY” on May 27 while it was stationed approximately 420 miles (680 kilometers) off shore and east of Cape Canaveral, Florida, surrounded by the vastness of the Atlantic Ocean.

SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 arrives at mouth of Port Canaveral, FL on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 arrives at mouth of Port Canaveral, FL atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

It was soon towed back by the Elsbeth III tug. By Tuesday evening it had arrived some 14 miles or so offshore Cocoa Beach, Fl., in the Atlantic.

After stationkeeping for some 36 hours, the journey began anew and the the booster arrived at the mouth of Port Canaveral at about 11: 45 a.m., with a picture perfect entrance via Jetty Park pier.

It continued along the Port Canaveral channel for another 30 minutes or so until docking at the SpaceX ground facility.

Up close view of base of recovered SpaceX Falcon 9 atop droneship during arrival on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Up close view of base of recovered SpaceX Falcon 9 atop droneship during arrival on June 2, 2016. Credit: Ken Kremer/kenkremer.com

So my day was filled with endless eye candy consisting of observing ground breaking rockets and technology that will one day lead to establishing a ‘City on Mars’ – according to the SpaceX’s visionary CEO and founder Elon Musk.

This Falcon 9 began its rapid journey to space and back roaring to life at 5:39 p.m. EDT last Friday, May 27, from Space Launch Complex-40 at Cape Canaveral Air Force Station, FL, ascending into sky blue sunshine state skies.

Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016. Credit: Ken Kremer/kenkremer.com

The Falcon 9 was carrying the Thaicom-8 telecommunications satellite to orbit.

Despite long odds due to a high speed orbital delivery launch on May 27 as its primary goal, the spent Falcon 9 first stage managed to successfully carry out a rapid propulsive descent and soft landing at seas on a tiny ocean going platform.

The May 27 landing was the third straight successful landing for SpaceX at sea and the second straight landing after delivering a commercial payload to a Geostationary Transfer Orbit (GTO).

With a total of 4 recovered boosters, SpaceX is laying the path to rocket reusability and Musk’s dream of slashing launch costs – by 30% initially and much much more down the road.

Pelican Navy stands watch and greets SpaceX Naval Fleet and Falcon 9 rocket float by on barge approaching mouth of Port Canaveral, Fl, on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Pelican Navy stands watch and greets SpaceX Naval Fleet and Falcon 9 rocket float by on barge approaching mouth of Port Canaveral, Fl, on June 2, 2016. Credit: Ken Kremer/kenkremer.com

Thaicom-8 was built by aerospace competitor Orbital ATK, based in Dulles, VA. It will support Thailand’s growing broadcast industry and will provide broadcast and data services to customers in South Asia, Southeast Asia and Africa.

Thaicom-8 is the fifth operational satellite for Thaicom.

It now enters a 30-day testing phase, says Orbital ATK.

SpaceX Falcon 9 booster moving along the Port Canaveral channel after passing through mouth atop droneship platform on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 booster moving along the Port Canaveral channel after passing through mouth atop droneship platform on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

The Falcon 9 launch is the 5th this year for SpaceX.

Watch for more photos/videos of today’s arrival in port in Part 2 soon.

Watch for Ken’s continuing on site reports direct from Cape Canaveral and the SpaceX launch pad.

Tourists enjoy SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
Tourists enjoy SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Up close view of top of SpaceX Falcon 9 booster showing decal, US flag, grid fins and nitrogen cold gas thruster as it floats along the Port Canaveral channel atop droneship platform on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
Up close view of top of SpaceX Falcon 9 booster showing decal, US flag, grid fins and nitrogen cold gas thruster as it floats along the Port Canaveral channel atop droneship platform on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 2/3/8/9: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com

Re-engined’ Antares Rocket Completes Crucial Engine Test Firing

Orbital ATK conducted a full-power test of the upgraded first stage propulsion system of its Antares rocket on May 31, 2016 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A. Credit: NASA/Orbital ATK
Orbital ATK conducted a full-power test of the upgraded first stage propulsion system of its Antares rocket on May 31, 2016 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A.  Credit: NASA/Orbital ATK
Orbital ATK conducted a full-power test of the upgraded first stage propulsion system of its Antares rocket on May 31, 2016 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A. Credit: NASA/Orbital ATK

Orbital ATK announced late Tuesday that the company’s Antares medium-class commercial rocket outfitted with new first stage RD-181 engines has successfully completed a test firing of the powerplants.

The 30-second long static test firing took place at 5:30 p.m. Tuesday evening, May 31, at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A.

The now revamped launch vehicle – dubbed Antares 230 – has been ‘re-engined’ and upgraded with a pair of modern and more powerful first stage engines – the Russian-built RD-181 fueled by LOX/kerosene.

The engine test was conducted using only the first stage of Antares at the MARS Pad 0A at NASA’s Wallops Flight Facility.

“Early indications show the upgraded propulsion system, core stage and launch complex all worked together as planned,” said Mike Pinkston, Orbital ATK General Manager and Vice President, Antares Program.

“Congratulations to the combined NASA, Orbital ATK and Virginia Space team on a successful test.”

Orbital ATK engineers will now “review test data over the next several days to confirm that all test parameters were met”

Orbital ATK’s Antares first stage with the new RD-181 engines stands erect at Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming stage test on May 31. Credit:  Ken Kremer/kenkremer.com
Orbital ATK’s Antares first stage with the new RD-181 engines stands erect at Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming stage test on May 31. Credit: Ken Kremer/kenkremer.com

If all goes well with the intensive data review, the company could launch Antares as soon as July on its next NASA contracted mission – known as OA-5 – to resupply the International Space Station (ISS).

The test involved firing up Antares dual first stage RD-181 engines at full 100% power (thrust) for a scheduled duration of approximately 30 seconds. Hold down restraints kept the rocket firmly anchored at the pad during the test.

The RD-181 replaces the previously used AJ26 which failed moments after liftoff during the last launch on Oct. 28, 2014 resulting in a catastrophic failure of the rocket and the Cygnus cargo freighter.

The RD-181 flight engines are built by Energomash in Russia and had to be tested via the static hot fire test to ensure their readiness.

“They are a good drop in replacement for the AJ26. And they offer 13% higher thrust compared to the AJ26,” said Kurt Eberly, Orbital ATK Antares deputy program manager, in an interview with Universe Today.

First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit:  Ken Kremer/kenkremer.com
First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit: Ken Kremer/kenkremer.com

As a result of switching to the new RD-181 engines, the first stage also had to be modified to incorporate new thrust adapter structures, actuators, and propellant feed lines between the engines and core stage structure.

So the primary goal was to confirm the effectiveness of the new engines and all the changes in the integrated rocket stage.

“The successful stage test, along with the extensive testing of each new RD-181, gives us further confidence in the first stage propulsion and in moving forward to launch,” said Pinkston.

“We are now focused on the OA-5 mission and launching the enhanced Cygnus spacecraft to the International Space Station on our upgraded, higher-performing Antares rocket.”
The test used the first stage core planned to launch the OA-7 mission from Wallops late this year.

With the engine test is completed, the OA-7 stage will be rolled back to the HIF and a new stage fully integrated with the Cygnus cargo freighter will be rolled out to the pad for the OA-5 ‘Return to Flight’ mission as soon as July.

“Each of the new flight RD-181 engines has undergone hot fire acceptance testing at the manufacturer’s facility prior to being shipped to Orbital ATK. A certification test series was successfully completed in the spring of 2015 where a single engine was test fired seven times, accumulating 1,650 seconds of test time and replicating the Antares flight profile, before being disassembled for inspection,” said Orbital ATK officials.

Bird takes flight over Orbital ATK Antares set to sail skyward again in summer 2016 from NASA Wallops Flight Facility, VA. Credit:  Ken Kremer/kenkremer.com
Bird takes flight over Orbital ATK Antares set to sail skyward again in summer 2016 from NASA Wallops Flight Facility, VA. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Webb Telescope Gets its Science Instruments Installed

In this rare view, the James Webb Space Telescope team crane lifted the science instrument package for installation into the telescope structure. Credits: NASA/Chris Gunn
In this rare view, the James Webb Space Telescope team crane lifted the science instrument package for installation into the telescope structure.  Credits: NASA/Chris Gunn
In this rare view, the James Webb Space Telescope team crane lifted the science instrument package for installation into the telescope structure. Credits: NASA/Chris Gunn

The package of powerful science instruments at the heart of NASA’s mammoth James Webb Space Telescope (JWST) have been successfully installed into the telescopes structure.

A team of two dozen engineers and technicians working with “surgical precision” inside the world’s largest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, meticulously guided the instrument package known as the ISIM (Integrated Science Instrument Module) into the telescope truss structure.

ISIM is located right behind the 6.5 meter diameter golden primary mirror – as seen in NASA’s and my photos herein.

The ISIM holds the observatory’s international quartet of state-of-the-art research instruments, funded, built and provided by research teams in the US, Canada and Europe.

“This is a tremendous accomplishment for our worldwide team,” said John Mather, James Webb Space Telescope Project Scientist and Nobel Laureate, in a statement.

“There are vital instruments in this package from Europe and Canada as well as the US and we are so proud that everything is working so beautifully, 20 years after we started designing our observatory.”

This side shot shows a glimpse inside a massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland where the James Webb Space Telescope team worked meticulously to complete the science instrument package installation.  Credits: NASA/Desiree Stover
This side shot shows a glimpse inside a massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland where the James Webb Space Telescope team worked meticulously to complete the science instrument package installation. Credits: NASA/Desiree Stover

Just as with the mirrors installation and other assembly tasks, the technicians practiced the crucial ISIM installation procedure numerous times via test runs, computer modeling and a mock-up of the instrument package.

To accomplish the ISIM installation, the telescope structure had to be flipped over and placed into the giant work gantry in the clean room to enable access by the technicians.

“The telescope structure has to be turned over and put into the gantry system [in the clean room],” said John Durning, Webb Telescope Deputy Project Manager, in an exclusive interview with Universe Today at NASA’s Goddard Space Flight Center.

“Then we take ISIM and install in the back of the telescope.”

The team used an overhead crane to lift and maneuver the heavy ISIM science instrument package in the clean room. Then they lowered it into the enclosure behind the mirrors on the telescopes backside and secured it to the structure.

“Our personnel were navigating a very tight space with very valuable hardware,” said Jamie Dunn, ISIM Manager.

“We needed the room to be quiet so if someone said something we would be able to hear them. You listen not only for what other people say, but to hear if something doesn’t sound right.”

Up close view shows cone shaped Aft Optics Subsystem (AOS) standing at center of Webb telescopes 18 segment primary mirror at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.  ISIM science instrument module will be installed inside truss structure below.  Credit: Ken Kremer/kenkremer.com
Up close view shows cone shaped Aft Optics Subsystem (AOS) standing at center of Webb telescopes 18 segment primary mirror at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. ISIM science instrument module will be installed inside truss structure below. Credit: Ken Kremer/kenkremer.com

The ISIM installation continues the excellently executed final assembly phase of Webb at Goddard this year. And comes just weeks after workers finished installing the entire mirror system.

This author has witnessed and reported on the assembly progress at Goddard on numerous occasions, including after the mirrors were recently uncovered and unveiled in all their golden glory.

“The entire mirror system is checked out. The system has been integrated and the alignment has been checked,” said John Durning, Webb Telescope Deputy Project Manager, in an exclusive interview with Universe Today at NASA’s Goddard Space Flight Center.

Up close side-view of newly exposed gold coated primary mirrors installed onto mirror backplane holding structure of  NASA’s James Webb Space Telescope inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.   Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms.  Credit: Ken Kremer/kenkremer.com
Up close side-view of newly exposed gold coated primary mirrors installed onto mirror backplane holding structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms. Credit: Ken Kremer/kenkremer.com

ISIM is a collection of cameras and spectrographs that will record the light collected by Webb’s giant golden primary mirror.

“It will take us a few months to install ISIM and align it and make sure everything is where it needs to be,” Durning told me.

The primary mirror is comprised of 18 hexagonal segments.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.

Webb’s golden mirror structure was tilted up for a very brief period on May 4 as seen in this NASA time-lapse video:

The 18-segment primary mirror of NASA’s James Webb Space Telescope was raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4, 2016. Credit: NASA

The gargantuan observatory will significantly exceed the light gathering power of NASA’s Hubble Space Telescope (HST) – currently the most powerful space telescope ever sent to space.

With the mirror structure complete, the next step was the ISIM science module installation.

To accomplish that installation, technicians carefully moved the Webb mirror structure into the clean room gantry structure.

As shown in this time-lapse video we created from Webbcam images, they tilted the structure vertically, flipped it around, lowered it back down horizontally and then transported it via an overhead crane into the work platform.

Time-lapse showing the uncovered 18-segment primary mirror of NASA’s James Webb Space Telescope being raised into vertical position, flipped and lowered upside down to horizontal position and then moved to processing gantry in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4/5, 2016. Images: NASA Webbcam. Time-lapse by Ken Kremer/kenkremer.com/Alex Polimeni

The telescope will launch on an Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.  The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com
All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

More about ISIM and upcoming testing in the next story.

Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Spectacular Imagery Showcases SpaceX Thaicom Blastoff as Sea Landed Booster Sails Back to Port: Photo/Video Gallery

Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

CAPE CANAVERAL AIR FORCE STATION, FL – Spectacular imagery showcasing SpaceX’s Thaicom blastoff on May 27 keeps rolling in as the firms newest sea landed booster sails merrily along back to its home port atop a ‘droneship’ landing platform.

Formally known as an Autonomous Spaceport Drone Ship (ASDS) the small flat platform is eclectically named “Of Course I Still Love You” or “OCISLY” by SpaceX Founder and CEO Elon Musk and is expected back at Port Canaveral this week.

Check out this expanding launch gallery of up close photos and videos captured by local space photojournalist colleagues and myself of Friday afternoons stunning SpaceX Falcon 9 liftoff.

The imagery shows Falcon roaring to life with 1.5 million pounds of thrust from the first stage Merlin 1 D engines and propelling a 7000 pound (3,100 kilograms) commercial Thai communications satellite to a Geostationary Transfer Orbit (GTO).

The recently upgraded Falcon 9 launched into sky blue sunshine state skies at 5:39 p.m. EDT from Space Launch Complex-40 at Cape Canaveral Air Force Station, FL, accelerating to orbital velocity and arcing eastward over the Atlantic Ocean towards the African continent and beyond.

Relive the launch via these exciting videos recorded around the pad 40 perimeter affording a “You Are There” perspective!

They show up close and wide angle views and audio recording the building crescendo of the nine mighty Merlin 1 D engines.

Video caption: Compilation of videos of SpaceX Falcon 9 launch of Thaicom 8 on 5/27/2016 from Pad 40 on CCAFS, FL as seen from multiple cameras ringing pad and media viewing site on AF base. Credit: Jeff Seibert

Watch from the ground level weeds and a zoomed in view of the umbilicals breaking away at the moment of liftoff.

Video caption: SpaceX Falcon 9 lifts off with Thaicom-8 communications satellite on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from Mobius remote camera positioned at pad. Credit: Ken Kremer/kenkremer.com

After the first and second stages separated as planned at about 2 minutes and 39 seconds after liftoff, the nosecone was deployed, separating into two halves at about T plus 3 minutes and 37 seconds.

Finally a pair of second stage firings delivered Thaicom-8 to orbit.

Onboard cameras captured all the exciting space action in real time.

When the Thai satellite was successfully deployed at T plus 31 minutes and 56 seconds exhuberant cheers instantly erupted from SpaceX mission control – as seen worldwide on the live webcast.

“Satellite deployed to 91,000 km apogee,” tweeted SpaceX CEO and founder Elon Musk.

Video caption: SpaceX – “Falcon In” “Falcon Out” – 05-27-2016 – Thaicom 8. The brand new SpaceX Falcon 9 for next launch comes thru main gate Cape Canaveral, just a few hours before Thaicom 8 launched and landed. Awesome ! Credit: USLaunchReport

Both stages of the 229-foot-tall (70-meter) Falcon 9 are fueled by liquid oxygen and RP-1 kerosene which burn in the Merlin engines.

Less than nine minutes after the crackling thunder and billowing plume of smoke and fire sent the Falcon 9 and Thaicom 8 telecommunications satellite skyward, the first stage booster successfully soft landed on a platform at sea.

Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: John Kraus
Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: John Kraus

Having survived the utterly harsh and unforgiving rigors of demanding launch environments and a daring high velocity reentry, SpaceX engineers meticulously targeted the tiny ocean going ASDS vessel.

The diminutive ocean landing platform measures only about 170 ft × 300 ft (52 m × 91 m).

“Of Course I Still Love You” is named after a starship from a novel written by Iain M. Banks.

OCISLY was stationed approximately 420 miles (680 kilometers) off shore and east of Cape Canaveral, Florida surrounded by the vastness of the Atlantic Ocean.

Because the launch was target Thaicom-8 to GTO, the first stage was traveling at some 6000 kph at the time of separation from the second stage.

Thus the booster was subject to extreme velocities and re-entry heating and a successful landing would be extremely difficult – but not impossible.

Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Just 3 weeks ago SpaceX accomplished the same sea landing feat from the same type trajectory following the launch of the Japanese JCSAT-14 on May 6.

The May 6 landing was the first fully successful sea landing from a GTO launch, brilliantly accomplished by SpaceX engineers.

With a total of 4 recovered boosters, SpaceX is laying the path to rocket reusability and Musk’s dream of slashing launch costs – by 30% initially and much much more down the road.

Thaicom-8 was built by aerospace competitor Orbital ATK, based in Dulles, VA. It will support Thailand’s growing broadcast industry and will provide broadcast and data services to customers in South Asia, Southeast Asia and Africa.

Thaicom-8 is the fifth operational satellite for Thaicom.

It now enters a 30-day testing phase, says Orbital ATK.

Launch of SpaceX Falcon 9 carrying Thaicom-8 to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

The Falcon 9 launch is the 5th this year for SpaceX.

Watch for Ken’s continuing on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: John Kraus
Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: John Kraus
SpaceX Falcon 9 awaits launch to deliver Thaicom-8 communications satellite to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
SpaceX Falcon 9 awaits launch to deliver Thaicom-8 communications satellite to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 aloft with Thaicom-8 communications satellite after afternoon liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 aloft with Thaicom-8 communications satellite after afternoon liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL on May 27, 2016. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 streaks to orbit after launch on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 streaks to orbit after launch on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Prelaunch view of SpaceX Falcon 9 awaiting launch on May 27, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Lane Hermann
Prelaunch view of SpaceX Falcon 9 awaiting launch on May 27, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann
Streak shot of SpaceX Falcon 9 launching JCSAT-14 from 1st fully successful droneship landing on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: John Kraus
Streak shot of SpaceX Falcon 9 launching JCSAT-14 from 1st fully successful droneship landing from GTO on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: John Kraus
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
 SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL.  Credit: Melissa Bayles

SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL. Credit: Melissa Bayles
 SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL.  Credit: Melissa Bayles

SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL. Credit: Melissa Bayles