Amazing Time-lapse Shows Recovered SpaceX Falcon 9 Moving To Land After Port Canaveral Arrival

First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 10, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. See Time-lapse below. Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 11, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 10, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

The recovered SpaceX first stage booster that nailed a spectacular middle-of-the-night touchdown at sea last week sailed back to Port Canaveral, Florida, late Monday and was transferred by crane on Tuesday from the drone ship to land – as seen in an amazing time-lapse video and photos, shown above and below and obtained by Universe Today.

The exquisite up close time-lapse sequence shows technicians carefully hoisting the 15-story-tall spent booster from the drone ship barge onto a work pedestal on land some 12 hours after arriving back in port.

The time-lapse imagery (below) of the booster’s removal from the drone ship was captured by my space photographer friend Jeff Seibert on Tuesday, May 10.

Video Caption: 20X time-lapse of the first stage booster from the SpaceX JCSAT-14 launch being transferred on May 10, 2016 from the autonomous drone ship “Of Course I Still Love You” (OCISLY) to a work pedestal on land 12 hours after arriving at the dock. Credit: Jeff Seibert

Towards the end of the video there is a rather humorous view of the technicians climbing in unison to the bottom of the hoisted Falcon.

“I particularly like the choreographed ascent by the crew to the base of the Falcon 9 near the end of the move video,” Seibert told Universe Today.

The move took place from 11:55 AM until 12:05 PM, Seibert said.

First stage booster from the SpaceX JCSAT-14 launch hoisted by crane on May 10, 2016 from drone ship to work pedestal on land 12 hours after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch hoisted by crane on May 11, 2016 from drone ship to work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

The booster was towed into the space coast port around 11 p.m. Monday night, as seen in further up close images captured by my space photographer friend Julian Leek.

Leek also managed to capture a stunningly unique view of the rocket floating atop the barge when it was still out at sea and some 5 miles off shore waiting to enter the port at a safe time after most of the cruise ships had departed – as I reported earlier here.

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016.  Credit:  Julian Leek
SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016. Credit: Julian Leek

The 156 foot tall booster safely soft landed on the drone ship named “Of Course I Still Love You” or “OCISLY” barely nine minutes after liftoff of the SpaceX Falcon 9 last week on a mission to deliver the Japanese JCSAT-14 telecom satellite to a Geostationary Transfer Orbit (GTO).

The upgraded SpaceX Falcon 9 soared to orbit on May 6, roaring to life with 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The first stage then carried out a propulsive soft landing on the ocean going platform located some 400 miles off the east coast of Florida.

To date SpaceX has recovered 3 Falcon 9 first stages. But this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

The first rocket was flying faster and at a higher altitude at the time of seperatoin from the second stage and thus was much more difficult to slow down and maneuver back to the ocean based platform.

Thus SpaceX officials and CEO Elon Musk had been openly doubtful of a successful outcome for this landing attempt.

“First landed booster from a GTO-class mission (final spacecraft altitude will be about 36,000 km),” tweeted SpaceX CEO and founder Elon Musk.

The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

Up closse view of SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016.  Credit:  Julian Leek
Up close view of SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016. Credit: Julian Leek

The landing counts as another stunning success for Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.

The next step is to defuel the booster and remove the landing legs. Thereafter it will be tilted and lowered horizontally and then be placed onto a multi-wheeled transport for shipment back to SpaceX launch facilities at Cape Canaveral for refurbishment, exhaustive engine and structural testing.

The newly recovered first stage will join a fleet of two others recovered last December and in April.

“May need to increase size of rocket storage hangar,” tweeted Musk.

If all goes well the recovered booster will eventually be reflown.

The next SpaceX commercial launch is tentatively slated for the late May/early June timeframe.

Up close look at grid fins from recovered first stage booster from the SpaceX JCSAT-14 launch after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
Up close look at grid fins from recovered first stage booster from the SpaceX JCSAT-14 launch after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port.  Copyright:  Julian Leek
SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port. Copyright: Julian Leek
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

SpaceX Dragon Returns to Earth After Splashdown with Critical NASA Science

A SpaceX Dragon cargo spacecraft splashed down in the Pacific Ocean at 2:51 p.m. EDT today, May 11, with more than 3,700 pounds of NASA cargo, science and technology demonstration samples from the International Space Station. Credit: SpaceX
A SpaceX Dragon cargo spacecraft splashed down in the Pacific Ocean at 2:51 p.m. EDT today, May 11, with more than 3,700 pounds of NASA cargo, science and technology demonstration samples from the International Space Station.  Credit: NASA
A SpaceX Dragon cargo spacecraft splashed down in the Pacific Ocean at 2:51 p.m. EDT today, May 11, with more than 3,700 pounds of NASA cargo, science and technology demonstration samples from the International Space Station. Credit: SpaceX

A SpaceX cargo Dragon spacecraft loaded with nearly two tons of critical NASA science and technology experiments and equipment returned to Earth this afternoon, Wednesday, May 11, safely splashing down in the Pacific Ocean – and bringing about a successful conclusion to its mission to the International Space Station (ISS) that also brought aloft a new room for the resident crew.

Following a month long stay at the orbiting outpost, the unmanned Dragon was released from the grip of the stations Canadian-built robotic arm at 9:19 a.m. EDT by European Space Agency (ESA) astronaut Tim Peake.

After being detached from its berthing port at the Earth-facing port on the stations Harmony module by ground controllers, Peake commanded the snares at the terminus of the 57 foot long (19 meter long) Canadarm2 to open – as the station was soaring some 260 miles (418 kilometers) over the coast of Australia southwest of Adelaide.

Dragon backed away and soon departed after executing a series of three departure burns and maneuvers to move beyond the 656-foot (200-meter) “keep out sphere” around the station.

European Space Agency astronaut Tim Peake captured this photograph of the SpaceX Dragon cargo spacecraft as it undocked from the International Space Station on May 11, 2016. The spacecraft was released from the station’s robotic arm at 9:19 a.m. EDT. Following a series of departure burns and maneuvers Dragon returned to Earth for a splashdown in the Pacific Ocean at 2:51 p.m., about 261 miles southwest of Long Beach, California.  Credit: NASA
European Space Agency astronaut Tim Peake captured this photograph of the SpaceX Dragon cargo spacecraft as it undocked from the International Space Station on May 11, 2016. Following a series of departure burns Dragon returned to Earth for a splashdown in the Pacific Ocean at 2:51 p.m., about 261 miles southwest of Long Beach, California. Credit: NASA

“The Dragon spacecraft has served us well, and it’s good to see it departing full of science, and we wish it a safe recovery back to planet Earth,” Peake said.

Dragon fired its braking thrusters to initiate reentry back into the Earth’s atmosphere, and survived the scorching 3000+ degree F temperatures for the plummet back home.

A few hours after departing the ISS, Dragon splashed down in the Pacific Ocean at 2:51 p.m. EDT today, descending under a trio of huge orange and white main parachutes about 261 miles southwest of Long Beach, California.

“Good splashdown of Dragon confirmed, carrying thousands of pounds of @NASA science and research cargo back from the @Space_Station,” SpaceX notified via Twitter.

It was loaded with more than 3,700 pounds of NASA cargo, science and technology demonstration samples including a final batch of human research samples from former NASA astronaut Scott Kelly’s historic one-year mission that concluded in March.

“Thanks @SpaceX for getting our science safely back to Earth! Very important research,” tweeted Kelly soon after the ocean splashdown.

Among the study samples returned are those involving Biochemical Profile, Cardio Ox, Fluid Shifts, Microbiome, Salivary Markers and the Twins Study.

The goal of Kelly’s one-year mission was to support NASA’s plans for a human ‘Journey to mars’ in the 2030s. Now back on the ground Kelly continues to support the studies as a human guinea pig providing additional samples to learn how the human body adjusts to weightlessness, isolation, radiation and the stress of long-duration spaceflight.

Among the other items returned was a faulty spacesuit worn by NASA astronaut Tim Kopra. It will be analyzed by engineers to try and determine why a small water bubble formed inside Kopra’s helmet during his spacewalk in January that forced it to end prematurely as a safety precaution.

Dragon was plucked from the ocean by SpaceX contracted recovery ships and is now on its way to port in Long Beach, California.

“Dragon recovery team on site after nominal splashdown in Pacific,” said SpaceX.

“Some cargo will be removed and returned to NASA, and then be prepared for shipment to SpaceX’s test facility in McGregor, Texas, for processing,” says NASA.

Currently Dragon is the only station resupply craft capable of returning significant quantities of cargo and science samples to Earth.

The Dragon CRS-8 cargo delivery mission began with a spectacular blastoff atop an upgraded version of the two stage SpaceX Falcon 9 rocket, boasting over 1.5 million pounds of thrust on Friday, April 8 at 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The primary goal of the Falcon 9 launch was carrying the SpaceX Dragon CRS-8 cargo freighter to low Earth orbit on a commercial resupply delivery mission for NASA to the International Space Station (ISS).

Relive the launch via this video of the SpaceX Falcon 9/Dragon CRS-8 liftoff from my video camera placed at the pad:

Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com

The SpaceX commercial cargo freighter was jam packed with more than three and a half tons of research experiments, essential crew supplies and a new experimental inflatable habitat for it deliver run.

After a two day orbital chase it reached the ISS and the gleeful multinational crew of six astronauts and cosmonauts on Sunday, April 10.

Expedition 47 crew members Jeff Williams and Tim Kopra of NASA, Tim Peake of ESA (European Space Agency) and cosmonauts Yuri Malenchenko, Alexey Ovchinin and Oleg Skripochka of Roscosmos are currently living aboard the orbiting laboratory.

CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.

In a historic first, the arrival of the SpaceX Dragon cargo spacecraft marked the first time that two American cargo ships are simultaneously docked to the ISS. The Orbital ATK Cygnus CRS-6 cargo freighter arrived two weeks earlier on March 26 and is now installed at a neighboring docking port on the Unity module.

The Dragon spacecraft delivered almost 7,000 pounds of cargo, including the Bigelow Expandable Activity Module (BEAM), to the orbital laboratory which was carried to orbit inside the Dragon’s unpressurized truck section.

BEAM is a prototype inflatable habitat that the crew plucked from the Dragon’s truck with the robotic arm for installation on a side port of the Tranquility module on April 16.

Robotic arm attaches BEAM inflatable habitat module to International Space Station on April 16, 2016. Credit: NASA/Tim Kopra
Robotic arm attaches BEAM inflatable habitat module to International Space Station on April 16, 2016. Credit: NASA/Tim Kopra

Minutes after the successful April 8 launch, SpaceX accomplished their secondary goal – history’s first upright touchdown of a just flown rocket onto a droneship at sea.

The recovered booster arrived back at Port Canaveral a few days later and was transported back to the firms processing hanger at the Kennedy Space Center (KSC) for testing and eventual reflight.

Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: Julian Leek

The next NASA contracted cargo launch to the ISS by SpaceX is currently slated for late June from Cape Canaveral.

The next Orbital ATK Cygnus cargo launch is slated for July from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

This artist’s concept depicts the Bigelow Expandable Activity Module attached to the International Space Station’s Tranquility module. Credits: Bigelow Aerospace
This artist’s concept depicts the Bigelow Expandable Activity Module attached to the International Space Station’s Tranquility module.
Credits: Bigelow Aerospace

Recovered SpaceX Falcon 9 Booster Headed Back to Port: Launch/Landing – Photos/Videos

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port. Copyright: Julian Leek
Recovered Falcon 9 first stage after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

The SpaceX Falcon 9 first stage booster that successfully launched a Japanese satellite to a Geostationary Transfer Orbit (GTO) just 3 days ago and then nailed a safe middle of the night touchdown on a drone ship at sea minutes minutes later, is headed back to port and may arrive overnight or soon thereafter.

The 156 foot tall booster was spotted offshore earlier today while being towed back to her home port at Port Canaveral, Florida.

The SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket is lurking off Port Canaveral waiting to enter the port until after the cruise ships depart for safety reasons. Pictured above at 7:40 a.m.

The upgraded SpaceX Falcon 9 soared to orbit on May 6, roaring to life with 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

To date SpaceX has recovered 3 Falcon 9 first stages. But this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

“First landed booster from a GTO-class mission (final spacecraft altitude will be about 36,000 km),” tweeted SpaceX CEO and founder Elon Musk.

Musk was clearly ecstatic with the result, since SpaceX officials had been openly doubtful of a successful outcome with the landing.

Barely nine minutes after liftoff the Falcon 9 first stage carried out a propulsive soft landing on an ocean going platform located some 400 miles off the east coast of Florida.

The drone ship was named “Of Course I Still Love You.”

The Falcon 9 landed dead center in the bullseye.

Check out the incredible views herein from SpaceX of the Falcon 9 sailing serenely atop the “Of Course I Still Love You.”

Base of Recovered Falcon 9 first stage with landing legs after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Base of Recovered Falcon 9 first stage with landing legs after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Relive the launch through these pair of videos from remote video cameras set at the SpaceX launch pad 40 facility.

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on 5/6/2016 Pad 40 CCAFS. Credit: Jeff Seibert/AmericaSpace

The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

The landing counts as nother stunning success for Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.

Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Unveiled Webb Telescope Mirrors Mesmerize in ‘Golden’ Glory

All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com
All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.  The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com
All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

NASA GODDARD SPACE FLIGHT CENTER, MD – It’s Mesmerizing ! That’s the overwhelming feeling expressed among the fortunate few setting their own eyeballs on the newly exposed golden primary mirror at the heart of NASA’s mammoth James Webb Space Telescope (JWST) – a sentiment shared by the team building the one-of-its-kind observatory and myself during a visit this week by Universe Today.

“The telescope is cup up now [concave]. So you see it in all its glory!” said John Durning, Webb Telescope Deputy Project Manager, in an exclusive interview with Universe Today at NASA’s Goddard Space Flight Center on Tuesday, May 3, after the covers were carefully removed just days ago from all 18 primary mirror segments and the structure was temporarily pointed face up.

“The entire mirror system is checked out, integrated and the alignment has been checked.”

Up close side-view of newly exposed gold coated primary mirrors installed onto mirror backplane holding structure of  NASA’s James Webb Space Telescope inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.   Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms.  Credit: Ken Kremer/kenkremer.com
Up close side-view of newly exposed gold coated primary mirrors installed onto mirror backplane holding structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms. Credit: Ken Kremer/kenkremer.com

It’s a banner year for JWST at Goddard where the engineers and technicians are well into the final assembly and integration phase of the optical and science instrument portion of the colossal observatory that will revolutionize our understanding of the cosmos and our place it in. And they are moving along at a rapid pace.

JWST is the scientific successor to NASA’s 25 year old Hubble Space Telescope. It will become the biggest and most powerful space telescope ever built by humankind after it launches 30 months from now.

The flight structure for the backplane assembly truss that holds the mirrors and science instruments arrived at Goddard last August from Webb prime contractor Northrop Grumman Aerospace Systems in Redondo Beach, California.

The painstaking assembly work to piece together the 6.5 meter diameter primary mirror began just before the Thanksgiving 2015 holiday, when the first unit was successfully installed onto the central segment of the mirror holding backplane assembly.

Technicians from Goddard and Harris Corporation of Rochester, New York then methodically populated the backplane assembly one-by-one, sequentially installing the last primary mirror segment in February followed by the single secondary mirror at the top of the massive trio of mirror mount booms and the tertiary and steering mirrors inside the Aft Optics System (AOS).

Up close view shows cone shaped Aft Optics Subsystem (AOS) standing at center of Webb telescopes 18 segment primary mirror at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.  ISIM science instrument module will be installed inside truss structure below.  Credit: Ken Kremer/kenkremer.com
Up close view shows cone shaped Aft Optics Subsystem (AOS) standing at center of Webb telescopes 18 segment primary mirror at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. ISIM science instrument module will be installed inside truss structure below. Credit: Ken Kremer/kenkremer.com

Everything proceeded according to the meticulously choreographed schedule.

“The mirror installation went exceeding well,” Durning told Universe Today.

“We have maintained our schedule the entire time for installing all 18 primary mirror segments. Then the center section, which is the cone in the center, comprising the Aft Optics System (AOS). We installed that two months ago. It went exceedingly well.”

The flight structure and backplane assembly serve as the $8.6 Billion Webb telescopes backbone.

The next step is to install the observatory’s quartet of state-of-the-art research instruments, a package known as the ISIM (Integrated Science Instrument Module), in the truss structure over the next few weeks.

“The telescope is fully integrated and we are now doing the final touches to get prepared to accept the instrument pack which will start happening later this week,” Durning explained.

The integrated optical mirror system and ISIM form Webb’s optical train.

“So we are just now creating the new integration entity called OTIS – which is a combination of the OTE (Optical Telescope Assembly) and the ISIM (Integrated Science Instrument Module) together.”

“That’s essentially the entire optical train of the observatory!” Durning stated.

“It’s the critical photon path for the system. So we will have that integrated over the next few weeks.”

The combined OTIS entity of mirrors, science module and backplane truss weighs 8786 lbs (3940 kg) and measures 28’3” (8.6m) x 8”5” (2.6 m) x 7”10“ (2.4 m).

Gold coated primary mirrors newly exposed on spacecraft structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.   Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms.  Credit: Ken Kremer/kenkremer.com
Gold coated primary mirrors newly exposed on spacecraft structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms. Credit: Ken Kremer/kenkremer.com

After OTIS is fully integrated, engineers and technicians will spend the rest of the year exposing it to environmental testing, adding the thermal blanketry and testing the optical train – before shipping the huge structure to NASA’s Johnson Space Center.

“Then we will send it to NASA’s Johnson Space Center (JSC) early next year to do some cryovac testing, and the post environmental test verification of the optical system,” During elaborated.

“In the meantime Northrup Grumman is finishing the fabrication of the sunshield and finishing the integration of the spacecraft components into their pieces.”

“Then late in 2017 is when the two pieces – the OTIS configuration and the sunshield configuration – come together for the first time as a full observatory. That happens at Northrup Grumman in Redondo Beach.”

Webb’s optical train is comprised of four different mirrors. We discussed the details of the mirrors, their installation, and testing.

“There are four mirror surfaces,” Durning said.

“We have the large primary mirror of 18 segments, the secondary mirror sitting on the tripod above it, and the center section looking like a pyramid structure [AOS] contains the tertiary mirror and the fine steering mirror.”

“The AOS comes as a complete package. That got inserted down the middle [of the primary mirror].”

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.

In space, the folded mirror structure will unfold into side by side sections and work together as one large 21.3-foot (6.5-meter) mirror, unprecedented in size and light gathering capability.

The lone rounded secondary mirror sits at the top of the tripod boom over the primary.

The tertiary mirror and fine steering mirror sit in the Aft Optics System (AOS), a cone shaped unit located at the center of the primary mirror.

“So how it works is the light from the primary mirror bounces up to the secondary, and the secondary bounces down to the tertiary,” Durning explained.

“And then the tertiary – which is within that AOS structure – bounces down to the steering mirror. And then that steering mirror steers the beams of photons to the pick off mirrors that sit below in the ISIM structure.”

“So the photons go through that AOS cone. There is a mask at the top that cuts off the path so we have a fixed shape of the beam coming through.”

“It’s the tertiary mirror that directs the photons to the fine steering mirror. The fine steering mirror then directs it [the photons] to the pick off mirrors that sit below in the ISIM structure.”

So the alignment between the AOS system and the telescopes primary and secondary mirrors is incredibly critical.

“The AOS tertiary mirror catches the light [from the secondary mirror] and directs the light to the steering mirror. The requirements for alignment were just what we needed. So that was excellent progress.”

“So the entire mirror system is checked out. The system has been integrated and the alignment has been checked.”

Webb’s golden mirror structure was tilted up for a very brief period this week on May 4 as seen in this NASA time-lapse video:

The 18-segment primary mirror of NASA’s James Webb Space Telescope was raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4, 2016. Credit: NASA

The gargantuan observatory will significantly exceed the light gathering power of NASA’s Hubble Space Telescope (HST) – currently the most powerful space telescope ever sent to space.

With the mirror structure complete, the next step is ISIM science module installation.

To accomplish that, technicians carefully moved the Webb mirror structure this week into the clean room gantry structure.

As shown in this time-lapse video we created from Webbcam images, they tilted the structure vertically, flipped it around, lowered it back down horizontally and then transported it via an overhead crane into the work platform.

Time-lapse showing the uncovered 18-segment primary mirror of NASA’s James Webb Space Telescope being raised into vertical position, flipped and lowered upside down to horizontal position and then moved to processing gantry in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4/5, 2016. Images: NASA Webbcam. Time-lapse by Ken Kremer/kenkremer.com/Alex Polimeni

The telescope will launch on an Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

More about ISIM in the next story.

Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

View showing actual flight structure of mirror backplane unit for NASA's James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration.  JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md.  Credit: Ken Kremer/kenkremer.com
View showing actual flight structure of mirror backplane unit for NASA’s James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration. JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com
All 18 primary mirrors of NASA’s James Webb Space Telescope are seen fully installed on the backplane structure by technicians using a robotic arm (center) inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credit: Ken Kremer/kenkremer.com
All 18 primary mirrors of NASA’s James Webb Space Telescope are seen fully installed on the backplane structure by technicians using a robotic arm (center) inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: Ken Kremer/kenkremer.com
John Durning/Webb Telescope Deputy Project Manager, and Ken Kremer/Universe Today discuss assembly process of NASA’s James Webb Space Telescope at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credit: Ken Kremer/kenkremer.com
John Durning/Webb Telescope Deputy Project Manager, and Ken Kremer/Universe Today discuss assembly process of NASA’s James Webb Space Telescope at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: Ken Kremer/kenkremer.com
The James Webb Space Telescope. Image Credit: NASA/JPL
The James Webb Space Telescope.
Image Credit: NASA/JPL

SpaceX Scores Double Whammy with Nighttime Delivery of Japanese Comsat to Orbit and 2nd Successful Ocean Landing

Streak shot of SpaceX Falcon 9 delivering JCSAT-14 Japanese communications satellite to orbit after blastoff on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX
Streak shot of SpaceX Falcon 9 delivering JCSAT-14 Japanese communications satellite to orbit after blastoff on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Streak shot of SpaceX Falcon 9 delivering JCSAT-14 Japanese communications satellite to orbit after blastoff on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

SpaceX scored a double whammy of successes this morning, May 6, following the stunning nighttime launch of a Japanese comsat streaking to orbit on the firm’s Falcon 9 rocket and nailing the breathtaking touchdown of the spent first stage just minutes later – furthering the goal of rocket reusability

Under clear Florida starlight, the upgraded SpaceX Falcon 9 soared to orbit on 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT this morning from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The spectacular launch and dramatic landing were both broadcast in real time on a live launch webcast from SpaceX.

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Dawn Leek Taylor
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Dawn Leek Taylor

Today’s Falcon launch was the 4th this year for SpaceX and took place less than 4 weeks after the last launch (on an ISS cargo mission for NASA) and sea based barge landing.

Barely nine minutes after liftoff the 156 foot tall Falcon 9 first stage carried out a propulsive soft landing on an ocean going platform located some 400 miles off the east coast of Florida.

“First stage landing on drone ship in Atlantic confirmed,” said a SpaceX official during the webcast, which showed a glowing body approaching the horizon.

“Woohoo!!” tweeted SpaceX CEO and billionaire founder Elon Musk.

This marked the second successful landing at sea for SpaceX following the prior history making touchdown success last month.

“May need to increase size of rocket storage hangar,” tweeted Musk.

“Yeah, this was a three engine landing burn, so triple deceleration of last flight. That’s important to minimize gravity losses.”

Falcon 9 first stage touchdown on ocean platform after successful JCSAT-14 launch on May 6, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Falcon 9 first stage touchdown on ocean platform after successful JCSAT-14 launch on May 6, 2016 from Cape Canaveral Air Force Station, Fl. Credit: SpaceX

The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

After a brief reignition of the second stage, the spacecraft successfully separated from the upper stage and was deployed some 32 minutes after liftoff – as seen via the live SpaceX webcast.

“The Falcon 9 second stage delivered JCSAT-14 to a Geosynchronous Transfer Orbit,” said SpaceX.

Via a fleet of 15 satellites, Tokyo, Japan based SKY Perfect JSAT provides high quality satellite communications to its customers.

The JCSAT-14 communications satellite was designed and manufactured by Space Systems/Loral for SKY Perfect JSAT Corporation.

It will succeed and replace the JCSAT-2A satellite currently providing coverage to Asia, Russia, Oceania and the Pacific Islands.

JCSAT-14 is equipped with C-band and Ku-Band transponders that will extend JCSAT-2A’s geographical footprint across the Asia-Pacific region.

The JCSAT-14 communications satellite from SKY Perfect JSAT Corporation stands ready for encapsulation in the Falcon 9 payload fairing. Credit: SpaceX
The JCSAT-14 communications satellite from SKY Perfect JSAT Corporation stands ready for encapsulation in the Falcon 9 payload fairing. Credit: SpaceX

The Falcon 9 soft landed on the “Of Course I Still Love You” drone ship positioned some 400 miles (650 kilometers) off shore in the Atlantic Ocean.

Prior to the launch, SpaceX officials had rated the chances of a successful landing as “unlikely” due to “this launch mission’s GTO destination, the first stage will be subject to extreme velocities and re-entry heating.”

“Rocket reentry is a lot faster and hotter than last time, so odds of making it are maybe even, but we should learn a lot either way,” said Musk.

Nevertheless, despite those difficulties, the landing turned out to be another stunning success for SpaceX CEO Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX
Prelaunch view of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Lane Hermann
Prelaunch view of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann
SpaceX JCSAT-14 mission patch. Credit: SpaceX
SpaceX JCSAT-14 mission patch. Credit: SpaceX

SpaceX Set for Night Launch of Japanese Satellite and Drone Ship Landing Friday, May 6 – Watch Live

SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo. Credit: Ken Kremer/kenkremer
SpaceX Falcon 9 rocket stands poised for launch on May 6 at Cape Canaveral Air Force Station, FL, similar to this file photo.  Credit: Ken Kremer/kenkremer
A SpaceX Falcon 9 rocket stands poised for launch on May 6, 2016 at Cape Canaveral Air Force Station, FL, similar to this file photo. Credit: Ken Kremer/kenkremer

Less than 4 weeks after launching a Dragon cargo ship for NASA to the International Space Station (ISS), SpaceX is poised for their next nearly simultaneous Falcon 9 rocket launch and first stage landing attempt for what promises to be a spectacular skyshow shortly after midnight on Friday, May 6.

The commercial mission involves lofting the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

Following a day’s delay due to inclement weather, SpaceX is now targeting an overnight launch of JCSAT-14 atop the upgraded version of the Falcon 9 for Friday, May 6 at 1:21:00 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The Falcon 9 launch is the 4th this year for SpaceX.

You can watch the launch live via a special live webcast from SpaceX.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 1:00 a.m. EDT – at SpaceX.com/webcast

The 229 foot tall Falcon 9 rocket has a 2 hour launch window that extends until Friday, May 6 at 3:21 a.m. EDT.

The JCSAT-14 communications satellite from SKY Perfect JSAT Corporation stands ready for encapsulation in the Falcon 9 payload fairing. Credit: SpaceX
The JCSAT-14 communications satellite from SKY Perfect JSAT Corporation stands ready for encapsulation in the Falcon 9 payload fairing. Credit: SpaceX

The weather currently looks very good. Air Force meteorologists are predicting a 90 percent chance of favorable weather conditions at launch time Friday morning.

In cases of any delays for technical or weather issues, a backup launch opportunity exits 24 later on Saturday at the same time.

The rocket has been rolled out to the launch pad on the transporter and raised to its vertical position.

The path to launch was cleared following this past weekend’s successful hold down static fire test of the Falcon 9 first stage Merlin 1-D engines. SpaceX routinely performs the hotfire test to ensure the ready is ready.

Via a fleet of 15 satellites, Tokyo, Japan based SKY Perfect JSAT provides high quality satellite communications to its customers.

The JCSAT-14 communications satellite was designed and manufactured by Space Systems/Loral for SKY Perfect JSAT Corporation.

It will succeed and replace the JCSAT-2A satellite currently providing coverage to Asia, Russia, Oceania and the Pacific Islands.

JCSAT-14 satellite will separate from the second stage and will be deployed about 32 minutes after liftoff from Cape Canaveral. The staging events are usually broadcast live by SpaceX via stunning imagery from onboard video cameras.

A secondary objective is to try and recover the first stage booster via a propulsive landing on an ocean-going platform.

During the last SpaceX launch on April 8, the first stage did successfully soft land on the ship at sea for the first time. But the rocket was moving somewhat slower and aiming for low Earth orbit.

This booster is again equipped with 4 landing legs and 4 grid fins.

Following stage separation, SpaceX will try to soft land the first stage on the “Of Course I Still Love You” drone ship positioned a few hundred miles off shore in the Atlantic Ocean.

But SpaceX officials say “a successful landing is unlikely” because with “this mission’s GTO destination, the first stage will be subject to extreme velocities and re-entry heating.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX JCSAT-14 mission patch. Credit: SpaceX
SpaceX JCSAT-14 mission patch. Credit: SpaceX

ExoMars 2018 Rover Postponed to 2020 Launch

ESA Exomars rover launch has been rescheduled to launch two years later in 2020. Credit:ESA
ESA Exomars rover launch has been rescheduled to launch two years later in 2020.  Credit:ESA
ESA Exomars rover launch has been rescheduled to launch two years later in 2020. Credit:ESA

Liftoff of the ExoMars 2018 rover mission currently under development jointly by Europe and Russia has just been postponed for two years to 2020, according to an announcement today, May 2, from the European Space Agency (ESA) and the Russian space agency Roscosmos.

The delay was forced by a variety of technical and funding issues that ate up the schedule margin to enable a successful outcome for what will be Europe’s first Mars rover. The goal is to search for signs of life.

“Taking into account the delays in European and Russian industrial activities and deliveries of the scientific payload, a launch in 2020 would be the best solution,” ESA explained in a statement today.

The ambitious ExoMars rover is the second of two joint Euro-Russian missions to explore the Red Planet. It is equipped with an ESA deep driller and a NASA instrument to search for preserved organic molecules.

The first mission known as ExoMars 2016 was successfully launched last month from the Baikonur Cosmodrome in Kazakhstan atop a Russian Proton-M rocket on March 14.

The renamed ExoMars 2020 mission involves a European-led rover and a Russian-led surface platform and is also slated to blastoff on an Russian Proton rocket.

Roscosmos and ESA jointly decided to move the launch to the next available Mars launch window in July 2020. The costs associated with the delay are not known.

ExoMars 2016 lifted off on a Proton-M rocket from Baikonur, Kazakhstan at 09:31 GMT on 14 March 2016.   Copyright ESA–Stephane Corvaja, 2016
ExoMars 2016 lifted off on a Proton-M rocket from Baikonur, Kazakhstan at 09:31 GMT on 14 March 2016. Copyright ESA–Stephane Corvaja, 2016

The delay means that the Euro-Russian rover mission will launch the same year as NASA’s 2020 rover.

The rover is being built by prime contractor Airbus Defense and Space in Stevenage, England.

The descent module and surface science package are provided by Roscosmos with some contributions by ESA.

Recognizing the potential for a delay, ESA and Roscosmos set up a tiger team in late 2015 to assess the best options.

“Russian and European experts made their best efforts to meet the 2018 launch schedule for the mission, and in late 2015, a dedicated ESA-Roscosmos Tiger Team, also including Russian and European industries, initiated an analysis of all possible solutions to recover schedule delays and accommodate schedule contingencies,” said ESA in the statement.

The tiger team reported their results to ESA Director General Johann-Dietrich Woerner and Roscosmos Director General Igor Komarov.

Woerner and Komarov then “jointly decided to move the launch to the next available Mars launch window in July 2020, and tasked their project teams to develop, in cooperation with the industrial contactors, a new baseline schedule aiming towards a 2020 launch. Additional measures will also be taken to maintain close control over the activities on both sides up to launch.”

The ExoMars 2016 interplanetary mission is comprised of the Trace Gas Orbiter (TGO) and the Schiaparelli lander. The spacecraft are due to arrive at Mars in October 2016.

The ExoMars craft releases the Schiaparelli lander in October in this artist's view. Credit: ESA
The ExoMars craft releases the Schiaparelli lander in October in this artist’s view. Credit: ESA

The goal of TGO is to search for possible signatures of life in the form of trace amounts of atmospheric methane on the Red Planet.

The main purpose of Schiaparelli is to demonstrate key entry, descent, and landing technologies for the follow on 2nd ExoMars mission that will land the first European rover on the Red Planet.

The now planned 2020 ExoMars mission will deliver an advanced rover to the Red Planet’s surface. It is equipped with the first ever deep driller that can collect samples to depths of 2 meters (seven feet) where the environment is shielded from the harsh conditions on the surface – namely the constant bombardment of cosmic radiation and the presence of strong oxidants like perchlorates that can destroy organic molecules.

ExoMars was originally a joint NASA/ESA project.

But thanks to hefty cuts to NASA’s budget by Washington DC politicians, NASA was forced to terminate the agencies involvement after several years of extremely detailed work and withdraw from participation as a full partner in the exciting ExoMars missions.

NASA is still providing the critical MOMA science instrument that will search for organic molecules.

Thereafter Russia agreed to take NASA’s place and provide the much needed funding and rockets for the pair of launches in March 2016 and May 2018.

TGO will also help search for safe landing sites for the ExoMars 2020 lander and serve as the all important data communication relay station sending signals and science from the rover and surface science platform back to Earth.

ExoMars 2016 is Europe’s most advanced mission to Mars and joins Europe’s still operating Mars Express Orbiter (MEX), which arrived back in 2004, as well as a fleet of NASA and Indian probes.

The Trace Gas Orbiter (TGO) and Schiaparelli lander arrive at Mars on October 19, 2016.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Scientists Assemble Fresh Global Map of Pluto Comprising Sharpest Flyby Images

NASA’s New Horizons mission science team has produced this updated panchromatic (black-and-white) global map of Pluto. Credits: NASA/JHUAPL/SWRI
NASA’s New Horizons mission science team has produced this updated panchromatic (black-and-white) global map of Pluto. The map includes all resolved images of Pluto’s surface acquired at pixel resolutions ranging from 18 miles (30 kilometers) on the Charon-facing hemisphere (left and right edges of the map) to 770 feet (235 meters) on the hemisphere facing New Horizons during the closest approach on July 14, 2015 (map center).  Credits: NASA/JHUAPL/SWRI
NASA’s New Horizons mission science team has produced this updated panchromatic (black-and-white) global map of Pluto. Credits: NASA/JHUAPL/SWRI

The science team leading NASA’s New Horizons mission that unveiled the true nature of Pluto’s long hidden looks during the history making maiden close encounter last July, have published a fresh global map that offers the sharpest and most spectacular glimpse yet of the mysterious, icy world.

The newly updated global Pluto map is comprised of all the highest resolution images transmitted back to Earth thus far and provides the best perspective to date.

Click on the lead image above to enjoy Pluto revealed at its finest thus far. Click on this link to view the highest resolution version.

Prior to the our first ever flyby of the Pluto planetary system barely 8 months ago, the planet was nothing more than a fuzzy blob with very little in the way of identifiable surface features – even in the most powerful telescopic views lovingly obtained from the Hubble Space Telescope (HST).

Dead center in the new map is the mesmerizing heart shaped region informally known as Tombaugh Regio, unveiled in all its glory and dominating the diminutive world.

The panchromatic (black-and-white) global map of Pluto published by the team includes the latest images received as of less than one week ago on April 25.

The images were captured by New Horizons’ high resolution Long Range Reconnaissance Imager (LORRI).

The science team is working on assembling an updated color map.

During its closest approach at approximately 7:49 a.m. EDT (11:49 UTC) on July 14, 2015, the New Horizons spacecraft swoop to within about 12,500 kilometers (nearly 7,750 miles) of Pluto’s surface and about 17,900 miles (28,800 kilometers) from Charon, the largest moon.

The map includes all resolved images of Pluto’s surface acquired in the final week of the approach period ahead of the flyby starting on July 7, and continuing through to the day of closest approach on July 14, 2015 – and transmitted back so far.

The pixel resolutions are easily seen to vary widely across the map as you scan the global map from left to right – depending on which Plutonian hemisphere was closest to the spacecraft during the period of close flyby.
They range from the highest resolution of 770 feet (235 meters), at center, to 18 miles (30 kilometers) at the far left and right edges.

The Charon-facing hemisphere (left and right edges of the map) had a pixel resolution of 18 miles (30 kilometers).

“This non-encounter hemisphere was seen from much greater range and is, therefore, in far less detail,” noted the team.

However the hemisphere facing New Horizons during the spacecraft’s closest approach on July 14, 2015 (map center) had a far higher pixel resolution reaching to 770 feet (235 meters).

Coincidentally and fortuitously the spectacularly diverse terrain of Tombaugh Regio and the Sputnik Planum area of the hearts left ventricle with ice flows and volcanoes, mountains and river channels was in the region facing the camera and sports the highest resolution imagery.

See below a newly released shaded relief map of Sputnik Planum.

This new shaded relief view of the region surrounding the left side of Pluto’s heart-shaped feature – informally named Sputnik Planum – shows that the vast expanse of the icy surface is on average 2 miles (3 kilometers) lower than the surrounding terrain.  Angular blocks of water ice are “floating” in the bright deposits of softer, denser solid nitrogen.   Credits:  NASA/JHUAPL/SwRI
This new shaded relief view of the region surrounding the left side of Pluto’s heart-shaped feature – informally named Sputnik Planum – shows that the vast expanse of the icy surface is on average 2 miles (3 kilometers) lower than the surrounding terrain. Angular blocks of water ice are “floating” in the bright deposits of softer, denser solid nitrogen. Credits: NASA/JHUAPL/SwRI

“Sputnik Planum – shows that the vast expanse of the icy surface is on average 2 miles (3 kilometers) lower than the surrounding terrain. Angular blocks of water ice along the western edge of Sputnik Planum can be seen “floating” in the bright deposits of softer, denser solid nitrogen,” according to the team.

Even more stunning images and groundbreaking data will continue streaming back from New Horizons until early fall, across over 3 billion miles of interplanetary space.

Thus the global map of Pluto will be periodically updated.

Its taking over a year to receive the full complement of some 50 gigabits of data due to the limited bandwidth available from the transmitter on the piano-shaped probe as it hurtled past Pluto, its largest moon Charon and four smaller moons.

Pluto is the last planet in our solar system to be visited in the initial reconnaissance of planets by spacecraft from Earth since the dawn of the Space Age.

This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com
This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com

New Horizons remains on target to fly by a second Kuiper Belt Object (KBO) on Jan. 1, 2019 – tentatively named PT1, for Potential Target 1. It is much smaller than Pluto and was recently selected based on images taken by NASA’s Hubble Space Telescope.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Fuel Control Valve Faulted for Atlas Launch Anomaly, Flights Resume Soon

A United Launch Alliance (ULA) Atlas V rocket carrying the Orbital ATK Cygnus OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

A critical fuel control valve has been faulted for the Atlas V launch anomaly that forced a premature shutdown of the rockets first stage engines during its most recent launch of a Cygnus cargo freighter to the International Space Station (ISS) last month – that nevertheless was successful in delivering the payload to its intended orbit.

Having identified the root cause of the engine shortfall, workers for Atlas rocket builder United Launch Alliance (ULA), have now stacked the booster slated for the next planned liftoff in the processing facility at their Cape Canaveral launch pad, the company announced in a statement Friday.

The Atlas rockets Centaur upper stage fired longer than normal after the first stage anomaly, saving the day by making up for the significant lack of thrust and “delivering Cygnus to a precise orbit, well within the required accuracy,” ULA said.

ULA says it hopes to resume launches of the 20 story tall rocket as soon as this summer, starting with the MUOS-5 communications satellite payload for the U.S. Navy.

Following a painstaking investigation to fully evaluate all the data, the ULA engineering team “determined an anomaly with the RD-180 Mixture Ratio Control Valve (MRCV) assembly caused a reduction in fuel flow during the boost phase of the flight,” the company confirmed in a statement.

The Atlas V first stages are powered by the Russian-made RD AMROSS RD-180 engines. The dual nozzle powerplants have been completely reliable in 62 Atlas launches to date.

The RD-180s are fueled by a mixture of RP-1 kerosene and liquid oxygen stored in the first stage.

Up close view of dual nozzle RD-180 first stage engines firing during blastoff of United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer/kenkremer.com
Up close view of dual nozzle RD-180 first stage engines firing during blastoff of United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

The Centaur RL10C-1 second stage powerplant had to make up for a thrust and velocity deficiency resulting from a 6 second shorter than planned firing of the first stage RD-180 engines.

“The Centaur [upper stage] burned for longer than planned,” Lyn Chassagne, ULA spokesperson, told Universe Today.

Indeed Centaur fired for a minute longer than planned to inject Cygnus into its proper orbit.

“The first stage cut-off occurred approximately 6 seconds early, however the Centaur was able to burn an additional approximately 60 seconds longer and achieve mission success, delivering Cygnus to its required orbit,” said ULA.

MUOS-5 was originally supposed to blastoff on May 5. But the liftoff was put on hold soon after the Atlas V launch anomaly experienced during the March 22, 2016 launch of the Orbital ATK Cygnus OA-6 supply ship to the ISS for NASA.

Since then, ULA mounted a thorough investigation to determine the root cause and identify fixes to correct the problem with RD-180 Mixture Ratio Control Valve (MRCV) assembly, while postponing all Atlas V launches.

ULA has inspected, analyzed and tested their entire stockpile of RD-180 engines.

Last Friday, the Atlas V first stage for the MUOS-5 launch was erected inside ULA’s Vertical Integration Facility (VIF) at Space Launch Complex-41 on Cape Canaveral Air Force Station, Florida. The five solid motors have been attached and the Centaur is next.

In this configuration, known as Launch Vehicle on Stand (LVOS) operation, technicians can further inspect and confirm that the RD-180 engines are ready to support a launch.

The two stage Atlas V for MUOS-5 will launch in its most powerful 551 configuration with five solid rocket boosters attached to the first stage, a single engine Aerojet Rocketdyne RL10C-1 Centaur upper stage and a 5-meter-diameter payload fairing.

The RD-180s were supposed to fire for 255.5 seconds, or just over 4 minutes. But instead they shut down prematurely resulting in decreased velocity that had to be supplemented by the Centaur RL10C-1 to get to the intended orbit needed to reach the orbiting outpost.

The liquid oxygen/liquid hydrogen fueled Aerojet Rocketdyne RL10C-1 engine was planned to fire for 818 seconds or about 13.6 minutes. The single engine produces 22,900 lbf of thrust.

The Atlas V first and second stages are preprogrammed to swiftly react to a wide range of anomalous situations to account for the unexpected. The rocket and launch teams conduct countless simulations to react to off nominal situations.

“The Atlas V’s robust system design, software and vehicle margins enabled the successful outcome for this mission,” Chassagne said.

“As with all launches, we will continue to focus on mission success and work to meet our customer’s needs.”

ULA currently sports a year’s long manifest of future Atlas V launches in the pipeline. It includes a wide range of payloads for NASA, US and foreign governments, and military and commercial customers – all of who are depending on ULA maintaining its string of 106 straight launches with a 100% record of success since the company formed in 2006.

The Orbital ATK Cygnus CRS-6 space freighter was loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware for the orbital laboratory in support of over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.

Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22.  Credit: Ken Kremer/kenkremer.com
Inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, a Cygnus cargo spacecraft was being prepared for the Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus lifted off atop a United Launch Alliance Atlas V rocket on March 22. Credit: Ken Kremer/kenkremer.com

Cygnus successfully arrived and berthed at the ISS on March 26 as planned.

An exact date for the MUOS-5 launch has yet to be confirmed on the Eastern Range with the US Air Force.

ULA is in the process of coordinating launch dates with customers for their remaining Atlas V launches in 2016.

MUOS-4 US Navy communications satellite stowed inside huge 5 meter diameter payload fairing atop Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL set for launch on Sept. 2, 2015. EDT. Credit: Ken Kremer/kenkremer.com
MUOS-4 US Navy communications satellite stowed inside huge 5 meter diameter payload fairing atop Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL set for launch on Sept. 2, 2015. EDT. Credit: Ken Kremer/kenkremer.com

The 15,000 pound MUOS payload is a next-generation narrowband tactical satellite communications system designed to significantly improve ground communications for U.S. forces on the move.

ULA says they expect minimal impact and foresee completing all launches planned for 2016, including the top priority OSIRIS-REx asteroid mission for NASA which has a specific launch window requirement.

Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com
Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com
MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com

Curiosity Cores Hole in Mars at ‘Lubango’ Fracture Zone

Curiosity rover reached out with robotic arm and drilled into ‘Lubango’ outcrop target on Sol 1320, Apr. 23, 2016, in this photo mosaic stitched from navcam camera raw images and colorized. Lubango is located in the Stimson unit on the lower slopes of Mount Sharp inside Gale Crater. MAHLI camera inset image shows drill hole up close on Sol 1321. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Curiosity rover reached out with robotic arm and drilled into ‘Lubango’ outcrop target on Sol 1320, Apr. 23, 2016, in this photo mosaic stitched from navcam  camera raw images and colorized.  Lubango is located in the Stimson unit on the lower slopes of Mount Sharp inside Gale Crater.  MAHLI camera inset image shows drill hole up close on Sol 1321.  Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Curiosity rover reached out with robotic arm and drilled into ‘Lubango’ outcrop target on Sol 1320, Apr. 23, 2016, in this photo mosaic stitched from navcam camera raw images and colorized. Lubango is located in the Stimson unit on the lower slopes of Mount Sharp inside Gale Crater. MAHLI camera inset image shows drill hole up close on Sol 1321. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

NASA’s Curiosity Mars Science Laboratory (MSL) rover successfully bored a brand new hole in Mars at a tantalizing sandstone outcrop in the ‘Lubango’ fracture zone this past weekend on Sol 1320, Apr. 23, and is now carefully analyzing the shaken and sieved drill tailings for clues to Mars watery past atop the Naukluft Plateau.

“We have a new drill hole on Mars!” reported Ken Herkenhoff, Research Geologist at the USGS Astrogeology Science Center and an MSL science team member, in a mission update.

“All of the activities planned for last weekend have completed successfully.”

“Lubango” counts as the 10th drilling campaign since the one ton rover safely touched down on the Red Planet some 44 months ago inside the targeted Gale Crater landing site, following the nailbiting and never before used ‘sky crane’ maneuver.

After transferring the cored sample to the CHIMRA instrument for sieving it, a portion of the less than 0.15 mm filtered material was successfully delivered this week to the CheMin miniaturized chemistry lab situated in the rovers belly.

CheMin is now analyzing the sample and will return mineralogical data back to scientists on earth for interpretation.

The science team selected Lubango as the robots 10th drill target after determining that it was altered sandstone bedrock and had an unusually high silica content based on analyses carried out using the mast mounted ChemCam laser instrument.

Indeed the rover had already driven away for further scouting and the team then decided to return to Lubango after examining the ChemCam results. They determined the ChemCam and other data observation were encouraging enough – regarding how best to sample both altered and unaltered Stimson bedrock – to change course and drive backwards.

Lubango sits along a fracture in an area that the team dubs the Stimson formation, which is located on the lower slopes of humongous Mount Sharp inside Gale Crater.

This mid-afternoon, 360-degree panorama was acquired by the Mast Camera (Mastcam) on NASA's Curiosity Mars rover on April 4, 2016, as part of long-term campaign to document the context and details of the geology and landforms along Curiosity's traverse since landing in August 2012.  Credit: NASA/JPL-Caltech/MSSS
This mid-afternoon, 360-degree panorama was acquired by the Mast Camera (Mastcam) on NASA’s Curiosity Mars rover on April 4, 2016, as part of long-term campaign to document the context and details of the geology and landforms along Curiosity’s traverse since landing in August 2012. Credit: NASA/JPL-Caltech/MSSS

Since early March, the rover has been traversing along a rugged region dubbed the Naukluft Plateau.

“The team decided to drill near this fracture to better understand both the altered and unaltered Stimson bedrock,” noted Herkenhoff.

See our photo mosaic above showing the geologically exciting terrain surrounding Curiosity with its outstretched 7-foot-long (2-meter-long) robotic arm after completing the Lubango drill campaign on Sol 1320. The mosaic was created by the imaging team of Ken Kremer and Marco Di Lorenzo.

Its again abundantly clear from the images that beneath the rusty veneer of the Red Planet lies a greyish interior preserving the secrets of Mars ancient climate history.

Curiosity rover views ‘Lubango’ drill target up close in this MAHLI camera image taken on Sol 1321, Apr. 24, 2016, processed to enhance details. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Curiosity rover views ‘Lubango’ drill target up close in this MAHLI camera image taken on Sol 1321, Apr. 24, 2016, processed to enhance details. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer/kenkremer.com

The team then commanded Curiosity to dump the unsieved portion of the sample onto the ground and examine the leftover drill tailing residues with the Mastcam, Navcam, MAHLI multispectral characterization cameras and the APXS spectrometer. ChemCam is also being used to fire laser shots in the wall of the drill hole to make additional chemical measurements.

To complement the data from Lubango, scientists are now looking around the area for a suitable target of unaltered Stimson bedrock as the 11th drill target.

“The color information provided by Mastcam is really helpful in distinguishing altered versus unaltered bedrock,” explained MSL science team member Lauren Edgar, Research Geologist at the USGS Astrogeology Science Center, in a mission update.

The ChemCam laser has already shot at the spot dubbed “Oshikati,” a potential target for the next drilling campaign.

“On Sunday we will drive to our next drilling location, which is on a nearby patch of normal-looking Stimson sandstone,” wrote Ryan Anderson, planetary scientist at the USGS Astrogeology Science Center and a member of the ChemCam team on MSL in today’s (Apr. 28) mission update.

As time permits, the Navcam imager is also being used to search for dust devils.

As I reported here, Opportunity recently detected a beautiful looking dust devil on the floor of Endeavour crater on April 1. Dust devil detections by the NASA rovers are relatively rare.

Curiosity has been driving to the edge of the Naukluft Plateau to reach the interesting fracture zone seen in orbital data gathered from NASA’s Mars orbiter spacecraft.

Curiosity images Naukluft Plateau in this photo mosaic stitched from Mastcam camera raw images taken on Sol1296.  Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer/kenkremer.com
Curiosity images Naukluft Plateau in this photo mosaic stitched from Mastcam camera raw images taken on Sol1296. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer/kenkremer.com

The rover is almost finished crossing the Naukluft Plateau which is “the most rugged and difficult-to-navigate terrain encountered during the mission’s 44 months on Mars,” says NASA.

Prior to climbing onto the Naukluft Plateau the rover spent several weeks investigating sand dunes including the two story tall Namib dune.

Curiosity explores Red Planet paradise at Namib Dune during Christmas 2015 - backdropped by Mount Sharp.  Curiosity took first ever self-portrait with Mastcam color camera after arriving at the lee face of Namib Dune.  This photo mosaic shows a portion of the full self portrait and is stitched from Mastcam color camera raw images taken on Sol 1197, Dec. 19, 2015.  Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Curiosity explores Red Planet paradise at Namib Dune during Christmas 2015 – backdropped by Mount Sharp. Curiosity took first ever self-portrait with Mastcam color camera after arriving at the lee face of Namib Dune. This photo mosaic shows a portion of the full self portrait and is stitched from Mastcam color camera raw images taken on Sol 1197, Dec. 19, 2015. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

As of today, Sol 1325, April 28, 2016, Curiosity has driven over 7.9 miles (12.7 kilometers) since its August 2012 landing, and taken over 320,100 amazing images.

Spectacular Mastcam camera view of Gale Crater rim from Curiosity on Sol 1302 enhanced to bring out detail.   Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer/kenkremer.com
Spectacular Mastcam camera view of Gale Crater rim from Curiosity on Sol 1302 enhanced to bring out detail. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer