SpaceX Announces Plan to Launch Private Dragon Mission to Mars in 2018

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018.  Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX

SpaceX announced plans today, April 27, for the first ever private mission to Mars which involves sending an uncrewed version of the firms Dragon spacecraft to accomplish a propulsive soft landing – and to launch it as soon as 2018 including certain technical assistance from NASA.

Under a newly signed space act agreement with NASA, the agency will provide technical support to SpaceX with respect to Mars landing technologies for the new spacecraft known as a ‘Red Dragon’ and possibly also for science activities.

“SpaceX is planning to send Dragons to Mars as early as 2018,” the company posted in a brief announcement today on Facebook and other social media about the history making endeavor.

The 2018 commercial Mars mission involves launching the ‘Red Dragon’ – also known as Dragon 2 – on the SpaceX Falcon Heavy rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida. It’s a prelude to eventual human missions.

The Red Dragon initiative is a commercial endeavor that’s privately funded by SpaceX and does not include any funding from NASA. The agreement with NASA specifically states there is “no-exchange-of-funds.”

As of today, the identity and scope of any potential science payload is undefined and yet to be determined.

Hopefully it will include a diverse suite of exciting research instruments from NASA, or other entities, such as high powered cameras and spectrometers characterizing the Martian surface, atmosphere and environment.

SpaceX CEO and billionaire founder Elon Musk has previously stated his space exploration goals involve helping to create a Mars colony which would ultimately lead to establishing a human ‘City on Mars.’

Musk is also moving full speed ahead with his goal of radically slashing the cost of access to space by recovering a pair of SpaceX Falcon 9 first stage boosters via successful upright propulsive landings on land and at sea – earlier this month and in Dec. 2015.

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018.  Credit: SpaceX
Artists concept for sending uncrewed SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX

The 2018 liftoff campaign marks a significant step towards fulfilling Musk’s Red Planet vision. But we’ll have to wait another 5 months for concrete details.

“Red Dragon missions to Mars will also help inform the overall Mars colonization architecture that SpaceX will reveal later this year,” SpaceX noted.

Musk plans to reveal the details of the Mars colonization architecture later this year at the International Astronautical Congress (IAC) being held in Guadalajara, Mexico from September 26 to 30, 2016.

Landing on Mars is not easy. To date only NASA has successfully soft landed probes on Mars that returned significant volumes of useful science data.

In the meantime a few details about the SpaceX Red Dragon have emerged.

The main goal is to propulsively land something 5-10 times the size of anything previously landed before.

“These missions will help demonstrate the technologies needed to land large payloads propulsively on Mars,” SpaceX further posted.

NASA’s 1 ton Curiosity rover is the heaviest spaceship to touchdown on the Red Planet to date.

Artists concept for sending SpaceX Red Dragon spacecraft to Mars as early as 2018.  Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to Mars as early as 2018. Credit: SpaceX

As part of NASA’s agency wide goal to send American astronauts on a human ‘Journey to Mars’ in the 2030s, NASA will work with SpaceX on some aspects of the Red Dragon initiative to further the agency’s efforts.

According to an amended space act agreement signed yesterday jointly by NASA and SpaceX officials – that originally dates back to November 2014 – this mainly involves technical support from NASA and exchanging entry, descent and landing (EDL) technology, deep space communications, telemetry and navigation support, hardware advice, and interplanetary mission and planetary protection advice and consultation.

“We’re particularly excited about an upcoming SpaceX project that would build upon a current “no-exchange-of-funds” agreement we have with the company,” NASA Deputy Administrator Dava Newman wrote in a NASA blog post today.

“In exchange for Martian entry, descent, and landing data from SpaceX, NASA will offer technical support for the firm’s plan to attempt to land an uncrewed Dragon 2 spacecraft on Mars.”

“This collaboration could provide valuable entry, descent and landing data to NASA for our journey to Mars, while providing support to American industry,” NASA noted in a statement.

The amended agreement with NASA also makes mention of sharing “Mars Science Data.”

As of today, the identity, scope and weight of any potential science payload is undefined and yet to be determined.

Perhaps it could involve a suite of science instruments from NASA, or other entities, such as cameras and spectrometers characterizing various aspects of the Martian environment.

In the case of NASA, the joint agreement states that data collected with NASA assets is to be released within a period not to exceed 6 months and published where practical in scientific journals.

The Red Dragon envisioned for blastoff to the Red Planet as soon as 2018 would launch with no crew on board on a critical path finding test flight that would eventually pave the way for sending humans to Mars – and elsewhere in the solar system.

“Red Dragon Mars mission is the first test flight,” said Musk.

“Dragon 2 is designed to be able to land anywhere in the solar system.”

However, the Dragon 2 alone is far too small for a round trip mission to Mars – lasting some three years or more.

“But wouldn’t recommend transporting astronauts beyond Earth-moon region,” tweeted Musk.

“Wouldn’t be fun for longer journeys. Internal volume ~size of SUV.”

Furthermore, for crewed missions it would also have to be supplemented with additional modules for habitation, propulsion, cargo, science, communications and more. Think ‘The Martian’ movie to get a realistic idea of the complexity and time involved.

Red Dragon’s blastoff from KSC pad 39A is slated to take place during the Mars launch window opening during April and May 2018.

The inaugural liftoff of the Falcon Heavy is currently scheduled for late 2016 after several years postponement.

If all goes well, Red Dragon could travel to Mars at roughly the same time as NASA’s next Mission to Mars – namely the InSight science lander, which will study the planets deep interior with a package of seismometer and heat flow instruments.

InSight’s launch on a United Launch Alliance Atlas V is targeting a launch window that begins May 5, 2018, with a Mars landing scheduled for Nov. 26, 2018. Liftoff was delayed from this year due to a flaw in the French-built seismometer.

SpaceX Red Dragon spacecraft launches to Mars on SpaceX Falcon Heavy as soon as 2018 in this artists comcept.  Credit: SpaceX
SpaceX Red Dragon spacecraft launches to Mars on SpaceX Falcon Heavy as soon as 2018 in this artists comcept. Credit: SpaceX

Whoever wants to land on Mars also has to factor in the relevant International treaties regarding ‘Planetary Protection’ requirements.

Wherever the possibility for life exists, the worlds space agency’s who are treaty signatories, including NASA, are bound to adhere to protocols limiting contamination by life forms from Earth.

SpaceX intends to take planetary protection seriously. Under the joint agreement, SpaceX is working with relevant NASA officials to ensure proper planetary protection procedures are followed. One of the areas of collaboration with NASA is for them to advise SpaceX in the development a Planetary Protection Plan (PPP) and assist with the implementation of a PPP including identifying existing software/tools.

Red Dragon is derived from the SpaceX crew Dragon vehicle currently being developed under contract for NASA’s Commercial Crew Program (CCP) to transport American astronauts back and forth to low Earth orbit and the International Space Station (ISS).

SpaceX and Boeing were awarded commercial crew contracts from NASA back in September 2014.

Both firms hope to launch unmanned and manned test flights of their SpaceX Crew Dragon and Boeing CST-100 Starliner spacecraft to the ISS starting sometime in 2017.

The crew Dragon is also an advanced descendent of the original unmanned cargo Dragon that has ferried tons of science experiments and essential supplies to the ISS since 2012.

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo.  Credit: Ken Kremer – kenkremer.com
A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo. Credit: Ken Kremer – kenkremer.com

To enable propulsive landings, SpaceX recently conducted hover tests using a Dragon 2 equipped with eight side-mounted SuperDraco engines at their development testing facility in McGregor, TX.

These are “Key for Mars landing,” SpaceX wrote.

“We are closer than ever before to sending American astronauts to Mars than anyone, anywhere, at any time has ever been,” Newman states.

SpaceX Dragon 2 crew vehicle, powered by eight SuperDraco engines, conducts propulsive hover test at the company’s rocket development facility in McGregor, Texas.  Credit: SpaceX
SpaceX Dragon 2 crew vehicle, powered by eight SuperDraco engines, conducts propulsive hover test at the company’s rocket development facility in McGregor, Texas. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA Selects Aerojet Rocketdyne to Develop Solar Electric Propulsion for Deep Space Missions

This prototype 13-kilowatt Hall thruster was tested at NASA's Glenn Research Center in Cleveland and will be used by industry to develop high-power solar electric propulsion into a flight-qualified system. Credits: NASA
This prototype 13-kilowatt Hall thruster was tested at NASA's Glenn Research Center in Cleveland and  will be used by industry to develop high-power solar electric propulsion into a flight-qualified system.  Credits: NASA
This prototype 13-kilowatt Hall thruster was tested at NASA’s Glenn Research Center in Cleveland and will be used by industry to develop high-power solar electric propulsion into a flight-qualified system. Credits: NASA

NASA has selected Aerojet Rocketdyne to design and develop an advanced solar electric propulsion (SEP) system that will serve as a critical enabling technology for sending humans and robots on deep space exploration missions to cislunar space, asteroids and the Red Planet.

Under the 3 year, $67 million contract award, Aerojet Rocketdyne will develop the engineering development unit for an Advanced Electric Propulsion System (AEPS) with the potential for follow on flight units.

NASA hopes that the work will result in a 10 fold increase in “spaceflight transportation fuel efficiency compared to current chemical propulsion technology and more than double thrust capability compared to current electric propulsion systems.”

The SEP effort is based in part on NASA’s exploratory work on Hall ion thrusters which trap electrons in a magnetic field and uses them to ionize and accelerate the onboard xenon gas propellant to produce thrust much more efficiently than chemical thrusters.

The solar electric propulsion (SEP) system technology will afford benefits both to America’s commercial space and scientific space exploration capabilities.

For NASA, the SEP technology can be applied for expeditions to deep space such as NASA’s planned Asteroid Robotic Redirect Mission (ARRM) to snatch a boulder from the surface of an asteroid and return it to cislunar space during the 2020s, as well as to carry out the agency’s ambitious plans to send humans on a ‘Journey to Mars’ during the 2030s.

“High power SEP is a perfect example of NASA developing cross cutting technologies to enable both human and robotic deep space missions. Basically it enables high efficiency and better gas mileage,” said Steve Jurczyk, associate administrator of NASA’s Space Technology Mission Directorate (STMD) in Washington, at a media briefing.

“The advantage here is the higher power and the higher thrust.”

“Our plan right now is to flight test the higher power solar electric propulsion that Aerojet Rocketdyne will develop for us on the Asteroid Redirect Robotic Mission (ARRM), which is going to go out to an asteroid with a robotic system, grab a boulder off of an asteroid, and bring it back to a lunar orbit.”

ARRM would launch around 2020 or 2021. Astronauts would blast off several years later in NASA’s Orion crew capsule in 2025 after the robotic probes travels back to lunar orbit.

For industry, electric propulsion is used increasingly to maneuver thrusters in Earth orbiting commercial satellites for station keeping in place of fuel.

“Through this contract, NASA will be developing advanced electric propulsion elements for initial spaceflight applications, which will pave the way for an advanced solar electric propulsion demonstration mission by the end of the decade,” says Jurczyk.

“Development of this technology will advance our future in-space transportation capability for a variety of NASA deep space human and robotic exploration missions, as well as private commercial space missions.”

This 13-kilowatt Hall thruster is being evaluated at NASA’s Glenn Research Center in Cleveland for advanced solar electric propulsion.  Hall thrusters trap electrons in a magnetic field and use them to ionize the onboard propellant. Credits: NASA
This 13-kilowatt Hall thruster is being evaluated at NASA’s Glenn Research Center in Cleveland for advanced solar electric propulsion. Hall thrusters trap electrons in a magnetic field and use them to ionize the onboard propellant. Credits: NASA

“This is also a critical capability for enabling human missions to Mars, with respect to delivering cargo to the surface to Mars that will allow people to live and work there on the surface. Also for combined chemical and SEP systems on a spacecraft to propel humans to Mars,” elaborated Jurczyk at the briefing.

“Another application is round trip robotic science missions to Mars to bring back samples – such as a Mars Sample Return (MSR) mission.”

The starting point is NASA’s development and technology readiness testing of a prototype 13-kilowatt Hall thruster and power processing unit at NASA’s Glenn Research Center in Cleveland.

Under the contract award Aerojet Rocketdyne aims to carry out the industrial development of “high-power solar electric propulsion into a flight-qualified system.”

They will develop, build, test and deliver “an integrated electric propulsion system consisting of a thruster, power processing unit (PPU), low-pressure xenon flow controller, and electrical harness,” as an engineering development unit.

This engineering development unit serves as the basis for producing commercial flight units.

If successful, NASA has an option to purchase up to four integrated flight units for actual space missions. Engineers from NASA Glenn and the Jet Propulsion Laboratory (JPL) will provide technical support.

“We could string together four of these engine units to get approximately 50 kilowatts of electrical propulsion capability and with that we can do significant orbital transfer operations. That then becomes the next step in deep space exploration operations that we are trying to do,” said Bryan Smith, director of the Space Flight Systems Directorate at NASA’s Glenn Research Center in Cleveland, at the media briefing.

“We hope to buy four of these units for the ARRM mission.”

What were some of NASA’s research and development (R&D) activities and further plans for Aerojet Rocketdyne?

“NASA is driving out the technology itself for feasibility. So we produced a developmental device to operate at these levels,” Smith told Universe Today during the briefing.

“Other key characteristics we were looking for is the ability to do magnetic shielding. The purpose was to allow for a long life thruster operation. We investigated attributes like thermal problems and balancing the erosion mechanisms in developmental units. So we were looking for things to get longer life and feasibility in developmental units.”

“Once we were comfortable with the feasibility in developmental units, we are now transferring the information, technology and knowhow into what is a production article, in this contract.”

Robotic sampling arm and capture mechanism to collect a multi-ton boulder from an asteroid are under development at NASA Goddard and other agency centers for NASA’s unmanned Asteroid Redirect Vehicle and eventual docking in lunar orbit with Orion crew vehicle by the mid 2020s.   Credit: Ken Kremer/kenkremer.com
Robotic sampling arm and capture mechanism to collect a multi-ton boulder from an asteroid are under development at NASA Goddard and other agency centers for NASA’s unmanned Asteroid Redirect Vehicle and eventual docking in lunar orbit with Orion crew vehicle by the mid 2020s. Credit: Ken Kremer/kenkremer.com

Solar electric ion propulsion is already being used in NASA’s hugely successful Dawn asteroid orbiter mission.

Dawn was launched in 2007. It orbited and surveyed Vesta in 2011 and 2012 and then traveled outward to Ceres.

Dawn arrived at dwarf planet Ceres in March 2015 and is currently conducting breakthrough science at its lowest planned science mapping orbit.

This image was taken by NASA's Dawn spacecraft of dwarf planet Ceres on Feb. 19 from a distance of nearly 29,000 miles (46,000 km). It shows that the brightest spot on Ceres has a dimmer companion, which apparently lies in the same basin. See below for the wide view. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This image was taken by NASA’s Dawn spacecraft of dwarf planet Ceres on Feb. 19 from a distance of nearly 29,000 miles (46,000 km). It shows that the brightest spot on Ceres has a dimmer companion, which apparently lies in the same basin. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

A key part of the Journey to Mars, NASA will be sending cargo missions to the Red Planet to pave the way for human expeditions with the Orion crew module and Space Launch System.

Aerojet Rocketdyne states that “Solar Electric Propulsion (SEP) systems have demonstrated the ability to reduce the mission cost for NASA Human Exploration cargo missions by more than 50 percent through the use of existing flight-proven SEP systems.”

“Using a SEP tug for cargo delivery, combined with NASA’s Space Launch System and the Orion crew module, provides an affordable path for deep space exploration,” said Aerojet Rocketdyne Vice President, Space and Launch Systems, Julie Van Kleeck.

Aerojet Rocketdyne artists concept for solar electric propulsion system for deep space missions. Credit: Aerojet Rocketdyne
Aerojet Rocketdyne artists concept for solar electric propulsion system for deep space missions. Credit: Aerojet Rocketdyne

Another near term application of high power solar electric propulsion could be for NASA’s proposed Mars 2022 telecom orbiter, said Smith at the media briefing.

Other NASA technology work in progress includes development of more efficient, advanced solar array systems to generate the additional power required for the larger electric thrusters.

Orbital ATK was part of the development effort and already used some of its technology development in the ultraflex solar arrays on the recent Cygnus cargo ships delivering supplies to the ISS.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Stunning Auroras From the Space Station in Ultra HD – Videos

Still image shows a stunning aurora captured from the International Space Station. This frame is from a compilation of ultra-high definition time-lapses of the aurora shot from the space station. Credit: NASA
Still image shows a stunning aurora captured from the International Space Station. This frame is from a compilation of ultra-high definition time-lapses of the aurora shot from the space station.  Credit: NASA
Still image shows a stunning aurora captured from the International Space Station. This frame is from a compilation of ultra-high definition time-lapses of the aurora shot from the space station. Credit: NASA

Stunning high definition views of Earth’s auroras and dancing lights as seen from space like never before have just been released by NASA in the form of ultra-high definition videos (4K) captured from the International Space Station (ISS).

Whether seen from the Earth or space, auroras are endlessly fascinating and appreciated by everyone young and old and from all walks of life.

The spectacular video compilation, shown below, was created from time-lapses shot from ultra-high definition cameras mounted at several locations on the ISS.

It includes HD view of both the Aurora Borealis and Aurora Australis phenomena seen over the northern and southern hemispheres.

The video begins with an incredible time lapse sequence of an astronaut cranking open the covers off the domed cupola – everyone’s favorite locale. Along the way it also shows views taken from inside the cupola.

The cupola also houses the robotics works station for capturing visiting vehicles like the recently arrived unmanned SpaceX Dragon and Orbital ATK Cygnus cargo freighters carrying science experiments and crew supplies.

The video was produced by Harmonic exclusively for NASA TV UHD;

Video caption: Ultra-high definition (4K) time-lapses of both the Aurora Borealis and Aurora Australis phenomena shot from the International Space Station (ISS). Credit: NASA

The video segue ways into multi hued auroral views including Russian Soyuz and Progress capsules, the stations spinning solar panels, truss and robotic arm, flying over Europe, North America, Africa, the Middle East, star fields, the setting sun and moon, and much more.

Auroral phenomena occur when electrically charged electrons and protons in the Earth’s magnetic field collide with neutral atoms in the upper atmosphere.

“The dancing lights of the aurora provide a spectacular show for those on the ground, but also capture the imaginations of scientists who study the aurora and the complex processes that create them,” as described by NASA.

Here’s another musical version to enjoy:

The ISS orbits some 250 miles (400 kilometers) overhead with a multinational crew of six astronauts and cosmonauts living and working aboard.

The current Expedition 47 crew is comprised of Jeff Williams and Tim Kopra of NASA, Tim Peake of ESA (European Space Agency) and cosmonauts Yuri Malenchenko, Alexey Ovchinin and Oleg Skripochka of Roscosmos.

Some of the imagery was shot by recent prior space station crew members.

Here is a recent aurora image taken by flight engineer Tim Peake of ESA as the ISS passed through on Feb. 23, 2016.

“The @Space_Station just passed straight through a thick green fog of #aurora…eerie but very beautiful,” Peake wrote on social media.

The @Space_Station just passed straight through a thick green fog of #aurora…eerie but very beautiful.  Credit: NASA/ESA/Tim Peake
The @Space_Station just passed straight through a thick green fog of #aurora…eerie but very beautiful. Credit: NASA/ESA/Tim Peake

A new room was just added to the ISS last weekend when the BEAM experimental expandable habitat was attached to a port on the Tranquility module using the robotic arm.

BEAM was carried to the ISS inside the unpressurized trunk section of the recently arrived SpaceX Dragon cargo ship.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Landslides and Bright Craters on Ceres Revealed in Marvelous New Images from Dawn

Ceres' Haulani Crater, with a diameter of 21 miles (34 kilometers), shows evidence of landslides from its crater rim. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Ceres' Haulani Crater, with a diameter of 21 miles (34 kilometers), shows evidence of landslides from its crater rim.  Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Ceres’ Haulani Crater, with a diameter of 21 miles (34 kilometers), shows evidence of landslides from its crater rim. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Now in orbit for just over a year at dwarf planet Ceres, NASA’s Dawn spacecraft continues to astound us with new discoveries gleaned from spectral and imagery data captured at ever decreasing orbits as well as since the probe arrived last December at the lowest altitude it will ever reach during the mission.

Mission scientists have just released marvelous new images of Haulani and Oxo craters revealing landslides and mysterious slumps at several of the mysterious bright craters on Ceres – the largest asteroid in the main Asteroid Belt between Mars and Jupiter.

The newly released image of oddly shaped Haulani crater above, shows the crater in enhanced color and reveals evidence of landslides emanating from its crater rim.

“Rays of bluish ejected material are prominent in this image. The color blue in such views has been associated with young features on Ceres,” according to the Dawn science team.

“Enhanced color allows scientists to gain insight into materials and how they relate to surface morphology.”

Look at the image closely and you’ll see its actually polygonal in nature – meaning it resembles a shape made of straight lines – unlike most craters in our solar system which are nearly circular.

”The straight edges of some Cerean craters, including Haulani, result from pre-existing stress patterns and faults beneath the surface,” says the science team.

Haulani Crater has a diameter of 21 miles (34 kilometers) and apparently was formed by an impacting object relatively recently in geologic time and is also one of the brightest areas on Ceres.

“Haulani perfectly displays the properties we would expect from a fresh impact into the surface of Ceres. The crater floor is largely free of impacts, and it contrasts sharply in color from older parts of the surface,” said Martin Hoffmann, co-investigator on the Dawn framing camera team, based at the Max Planck Institute for Solar System Research, Göttingen, Germany, in a statement.

The enhanced color image was created from data gathered at Dawn’s High Altitude Mapping Orbit (HAMO), while orbiting at an altitude of 915 miles (1,470 kilometers) from Ceres.

Data from Dawn’s VIR instrument shows that Haulani’s surface is comprised of different materials than its surroundings.

“False-color images of Haulani show that material excavated by an impact is different than the general surface composition of Ceres. The diversity of materials implies either that there is a mixed layer underneath, or that the impact itself changed the properties of the materials,” said Maria Cristina de Sanctis, the VIR instrument lead scientist, based at the National Institute of Astrophysics, Rome.

Since mid-December, Dawn has been orbiting Ceres in its Low Altitude Mapping Orbit (LAMO), at a distance of 240 miles (385 kilometers) from Ceres, resulting in the most stunning images ever of the dwarf planet.

By way of comparison the much higher resolution image of Haulani crater below, is a mosaic of views assembled from multiple images taken from LAMO at less than a third of the HAMO image distance – at only 240 miles (385 kilometers) above Ceres.

Haulani Crater at LAMO. NASA's Dawn spacecraft took this mosaic view of Haulani Crater at a distance of 240 miles (385 kilometers) from the surface of Ceres.  Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI
Haulani Crater at LAMO. NASA’s Dawn spacecraft took this mosaic view of Haulani Crater at a distance of 240 miles (385 kilometers) from the surface of Ceres. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

Dawn has also been busy imaging Oxo Crater, which despite its small size of merely 6-mile-wide (10-kilometer-wide) actually counts as a “hidden treasure” on Ceres – because it’s the second-brightest feature on Ceres!

Only the mysterious bright region comprising a multitude of spots inside Occator Crater shine more brightly on Ceres.

Most importantly, Oxo Crater is the only place on Ceres where Dawn has detected water at the surface so far. Via VIR, Dawn data indicate that the water exists either in the form of ice or hydrated minerals. Scientists speculate that the water was exposed either during a landslide or an impact.

“Little Oxo may be poised to make a big contribution to understanding the upper crust of Ceres,” said Chris Russell, principal investigator of the mission, based at the University of California, Los Angeles.

The signatures of minerals detected on the floor of Oxo crater appears to be different from the rest of Ceres.

Furthermore Oxo is “also unique because of the relatively large “slump” in its crater rim, where a mass of material has dropped below the surface.”

Oxo Crater on Ceres is unique because of the relatively large "slump" in its crater rim.  The 6-mile-wide (10-kilometer-wide) Oxo crater is the second-brightest feature on Ceres.  Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI
Oxo Crater on Ceres is unique because of the relatively large “slump” in its crater rim. The 6-mile-wide (10-kilometer-wide) Oxo crater is the second-brightest feature on Ceres. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

Dawn is Earth’s first probe in human history to explore any dwarf planet, the first to explore Ceres up close and the first to orbit two celestial bodies.

The asteroid Vesta was Dawn’s first orbital target where it conducted extensive observations of the bizarre world for over a year in 2011 and 2012.

The mission is expected to last until at least later into 2016, and possibly longer, depending upon fuel reserves.

Dawn will remain at its current altitude at LAMO for the rest of its mission, and indefinitely afterward, even when no further communications are possible.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Recovered SpaceX Falcon 9 Booster Moves Back to KSC for Eventual Reflight

Up close view of base of recovered SpaceX Falcon 9 first stage rocket powered by 9 Merlin 1 D engines being transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Up close view of base of recovered SpaceX Falcon 9 first stage rocket powered by 9 Merlin 1 D engines being transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Up close view of base of recovered SpaceX Falcon 9 first stage rocket powered by 9 Merlin 1 D engines being transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Note: landing legs were removed. Credit: Julian Leek

The recovered SpaceX Falcon 9 first stage booster that successfully carried out history’s first upright touchdown from a just flown rocket onto a droneship at sea, has just been moved back to the firms processing hanger at the Kennedy Space Center (KSC) for testing and eventual reflight.

Space photographers and some lucky tourists coincidentally touring through Cape Canaveral Air Force Station in the right place at the right time on a tour bus, managed to capture exquisite up close images and videos (shown above and below) of the rockets ground transport on Tuesday, April 19, along the route from its initial staging point at Port Canaveral to a secure area on KSC.

It was quite a sight to the delight of all who experienced this remarkable moment in space history – that could one day revolutionize space flight by radically slashing launch costs via recycled rockets.

The boosters nine first stage Merlin 1 D engines were wrapped in a protective sheath during the move as seen in the up close imagery.

Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek

The SpaceX Falcon 9 had successfully conducted a dramatic propulsive descent and soft landing on a barge some 200 miles offshore in the Atlantic Ocean on April 8, about 9 minutes after blasting off from Cape Canaveral Air Force Station at 4:43 p.m. EDT on the Dragon CRS-8 cargo mission for NASA to the International Space Station (ISS).

The used Falcon 9 booster then arrived back into Port Canaveral, Florida four days later, overnight April 12, after being towed atop the ocean going platform that SpaceX dubs an ‘Autonomous Spaceport Drone Ship’ or ASDS.

The spent 15 story tall Falcon 9 booster was transported to KSC by Beyel Bros. Crane and Rigging, starting around 9:30 a.m.

Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek

After initial cleaning and clearing of hazards and processing to remove its four landing legs at the Port facility, the booster was carefully lowered by crane horizontally into a retention cradle on a multiwheel combination Goldhofer/KMAG vehicle and hauled by Beyel to KSC with a Peterbilt Prime Mover truck.

The Falcon 9 was moved to historic Launch Complex 39A at KSC for processing inside SpaceX’s newly built humongous hanger located at the pad perimeter.

Indeed this Falcon 9 first stage is now residing inside the pad 39A hanger side by side with the only other flown rocket to be recovered; the Falcon 9 first stage that accomplished a land landing back at the Cape in December 2015 – as shown in this image from SpaceX CEO Elon Musk titled “By land and sea”.

Side by side SpaceX Falcon 9 first stages recovered ‘by land and sea’ in Dec 2015 and Apr 2016. Credit: SpaceX/Elon Musk
Side by side SpaceX Falcon 9 first stages recovered ‘by land and sea’ in Dec 2015 and Apr 2016. Credit: SpaceX/Elon Musk

Watch this video of the move taken from a tour bus:

SpaceX engineers plan to conduct a series of some 12 test firings of the first stage Merlin 1 D engines to ensure all is well operationally in order to validate that the booster can be re-launched.

It may be moved back to Space Launch Complex-40 for the series of painstakingly inspections, tests and refurbishment.

The nine Merlin 1 D engines that power SpaceX Falcon 9 are positioned in an octoweb arrangement, as shown in this up close view of the base of recovered first stage during transport to Kennedy Space Center pad 39 A from Port Canaveral, Florida on April 19, 2016. Credit: Julian Leek
The nine Merlin 1 D engines that power SpaceX Falcon 9 are positioned in an octoweb arrangement, as shown in this up close view of the base of recovered first stage during transport to Kennedy Space Center pad 39 A from Port Canaveral, Florida on April 19, 2016. Credit: Julian Leek

SpaceX hopes to refly the recovered booster in a few months, perhaps as early as this summer.

The vision of SpaceX’s billionaire founder and CEO Elon Musk is to dramatically slash the cost of access to space by recovering the firms rockets and recycling them for reuse – so that launching rockets will one day be nearly as routine and cost effective as flying on an airplane.

The essential next step after recovery is recycling. Musk said he hopes to re-launch the booster this year.

Whenever it happens, it will count as the first relaunch of a used rocket in history.

SpaceX has leased Pad 39A from NASA and is renovating the facilities for future launches of the existing upgraded Falcon 9 as well as the Falcon Heavy currently under development.

SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA's Kennedy Space Center in Florida  for missions to the International Space Station. Pad 39A is  undergoing modifications by SpaceX to adapt it to the needs of the company's Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com
SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida for missions to the International Space Station. Pad 39A is undergoing modifications by SpaceX to adapt it to the needs of the company’s Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com

Landing on the barge was a secondary goal of SpaceX and not part of the primary mission sending science experiments and cargo to the ISS crew under a resupply contract with for NASA.

Watch this SpaceX Falcon 9/Dragon CRS-8 launch video from my video camera placed at the pad:

Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA Welds First Flight Section of SLS Core Stage for 2018 Maiden Launch

Space Launch System (SLS) core stage engine section finishes welding at the Vertical Assembly Center at NASA's Michoud Assembly Facility in New Orleans for maiden flight of SLS rocket. Credit: NASA
Space Launch System (SLS) core stage engine section finishes welding at the Vertical Assembly Center at NASA's Michoud Assembly Facility in New Orleans for maiden flight of SLS rocket. Credit: NASA
Space Launch System (SLS) core stage engine section finishes welding at the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans for maiden flight of SLS rocket. Credit: NASA

One weld at a time, the flight hardware for NASA’s mammoth new Space Launch System (SLS) booster has at last started taking shape, promising to turn years of planning and engineering discussions into reality and a rocket that will one day propel our astronauts on a ‘Journey to Mars.’

The first actual SLS flight hardware has been assembled, leaping from engineering blueprints on computer screens to individual metallic components that technicians are feeding into NASA’s gigantic “Welding Wonder” machine at the agency’s Michoud Assembly Facility in New Orleans.

Technicians are bending metal and have now finished welding together the pieces of flight hardware forming the first major SLS flight component – namely the engine section that sits at the base of the SLS core stage.

The engine section of the core stage will house the four RS-25 engines that will power the maiden launch of SLS and NASA’s Orion deep space manned spacecraft in late 2018.

The core stage towers over 212 feet (64.6 meters) tall, sports a diameter of 27.6 feet (8.4 m) and stores the cryogenic liquid hydrogen and liquid oxygen that feeds and fuels the boosters RS-25 engines.

A liquid oxygen tank confidence article for NASA's new rocket, the Space Launch System, completes final welding on the Vertical Assembly Center at Michoud Assembly Facility in New Orleans.  Credit: NASA/Michoud/Steven Seipel
A liquid oxygen tank confidence article for NASA’s new rocket, the Space Launch System, completes final welding on the Vertical Assembly Center at Michoud Assembly Facility in New Orleans. Credit: NASA/Michoud/Steven Seipel

SLS will be the most powerful rocket the world has ever seen. It will propel astronauts in the Orion capsule on deep space missions, first back to the Moon by around 2021, then to an asteroid around 2025 and then beyond to the Red Planet in the 2030s – NASA’s overriding and agency wide goal.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

The SLS core stage welding work is carried out in the massive 170-foot-tall Vertical Assembly Center (VAC) at Michoud. Boeing is the prime contractor for the SLS core stage.

On Sept. 12, 2014, NASA Administrator Charles Bolden officially unveiled VAC as the world’s largest welder at Michoud.

“This rocket is a game changer in terms of deep space exploration and will launch NASA astronauts to investigate asteroids and explore the surface of Mars while opening new possibilities for science missions, as well,” said NASA Administrator Charles Bolden during the ribbon-cutting ceremony at Michoud.

NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA's Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built.  Credit: Ken Kremer - kenkremer.com
NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA’s Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built. Credit: Ken Kremer – kenkremer.com

Each of the RS-25’s engines generates some 500,000 pounds of thrust, fueled by cryogenic liquid hydrogen and liquid oxygen. They are recycled for their original use as space shuttle main engines

For SLS they will be operating at 109% of power, compared to a routine usage of 104.5% during the shuttle era. They measure 14 feet tall and 8 feet in diameter.

The SLS weld team has been busy. Technicians have already assembled a qualification version of the engine section on the Vertical Assembly Center at Michoud. Later this year it will be shipped to NASA’s Marshall Space Flight Center in Huntsville, Alabama, to undergo structural loads testing.

In March, they also completed welding of a liquid oxygen tank confidence article on the Vertical Assembly Center. And in February they welded the liquid hydrogen tank confidence article.

SLS core stage will be welded together from barrels and domes using the Vertical Assembly Center (VAC) at NASA’s Michoud Assembly Facility.  Credit: Ken Kremer/ kenkremer.com
SLS core stage will be welded together from barrels and domes using the Vertical Assembly Center (VAC) at NASA’s Michoud Assembly Facility. Credit: Ken Kremer/ kenkremer.com

The SLS core stage is comprised of five major structures: the forward skirt, the liquid oxygen tank, the intertank, the liquid hydrogen tank and the engine section.

The tanks are assembled by joining previously manufactured domes, rings and barrels components together in the Vertical Assembly Center by a process known as friction stir welding. The rings connect and provide stiffness between the domes and barrels.

The SLS core stage builds on heritage from NASA’s Space Shuttle Program and is based on the shuttle’s External Tank (ET). All 135 ET flight units were built at Michoud during the thirty year long shuttle program.

According to the current schedule, NASA plans to finish all welding for the core stage — including confidence, qualification and flight hardware — of the SLS-1 rocket sometime this summer.

Engineers are constructing the confidence and qualification hardware units to verify that the welding equipment and procedures work exactly as planned.

“The confidence will also be used in developing the application process for the thermal protection system, which is the insulation foam that gives the tank its orange color,” say NASA officials.

Altogether , the SLS first stage propulsion comprises the four RS-25 space shuttle main engines and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds.

Meanwhile the welded skeletal backbone for the Orion EM-1 mission recently arrived at the Kennedy Space Center on Feb. 1 for outfitting with all the systems and subsystems necessary for flight.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Space Station Gets Experimental New Room with Installation of BEAM Expandable Habitat

Robotic arm attaches BEAM inflatable habitat module to International Space Station on April 16, 2016. Credit: NASA/Tim Kopra
Robotic arm attaches BEAM inflatable habitat module to International Space Station on April 16, 2016. Credit: NASA/Tim Kopra
Robotic arm attaches BEAM inflatable habitat module to International Space Station on April 16, 2016. Credit: NASA/Tim Kopra

The International Space Station (ISS) grew in size today, April 16, following the successful installation of an experimental new room – the BEAM expandable habitat module.

Engineers at NASA’s Johnson Space Center in Houston used the space station’s high tech robotic arm to pluck the small module known as the Bigelow Expandable Activity Module (BEAM) out from the unpressurized rear truck section of the recently arrived SpaceX Dragon cargo freighter, and added it onto the orbiting laboratory complex.

BEAM was manufactured by Las Vegas-based Bigelow Aerospace under a $17.8 million contract with NASA. It will remain joined to the station for at least a two-year test period.

The 3115 pound (1413 kg) BEAM will test the use of an expandable space habitat in microgravity with humans for the first time.

It was extracted from the Dragon’s trunk overnight with the robotic Canadarm2 and then installed on the aft port of the Tranquility module at 5:36 a.m. EDT over a period of about 4 hours. The station was flying over the Southern Pacific Ocean at the moment of berthing early Saturday.

NASA astronaut and ISS Expedition 47 crew member Tim Kopra snapped a super cool photo of BEAM in transit, shown above.

BEAM module after installation on the ISS Tranquility module on April 16, 2016.  Credit: NASA
BEAM module after installation on the ISS Tranquility module on April 16, 2016. Credit: NASA

BEAM was carried to orbit in a compressed form inside the Dragon’s truck following the April 8 blast off from Cape Canaveral Air Force Station at 4:43 p.m. EDT on the Dragon CRS-8 resupply mission for NASA to the ISS.

BEAM is a prototype inflatable habitat that could revolutionize the method of construction of future habitable modules intended for use both in Low Earth Orbit (LEO) as well as for deep space expeditions Beyond Earth Orbit (BEO) to destinations including the Moon, Asteroids and Mars.

The advantage of expandable habitats is that they offer a much better volume to weight ratio compared to standard rigid metallic structures such as all of the current ISS pressurized modules.

It is constructed of lighter weight reinforced fabric rather that metal. This counts as the first test of an expandable module and investigators want to determine how it fares with respect to protection again solar radiation, space debris and the temperature extremes of space.

Furthermore they also take up much less space inside the payload fairing of a rocket during launch.

Watch this animation showing how Canadarm2 transports BEAM from the Dragon spacecraft to a side berthing port on Tranquility where it will soon be expanded.

Animation shows how the International Space Station robotic arm will transport BEAM from the Dragon spacecraft to a side berthing port on the Harmony module where it will then be expanded.  Credit: NASA
Animation shows how the International Space Station robotic arm will transport BEAM from the Dragon spacecraft to a side berthing port on the Tranquility module where it will then be expanded. Credit: NASA

Current plans call for the module to be expanded in late May with air. It will expand to nearly five times from its compressed size of 8 feet in diameter by 7 feet in length to roughly 10 feet in diameter and 13 feet in length. Once inflated it will provide 565 cubic feet (16 m3) of habitable volume.

Exactly how it will expand is also an experiment and could happen in multiple ways. Therefore the team will exercise great caution and carefully monitor the inflation and check for leaks.

The Bigelow Expandable Activity Module, or BEAM, is attached to the International Space Station early on April 16, 2016.  Credit: NASA
The Bigelow Expandable Activity Module, or BEAM, is attached to the International Space Station early on April 16, 2016. Credit: NASA

The astronauts will first enter BEAM about a week after the expansion. Thereafter they will visit it about 2 or 3 times per year for several hours to retrieve sensor data and assess conditions, say NASA officials.

Visits could perhaps occur even frequently more if NASA approves. says Bigelow CEO Robert Bigelow.

BEAM is an extraordinary test bed in itself.

This computer rendering depicts the Canadarm2 robotic arm removing BEAM from the back of the Space X Dragon spacecraft.  Credit: NASA
This computer rendering depicts the Canadarm2 robotic arm removing BEAM from the back of the Space X Dragon spacecraft. Credit: NASA

But Robert Bigelow hopes that BEAM can be used to conduct science experiments after maybe a six month shakedown cruise, if all goes well, and NASA approves a wider usage.

Bigelow Aerospace has already taken in the next step in expandable habitats.

Earlier this week, Bigelow and rocket builder United Launch Alliance (ULA) announced they are joining forces to develop and launch the B330 expandable commercial habitat module in 2020 on an Atlas V. It is about 20 times larger and far more capable. Details in my story here.

Robert Bigelow says he hopes that NASA will approve docking of the B330 at the ISS.

This artist’s concept depicts the Bigelow Expandable Activity Module attached to the International Space Station’s Tranquility module. Credits: Bigelow Aerospace
This artist’s concept depicts the Bigelow Expandable Activity Module attached to the International Space Station’s Tranquility module.
Credits: Bigelow Aerospace

The SpaceX Dragon spacecraft delivered almost 7,000 pounds of cargo.

CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

Sensational Photos Show ‘Super Smooth’ Droneship Touchdown of SpaceX Falcon 9 Booster – SpaceX VP

Remote camera photo from "Of Course I Still Love You" droneship of SpaceX Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission. Credit: SpaceX
Remote camera photo from "Of Course I Still Love You" droneship of SpaceX Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission. Credit: SpaceX
Remote camera photo from “Of Course I Still Love You” droneship of SpaceX Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission. Credit: SpaceX

SpaceX has released a slew of up close photos showing the sensational “super smooth” touchdown last week of a Falcon 9 booster on a tiny droneship at sea located several hundred miles (km) off the East coast of Florida.

“This time it really went super smooth,” Hans Koenigsmann, SpaceX VP of Flight Reliability, told Universe Today at the NorthEast Astronomy and Space Forum (NEAF) held in Suffern, NY. “The rest is history almost.”

The dramatic propulsive descent and soft landing of the SpaceX Falcon 9 first stage took place last Friday, April 8 about 9 minutes after blasting off from Cape Canaveral Air Force Station at 4:43 p.m. EDT on the Dragon CRS-8 resupply mission for NASA to the International Space Station (ISS).

The breathtaking new photos show the boosters central Merlin 1D engine refiring to propulsively slow the first stage descent with all four landing legs unfurled and locked in place at the bottom and all four grid fins deployed at the top.

Why did it all go so well, comparing this landing to the prior attempts? Basically the return trajectory was less challenging due to the nature of the NASA payload and launch trajectory.

“We were more confident about this droneship landing,” Koenigsmann said at NEAF.

“I knew the trajectory we had [for CRS-8] was more benign, although not super benign. But certainly benigner than for what we had before on the SES-9 mission, the previous one. The [droneship] landing trajectory we had for the previous one on SES-9 was really challenging.”

“This one was relatively benign. It was really maybe as benign as for the Orbcomm launch [in December 2015] where we had the land landing.”

Read my Orbcomm story here about history’s first ever successful land landing of a spent SpaceX Falcon 9 booster.

Timelapse sequence shows dramatic landing of SpaceX Falcon 9 first stage on "Of Course I Still Love You" droneship as captured by remote camera on 8 April 2016. Credit: SpaceX
Timelapse sequence shows dramatic landing of SpaceX Falcon 9 first stage on “Of Course I Still Love You” droneship as captured by remote camera on 8 April 2016. Credit: SpaceX

The diminutive ocean landing platform measures only about 170 ft × 300 ft (52 m × 91 m). SpaceX formally dubs it an ‘Autonomous Spaceport Drone Ship’ or ASDS.

The ocean going ship is named “Of Course I Still Love You” after a starship from a novel written by Iain M. Banks.

It was stationed some 200 miles off shore of Cape Canaveral, Florida surrounded by the vastness of the Atlantic Ocean.

Remote camera photo from "Of Course I Still Love You" droneship of Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission on 8 April 2016. Credit: SpaceX
Remote camera photo from “Of Course I Still Love You” droneship of Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission on 8 April 2016. Credit: SpaceX

“The CRS-8 launch was one of the easiest ones we ever had.”

The revolutionary rocket recovery event counts as the first successful droneship landing of a rocket in history and is paving the way towards eventual rocket recycling aimed at dramatically slashing the cost of access to space.

The final moments of the 15 story tall boosters approach and hover landing was captured up close in stunning high resolution imagery recorded by multiple remote cameras set up right on the ocean going platform by SpaceX photographer Ben Cooper.

Landing the booster on land rather than at sea was actually an option this time around. But SpaceX managers wanted to try and nail a platform at sea landing to learn more and validate their calculations and projections.

“As Elon Musk said at the post-landing press conference of Friday, we could have actually come back to land- to land this one on land,” Koenigsmann elaborated.

“But we decided to land on the drone ship first to make sure that on the droneship we had worked everything out!”

“And that’s exactly what happened. So I felt this was only going out a little bit on the limb,” but not too much.”

Remote camera photo from "Of Course I Still Love You" droneship of Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission on 8 April 2016. Credit: SpaceX
Remote camera photo from “Of Course I Still Love You” droneship of Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission on 8 April 2016. Credit: SpaceX

Before the CRS-8 launch, Koenigsmann had rated the chances of a successful landing recovery rather high.

Three previous attempts by SpaceX to land on a droneship at sea were partially successful, as the stage made a pinpoint flyback to the tiny droneship, but it either hit too hard or tipped over in the final moments when a landing leg failed to fully deploy or lock in place.

“Everything went perfect with the launch,” Koengismann said. “We just still have to do the post launch data review.”

“I am really glad this went well.”

Droneship touchdown of SpaceX Falcon 9 first stage on "Of Course I Still Love You" as captured by remote camera on 8 April 2016. Credit: SpaceX
Droneship touchdown of SpaceX Falcon 9 first stage on “Of Course I Still Love You” as captured by remote camera on 8 April 2016. Credit: SpaceX

This recovered Falcon 9 booster finally arrived back into Port Canaveral, Florida four days later in the early morning hours of Tuesday, April 12 at about 1:30 a.m. EDT.

Recovered SpaceX Falcon 9 rocket moved by crane from drone ship to an upright storage cradle on land at Port Canaveral,  Florida on April 12, 2016.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket moved by crane from drone ship to an upright storage cradle on land at Port Canaveral, Florida on April 12, 2016. Credit: Julian Leek

The primary goal of the Falcon 9 launch on April 8 was carrying the SpaceX Dragon CRS-8 cargo freighter to low Earth orbit on a commercial resupply delivery mission for NASA to the International Space Station (ISS).

Dragon arrived at the station on Sunday, April 10, loaded with 3 tons of supplies, science experiments and the BEAM experimental expandable module.

Landing on the barge was a secondary goal of SpaceX and not part of the primary mission for NASA.

Watch this launch video from my video camera placed at the pad:

Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com

The recovered booster will be cleaned and defueled, says SpaceX spokesman John Taylor.

SpaceX engineers will conduct a series of 12 test firings to ensure all is well operationally and that the booster can be re-launched.

SpaceX hopes to refly the recovered booster in a few months, perhaps as early as this summer.

Droneship touchdown of SpaceX Falcon 9 first stage on "Of Course I Still Love You" as captured by remote camera on 8 April 2016. Credit: SpaceX
Droneship touchdown of SpaceX Falcon 9 first stage on “Of Course I Still Love You” as captured by remote camera on 8 April 2016. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

SpaceX Falcon 9 booster successfully lands on droneship after blastoff on Dragon CRS-8 mission to ISS for NASA on April 8, 2016.  Credit: SpaceX
SpaceX Falcon 9 booster successfully lands on droneship after blastoff on Dragon CRS-8 mission to ISS for NASA on April 8, 2016. Credit: SpaceX
Hans Koenigsmann, SpaceX VP of Flight Reliability at NorthEast Astronomy and Space Forum, NY, discusses SpaceX Falcon 9 and Dragon launches. Credit: Ken Kremer/kenkremer.com
Hans Koenigsmann, SpaceX VP of Flight Reliability at NorthEast Astronomy and Space Forum, NY, discusses SpaceX Falcon 9 and Dragon launches. Credit: Ken Kremer/kenkremer.com

Bigelow and ULA Partner to Launch Commercial Space Habitat in 2020

Interior schematic view of Bigelow Aerospace B330 expandable module. Credit: Bigelow Aerospace
Interior schematic view of Bigelow Aerospace B330 expandable module. Credit: Bigelow Aerospace
 Interior schematic view of Bigelow Aerospace B330 expandable module. Credit: Bigelow Aerospace

Interior schematic view of Bigelow Aerospace B330 expandable module. Credit: Bigelow Aerospace

Bigelow Aerospace and United Launch Alliance (ULA) announced they are joining forces to develop and launch the world’s first commercial space habitat to Low Earth Orbit (LEO) by 2020 – potentially as a huge and revolutionary new addition to the International Space Station (ISS).

The expandable habitat will be based on the Bigelow Aerospace B330 module and would be carried to orbit on the most powerful version of ULA’s venerable Atlas V rocket.

Robert Bigelow, founder and president of Bigelow Aerospace, and Tory Bruno, ULA president and CEO announced the partnership on the fully commercial space habitat during a joint media briefing held at the 32nd Space Symposium in Colorado Springs, Colorado on April 11.

“We could not be more pleased than to partner with Bigelow Aerospace and reserve a launch slot on our manifest for this revolutionary mission,” said Tory Bruno, ULA president and CEO.

The B330 boasts an interior volume of 330 cubic meters (12,000 cu ft). It measures 57 feet (17.3 m) in length, weighs 20 tons and offers a design life span of 20 years.

If NASA agrees to attach the B330 to the ISS, the stations habitable volume would grow by a whopping 30% in one giant step.

“The alliance represents the first-ever commercial partnership between a launch provider and a habitat provider,” according to ULA.

The advantage of expandable habitats is that they offer a much better volume to weight ratio compared to standard rigid structures, such as all of the current ISS pressurized modules.

The station based B330 concept is named XBASE or Expandable Bigelow Advanced Station Enhancement.

Schematic of the Bigelow Aerospace B330 expandable module tucked inside the fairing of a ULA ?AtlasV? 552 rocket.  Credit: ULA
Schematic of the Bigelow Aerospace B330 expandable module tucked inside the fairing of a ULA Atlas V 552 rocket. Credit: ULA

The additional volume would enable a significant increase in the orbiting outposts ability to support research and development operations and manufacturing processes for NASA and commercial users.

Bigelow further views the B330 and follow on modules as a potential destination for space tourism and a beneficial component for human missions to the Moon and Mars.

“We are exploring options for the location of the initial B330 including discussions with NASA on the possibility of attaching it to the International Space Station (ISS),” said Robert Bigelow, founder and president of Bigelow Aerospace.

“In that configuration, the B330 will enlarge the station’s volume by 30% and function as a multipurpose testbed in support of NASA’s exploration goals as well as provide significant commercial opportunities. The working name for this module is XBASE or Expandable Bigelow Advanced Station Enhancement.”

Bigelow said his firm plans to build two B330 modules by 2020.

The B330 would be tucked inside the cavernous payload fairing of the Atlas V which would launch in the 552 configuration with 5 meter diameter fairing with 5 solid rocket booster attached to the first stage and a dual engine Centaur second stage.

Launch of Bigelow B330 expandable habitat module tucked inside ULA Atlas V payload fairing. Credit: ULA
Launch of Bigelow B330 expandable habitat module tucked inside ULA Atlas V payload fairing. Credit: ULA

“When looking for a vehicle to launch our large, unique spacecraft, ULA provides a heritage of solid mission success, schedule certainty and a cost effective solution,” says Bigelow.

The SpaceX falcon 9 fairing is not big enough to house the B330.

“SpaceX, they do not have the capability with the fairing size that is necessary to accommodate the B330. So that is not even a choice,” Bigelow stated.

The B330 partnership announcement follows hot on the heels of last weeks successful launch of Bigelow’s experimental BEAM expandable module on a SpaceX Falcon 9 rocket on a mission to the ISS on April 8.

The Bigelow Expandable Activity Module (BEAM) is an experimental expandable capsule that attaches to the space station.  Credits: Bigelow Aerospace, LLC
The Bigelow Expandable Activity Module (BEAM) is an experimental expandable capsule that attaches to the space station. Credits: Bigelow Aerospace, LLC

BEAM is tucked inside the rear truck section of the SpaceX Dragon now berthed at the station. It will soon be attached to a side port on the Harmony module.

“This innovative and game-changing advance will dramatically increase opportunities for space research in fields like materials, medicine and biology,” said Bruno.

“It enables destinations in space for countries, corporations and even individuals far beyond what is available today, effectively democratizing space. We can’t begin to imagine the future potential of affordable real estate in space.”

The B330 could also function as a free flyer but would work best at the station, Bigelow noted at the briefing.

Both of the commercial space taxis being developed under NASA’s commercial crew program (CCP) could dock at the B330; the Boeing Starliner and the SpaceX crew Dragon, Bigelow stated.

Multiple B330 modules could also be joined together in orbit to form a free flying commercial space station.

United Launch Alliance Atlas V rocket – powered by Russian made RD-180 engines – and Super Secret NROL-67 intelligence gathering payload poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, in March 2014.  Credit: Ken Kremer – kenkremer.com
File photo of Atlas V rocket in with 5 meter diameter payload fairing and 5 solid rocket boosters following rollout to Space Launch Complex 41 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, ULA, commercial space, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

SpaceX Falcon 9 Recovered 1st Stage Arrives Back in Port After Historic Upright Landing at Sea

Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: Julian Leek

The SpaceX Falcon 9 that triumphantly accomplished history’s first upright landing of the spent first stage of a rocket on a barge at sea – after launching a critical cargo payload to orbit for NASA – sailed back into port at Cape Canaveral overnight in the wee hours of this morning, April 12, standing tall.

The recovered 15 story tall Falcon 9 booster arrived back into Port Canaveral, Florida at about 130 a.m. early today, towed atop the ocean going platform that SpaceX dubs an ‘Autonomous Spaceport Drone Ship’ or ASDS.

The ship is named “Of Course I Still Love You” after a starship from a novel written by Iain M. Banks. The landing platform measures only about 170 ft × 300 ft (52 m × 91 m).

A small crowd of excited onlookers and space photographers savored and cheered the incredible moment that is surely changing the face and future of space exploration and travel.

The two stage SpaceX Falcon 9 rocket boasting over 1.5 million pounds of thrust originally launched on Friday, April 8 at 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The primary goal of the Falcon 9 launch was carrying the SpaceX Dragon CRS-8 cargo freighter to low Earth orbit on a commercial resupply delivery mission for NASA to the International Space Station (ISS).

Before the launch, SpaceX managers rated the chances of a successful landing recovery rather high.

Three previous attempts by SpaceX to land on a barge at sea were partially successful, as the stage made a pinpoint flyback to the tiny ship but either hit too hard or tipped over in the final moments when a landing leg failed to fully deploy or lock in place.

“We were very optimistic of the chances of a successful landing on this mission,” Hans Koenigsmann told Universe Today in an exclusive post landing interview at the NorthEast Astronomy and Space Forum (NEAF) held in Suffern, NY.

Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch from and landing on April 8 from Cape Canaveral Air Force Station.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: Julian Leek

Coincidentally, today marks two major anniversaries in the history of space flight; the 55th anniversary of the launch of Russia’s Yuri Gagarin, the first man in space on Vostok-1 on April 12, 1961; and the 35th anniversary of the launch of shuttle Columbia on America’s first space shuttle mission (STS-1) on April 12, 1981 with John Young and Bob Crippen.

The vision of SpaceX’s billionaire founder and CEO Elon Musk is to dramatically slash the cost of access to space by recovering the firms rockets and recycling them for reuse – so that launching rockets will one day be nearly as routine and cost effective as flying on an airplane.

The stage will now be painstakingly inspected, tested and refurbished.

The essential next step after recovery is recycling. Musk said he hopes to re-launch the booster this year.

At liftoff, Dragon was loaded with over 3.5 tons of research experiments and essential supplies for the six man crew living aboard the orbiting science complex.
Watch this launch video from my video camera placed at the pad:

Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com

The Dragon CRS-8 cargo ship successfully arrived at the station on Sunday, April 10 and was joined to the million pound station at the Earth-facing port of the Harmony module.

The secondary objective was to try and land the Falcon 9 first stage on the ASDS done ship located some 200 miles off shore in the Atlantic Ocean.

The action-packed and propulsive landing took place some 10 minutes after liftoff.

In the final moments of the descent to the drone ship, one of the first stage Merlin 1D engines was reignited to slow the boosters descent speed as the quartet of side-mounted landing legs at the boosters base were unfurled, deployed and locked into place.

The entire launch and landing sequence was webcast live on NASA TV and by SpaceX.

The recovered booster atop the “Of Course I Still Love You” barge was towed back to port by the Elsbeth III tug.

“Home sweet home”, said my friend and veteran space photographer Julian Leek, who witnessed the boosters arrival back in port overnight.

“It was really a sight to see. Pilots and tugs did a well coordinated job to bring her in.”

After daylight dawned, a crane lifted the recovered booster into a storage cradle where it will remain upright for a few days. Then it will be lowered and placed horizontally for transport a few miles north to a SpaceX processing hanger back at pad 39A at the Kennedy Space Center.

Recovered SpaceX Falcon 9 rocket moved by crane from drone ship to an upright storage cradle on land at Port Canaveral,  Florida on April 12, 2016.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket moved by crane from drone ship to an upright storage cradle on land at Port Canaveral, Florida on April 12, 2016. Credit: Julian Leek

The booster will be cleaned and defueled, SpaceX spokesman John Taylor told the media.

SpaceX engineers will conduct a series of 12 test firings to ensure all is well operationally and that the booster can be re-launched.

Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch from and landing on April 8 from Cape Canaveral Air Force Station.  Credit: SpaceX
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html