Dr. Ken Kremer is a speaker, research scientist, freelance science journalist (KSC area,FL) and photographer whose articles, space exploration images and Mars mosaics have appeared in magazines, books, websites and calendars including Astronomy Picture of the Day, NBC, FOX, BBC, SPACE.com, Spaceflight Now, Science and the covers of Aviation Week & Space Technology, Spaceflight and the Explorers Club magazines. Ken has presented at numerous educational institutions, civic & religious organizations, museums and astronomy clubs. Ken has reported first hand from the Kennedy Space Center, Cape Canaveral, NASA Wallops, NASA Michoud/Stennis/Langley and on over 80 launches including 8 shuttle launches. He lectures on both Human and Robotic spaceflight - www.kenkremer.com. Follow Ken on Facebook and Twitter
After years of construction, the first of 18 primary flight mirrors has been installed onto NASA’s James Webb Space Telescope (JWST) at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, signifying the start of the final assembly phase for the mammoth observatory that will eventually become the most powerful telescope ever sent to space.
The milestone first mirror installation was achieved this week just ahead of the Thanksgiving holiday as the engineering team, working inside the massive clean room at NASA Goddard, used a robotic arm to precisely lift and lower the gold coated mirror into place on the observatory’s critical mirror holding backplane assembly.
NASA took another big step on the path to propel our astronauts back to deep space and ultimately on to Mars with the long awaited decision to formally restart production of the venerable RS-25 engine that will power the first stage of the agency’s mammoth Space Launch System (SLS) heavy lift rocket, currently under development.
Aerojet Rocketdyne was awarded a NASA contract to reopen the production lines for the RS-25 powerplant and develop and manufacture a certified engine for use in NASA’s SLS rocket. The contract spans from November 2015 through Sept. 30, 2024.
The SLS is the most powerful rocket the world has ever seen and will loft astronauts in the Orion capsule on missions back to the Moon by around 2021, to an asteroid around 2025 and then beyond on a ‘Journey to Mars’ in the 2030s – NASA’s overriding and agency wide goal. The first unmanned SLS test flight is slated for late 2018.
The core stage (first stage) of the SLS will initially be powered by four existing RS-25 engines, recycled and upgraded from the shuttle era, and a pair of five-segment solid rocket boosters that will generate a combined 8.4 million pounds of liftoff thrust, making it the world’s most powerful rocket ever.
The newly awarded RS-25 engine contract to Sacramento, California based Aerojet Rocketdyne is valued at 1.16 Billion and aims to “modernize the space shuttle heritage engine to make it more affordable and expendable for SLS,” NASA announced on Nov. 23. NASA can also procure up to six new flight worthy engines for later launches.
“SLS is America’s next generation heavy lift system,” said Julie Van Kleeck, vice president of Advanced Space & Launch Programs at Aerojet Rocketdyne, in a statement.
“This is the rocket that will enable humans to leave low Earth orbit and travel deeper into the solar system, eventually taking humans to Mars.”
The lead time is approximately 5 or 6 years to build and certify the first new RS-25 engine, Van Kleek told Universe Today in an interview. Therefore NASA needed to award the contract to Aerojet Rocketdyne now so that its ready when needed.
The RS-25 is actually an upgraded version of former space shuttle main engines (SSMEs) originally built by Aerojet Rocketdyne.
The reusable engines were used with a 100% success rate during NASA’s three decade-long Space Shuttle program to propel the now retired shuttle orbiters to low Earth orbit.
Those same engines are now being modified for use by the SLS on missions to deep space starting in 2018.
But NASA only has an inventory of 16 of the RS-25 engines, which is sufficient for a maximum of the first four SLS launches only. Although they were reused numerous times during the shuttle era, they will be discarded after each SLS launch.
And since the engines cannot be recovered and reused as during the shuttle era, a brand new set of RS-25s will have to be manufactured from scratch.
Therefore, the engine manufacturing process can and will be modernized and significantly streamlined – using fewer part and welds – to cut costs and improve performance.
“The RS-25 engines designed under this new contract will be expendable with significant affordability improvements over previous versions,” added Jim Paulsen, vice president, Program Execution, Advanced Space & Launch Programs at Aerojet Rocketdyne. “This is due to the incorporation of new technologies, such as the introduction of simplified designs; 3-D printing technology called additive manufacturing; and streamlined manufacturing in a modern, state-of-the-art fabrication facility.”
“The new engines will incorporate simplified, yet highly reliable, designs to reduce manufacturing time and cost. For example, the overall engine is expected to simplify key components with dramatically reduced part count and number of welds. At the same time, the engine is being certified to a higher operational thrust level,” says Aerojet Rocketdyne.
The existing stock of 16 RS-25s are being upgraded for use in SLS and also being run through a grueling series of full duration hot fire test firings to certify them for flight, as I reported previously here at Universe Today.
Among the RS-25 upgrades is a new engine controller specific to SLS. The engine controller functions as the “brain” of the engine, which checks engine status, maintains communication between the vehicle and the engine and relays commands back and forth.
Each of the RS-25’s engines generates some 500,000 pounds of thrust. They are fueled by cryogenic liquid hydrogen and liquid oxygen. For SLS they will be operating at 109% of power, compared to a routine usage of 104.5% during the shuttle era. They measure 14 feet tall and 8 feet in diameter.
They have to withstand and survive temperature extremes ranging from -423 degrees F to more than 6000 degrees F.
The maiden test flight of the SLS is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds. It will boost an unmanned Orion on an approximately three week long test flight beyond the Moon and back.
NASA plans to gradually upgrade the SLS to achieve an unprecedented lift capability of 130 metric tons (143 tons), enabling the more distant missions even farther into our solar system.
The first SLS test flight with the uncrewed Orion is called Exploration Mission-1 (EM-1) and will launch from Launch Complex 39-B at the Kennedy Space Center.
Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about SLS, Orion, SpaceX, Orbital ATK Cygnus, ISS, ULA Atlas rocket, Boeing, Space Taxis, Mars rovers, Antares, NASA missions and more at Ken’s upcoming outreach events:
Dec 1 to 3: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
Dec 8: “America’s Human Path Back to Space and Mars with Orion, Starliner and Dragon.” Amateur Astronomers Assoc of Princeton, AAAP, Princeton University, Ivy Lane, Astrophysics Dept, Princeton, NJ; 7:30 PM.
Restoring America’s ability to once again launch US astronauts to the International Space Station (ISS) from US soil on US rockets took another significant step forward when NASA ordered the first the agency’s first commercial crew rotation mission from the Hawthorne, California based-company SpaceX. NASA and SpaceX hope that the blastoff with a crew of up to four astronauts will take place by late 2017.
NASA’s Curiosity rover is on the Martian road to soon start the first ever study of currently active sand dunes anywhere beyond Earth. The dunes are located nearby, at the foothills of Mount Sharp, and Curiosity is due to arrive for an up close look in just a few days to start her unique research investigations.
The eerily dark dunes, named the “Bagnold Dunes,” skirt the northwestern flank of Mount Sharp. Ascending and diligently exploring the sedimentary layers of Mount Sharp is the primary goal of the mission.
“The ‘Bagnold Dunes’ are tantalizingly close,” says Ken Herkenhoff, Research Geologist at the USGS Astrogeology Science Center and an MSL science team member, in a mission update on Wednesday, Nov. 18.
The “Bagnold Dunes” have been quite noticeable in numerous striking images taken from Marsorbit, during the vehicles nail biting ‘7 Minutes of Terror’ descent from orbit, as well as in thousands upon thousands of images taken by Curiosity herself as the robot edged ever closer during her over three year long traverse across the floor of the Gale Crater landing site.
Curiosity must safely cross the expansive dune field before climbing Mount Sharp.
Although multiple NASA rovers, including Curiosity, have studied much smaller Martian sand ripples or drifts, none has ever visited and investigated up close these types of large dunes that range in size as tall as a two story building or more and as wide as a football field or more.
Moreover the Martian dunes are shifting even today.
“Shifting sands lie before me,” Curiosity tweeted. “Off to image, scoop and scuff active dunes on Mars. I’ll be the first craft to visit such dunes beyond Earth!”
“The Bagnold Dunes are active: Images from orbit indicate some of them are migrating as much as about 3 feet (1 meter) per Earth year. No active dunes have been visited anywhere in the solar system besides Earth,” notes NASA.
Curiosity is currently only some 200 yards or meters away from the first dune she will investigate, simply named “Dune 1.”
As the rover approaches closer and closer, the dune research campaign is already in progress as she snaps daily high resolution images and gathers measurements of the area’s wind direction and speed.
“We’ve planned investigations that will not only tell us about modern dune activity on Mars but will also help us interpret the composition of sandstone layers made from dunes that turned into rock long ago,” said Bethany Ehlmann of the California Institute of Technology and NASA’s Jet Propulsion Laboratory, in Pasadena, California, in a statement.
After arriving at the dune, the team will command Curiosity to scoop up samples for analysis by the rover’s pair of miniaturized chemistry instruments inside its belly. It will also scuff the dune with a wheel to examine and compare the surface and interior physical characteristics.
The dark dunes are informally named after British military engineer Ralph Bagnold (1896-1990), who conducted pioneering studies of the effect of wind on motion of individual particles in dunes on Earth. Curiosity will carry out “the first in-place study of dune activity on a planet with lower gravity and less atmosphere.”
Although the huge Bagnold dunes are of great scientific interest, the team will also certainly exercise caution in maneuvering the car sized six wheel robot.
Recall that NASA’s smaller golf cart Spirit Mars rover perished a few years back – albeit over 6 years into her 3 month mission – when the robot became unexpectedly mired in a nearly invisible sand ripple from which she was unable to escape.
Likewise, sister Opportunity got stuck in a sand ripple earlier in her mission that took the engineering team weeks of painstaking effort to extricate from a spot subsequently named ‘Purgatory’ that resulted in many lessons learned for future operations.
Opportunity is still hard at work – currently exploring Marathon Valley – nearly a dozen years into her planned 3 month mission.
Based on orbital observations by the CRISM and HiRISE instruments aboard NASA’s Mars Reconnaissance Orbiter, the science team has concluded that the Bagnold Dunes are mobile and also have an uneven distribution of minerals, such as olivine.
“We will use Curiosity to learn whether the wind is actually sorting the minerals in the dunes by how the wind transports particles of different grain size,” Ehlmann said.
“If the Bagnold campaign finds that other mineral grains are sorted away from heavier olivine-rich grains by the wind’s effects on dune sands, that could help researchers evaluate to what extent low and high amounts of olivine in some ancient sandstones could be caused by wind-sorting rather than differences in alteration by water,” say researchers.
“These dunes have a different texture from dunes on Earth,” said team member Nathan Bridges, of the Johns Hopkins University’s Applied Physics Laboratory, Laurel, Maryland.
“The ripples on them are much larger than ripples on top of dunes on Earth, and we don’t know why. We have models based on the lower air pressure. It takes a higher wind speed to get a particle moving. But now we’ll have the first opportunity to make detailed observations.”
Last month Curiosity conducted her eighth drill campaign for sample chemical analysis at the ‘Big Sky’ site, before moving on to ‘Greenhorn’. Big Sky was an area of cross-bedded sandstone rock in the Stimson geological unit on the lower slopes of Mount Sharp.
Curiosity has already accomplished her primary objective of discovering a habitable zone on the Red Planet – at the Yellowknife Bay area – that contains the minerals necessary to support microbial life in the ancient past when Mars was far wetter and warmer billions of years ago.
As of today, Sol 1168, November 19, 2015, she has driven over 6.9 miles (11.1 kilometers) kilometers and taken over 282,100 amazing images.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about Orbital ATK Cygnus, ISS, ULA Atlas rocket, SpaceX, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:
Dec 1 to 3: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
Dec 8: “America’s Human Path Back to Space and Mars with Orion, Starliner and Dragon.” Amateur Astronomers Assoc of Princeton, AAAP, Princeton University, Ivy Lane, Astrophysics Dept, Princeton, NJ; 7:30 PM.
KENNEDY SPACE CENTER, FL – The largest and most advanced version of the privately developed Cygnus cargo freighter ever built by Orbital ATK is fueled, loaded and ready to go to orbit – signifying a critical turning point towards resuming American commercial cargo launches to the space station for NASA that are critical to keep it functioning.
The enhanced and fully assembled commercial Cygnus was unveiled to the media, including Universe Today, during an exclusive tour inside the clean room facility on Friday, Nov. 13, where it is undergoing final prelaunch processing at the Kennedy Space Center (KSC).
The entire NASA family on Earth and NASA’s two astronauts serving aboard the Earth orbiting International Space Station (ISS) salute all our country’s brave veterans on this Veteran’s Day, Nov. 11, 2015.
NASA astronauts Scott Kelly and Kjell Lindgren saluted America’s veterans today with out of this world salutes and beautiful photos of the American flag back dropped by Earth from the stations orbital altitude of 250 miles (400 km) above the planet. See above and below.
Ice Volcanoes on Pluto?
The informally named feature Wright Mons, located south of Sputnik Planum on Pluto, is an unusual feature that’s about 100 miles (160 kilometers) wide and 13,000 feet (4 kilometers) high. It displays a summit depression (visible in the center of the image) that’s approximately 35 miles (56 kilometers) across, with a distinctive hummocky texture on its sides. The rim of the summit depression also shows concentric fracturing. New Horizons scientists believe that this mountain and another, Piccard Mons, could have been formed by the ‘cryovolcanic’ eruption of ices from beneath Pluto’s surface. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute[/caption]
The possible discovery of a pair of recently erupting ice volcanoes on Pluto are among the unexpected “astounding” findings just unveiled by perplexed scientists with NASA’s New Horizons spacecraft, barely four months after the historic first flyby of the last unexplored planet in our solar system.
“Nothing like this has been seen in the deep outer solar system,” said Jeffrey Moore, New Horizons Geology, Geophysics and Imaging team leader from NASA Ames Research Center, Moffett Field, California, as the results so far were announced at the 47th Annual Meeting of the Division for Planetary Sciences (DPS) of the American Astronomical Society (AAS) this week in National Harbor, Maryland.
“The Pluto system is baffling us,” said mission Principal Investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, at a news media briefing on Nov. 9.
Two large mountainous features tens of miles across and several miles high, have been potentially identified by the team as volcanoes.
They were found in terrain located south of Sputnik Planum – a vast area of smooth icy plains located within Pluto’s huge heart shaped region informally known as Tombaugh Regio. It may have formed very recently resulting from geologic activity within the past 10 million years.
The possible ice volcanoes, or cryovolcanoes, were found at two of Pluto’s most distinctive mountains and identified from images taken by New Horizons as it became Earth’s first emissary to hurtle past the small planet on July 14, 2015.
“All of our flyby plans succeeded,” Stern stated at the briefing.
“All of the data sets are spectacular.
Scientists created 3-D topographic maps from the probes images and discovered the possible ice volcanoes – informally named Wright Mons and Piccard Mons.
Wright Mons, pictured above, is about 100 miles (160 kilometers) wide and 13,000 feet (4 kilometers) high.
Both mountains appear to show summit depressions “with a large hole” visible in the center, similar to volcanoes on Earth. Scientists speculate “they may have formed by the ‘cryovolcanic’ eruption of ices from beneath Pluto’s surface.”
The erupting Plutonian ices might be composed of a melted slurry of water ice, nitrogen, ammonia and methane.
The depression inside Wright Mons is approximately 35 miles (56 kilometers) across and exhibits a “distinctive hummocky texture on its sides. The rim of the summit depression also shows concentric fracturing.”
“These are big mountains with a large hole in their summit, and on Earth that generally means one thing—a volcano,” said Oliver White, New Horizons postdoctoral researcher with NASA Ames, in a statement.
The team is quick to caution that the “interpretation of these features as volcanoes is tentative” and requires much more analysis.
“If they are volcanic, then the summit depression would likely have formed via collapse as material is erupted from underneath. The strange hummocky texture of the mountain flanks may represent volcanic flows of some sort that have travelled down from the summit region and onto the plains beyond, but why they are hummocky, and what they are made of, we don’t yet know.”
More than 50 papers about the Pluto system are being presented at the AAS meeting this week.
So far New Horizon has transmitted back only about 20 percent of the data gathered, according to mission Principal Investigator Alan Stern.
“It’s hard to imagine how rapidly our view of Pluto and its moons are evolving as new data stream in each week. As the discoveries pour in from those data, Pluto is becoming a star of the solar system,” said Stern.
“Moreover, I’d wager that for most planetary scientists, any one or two of our latest major findings on one world would be considered astounding. To have them all is simply incredible.”
The piano shaped probe gathered about 50 gigabits of data as it hurtled past Pluto, its largest moon Charon and four smaller moons.
Stern says it will take about a year for all the data to get back. Thus bountiful new discoveries are on tap for a long time to come.
With 20 percent of the data now returned and more streaming back every day, the team is excited to debate what is all means.
“This is when the debates begin,” said Curt Niebur, New Horizons program scientist at NASA Headquarters, at the missions Nov 9 media briefing. “This is when the heated discussions begin. This is when the entire science community starts staying up throughout the night.”
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Just shy of an unfathomable 4200 Sols traversing ravishing alien terrain on the Red Planet, the longest living ‘Martian’ – NASA’s robot ‘Opportunity’ – is driving between “lily pads” down steep walled Marathon Valley in search of life giving sun that enables spectacular science yielding clues to Marswatery past. All this as she strives to survive utterly harsh climate extremes, because ‘winter is coming’ for her seventh time on the fourth rock from the sun!
“Opportunity is driving east and southeast down Marathon Valley, bisecting the region in which we detect smectites [clay minerals] using CRISM [spectrometer] data,” Opportunity Deputy Principal Investigator Ray Arvidson, of Washington University in St. Louis, told Universe Today.
Or will a trio of other American aerospace competitors vying for the new government contracts somehow break through? That’s the multi Billion dollar question since the cargo awards are potentially valued at 3 to 4 Billion dollars or more each.
Well despite widespread expectations that the winners of NASA’s Commercial Resupply Services (CRS) 2 contract for the orbiting outpost would be announced by week’s end, nearly everyone involved will have to wait a few more months while agency officials again postponed a decision in order to ponder the long term implications of “a complex procurement.”
NASA says it needs more time to “assess proposals” and determine which of five private companies will be awarded the governments CRS 2 contracts for the ISS resupply missions.
Although NASA had planned to award contracts to at least two winners on Thursday, Nov. 5, the agency just announced another significant delay for the CRS 2 contract via its procurement website because the decision is “complex.”
“The anticipated CRS2 award is now no later than January 30, 2016 to allow additional time for the Government to assess proposals,” NASA announced on its procurement website.
“CRS2 is a complex procurement.
This new delay follows several earlier postponements already announced this past year.
The two companies currently holding Commercial Resupply Services (CRS) contracts from NASA, namely SpaceX and Orbital ATK, are dueling with new bids from Boeing, Sierra Nevada Corp. (SNC) and Lockheed Martin.
Altogether, those five companies are known to have submitted bids for the CRS-2 procurement by the due date of March 21, 2014. Awards were expected in June 2015 but the timing was repeatedly revised.
Each company was originally expected to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware spread out over multiple cargo delivery flights to the ISS under the initial CRS contract.
So NASA truly has a lot on the line while considering CRS 2 and postponing a decision may be wise until after both firms successfully complete their upcoming ‘Return to Flight’ missions – now scheduled for Dec. 3 by Orbital ATK and early January 2016 for SpaceX.
“The anticipated award date has been revised to no later than January 30, 2016 to allow time to complete a thorough proposal evaluation and selection,” says NASA.
When asked for a comment and explanation on the decisions and delay, a NASA spokesperson responded to me as follows:
“This is all we’ll be able to say, for right now.”
“Since the agency is in the process of evaluating proposals, we are in a procurement communications blackout. For that reason, NASA cannot answer.”
However, Boeing has been told by NASA that they are out of the running for CRS 2. Earlier reports indicated that Lockheed Martin is also out of the competition.
But there is still plenty of really good news for Boeing since they were already awarded a commercial crew contract in September 2014 to develop the Starliner space taxi to launch astronauts to the ISS.
The first Boeing CST-100 Starliner capsule is already being manufactured at the Kennedy Space Center, as I detailed earlier on site – here.
For the CRS 2 contract, Boeing submitted a bid to convert Starliner into an unmanned cargo freighter.
Meanwhile Sierra Nevada Corp told Universe Today that their Dream Chaser space plane “remains in contention.”
Dream Chaser is a winged mini shuttle that lost out in NASA commercial crew program competition. SNC submitted a proposal involving an unmanned version of Dream Chaser for the CRS 2 cargo competition building on what they already developed.
“SNC received notification that NASA has delayed the award decision related to Commercial Resupply Services 2 to no later than January 30, 2016,” SNC spokesperson Krystal Scordo told Universe Today.
“SNC remains part of the competitive range. We are proud of our Dream Chaser® Program team and are pleased to remain in contention for this important work in space.”
Neither SpaceX or Orbital will comment about the details of their CRS 2 procurement proposals to Universe Today beyond stating to me that they submitted bids and await NASA’s decision.
The CRS 2 contract is a follow on to the original CRS contract which was to run through at least 2016.
In the meantime, NASA opted to extend the original CRS contract to around 2018 by granting additional interim cargo flights to both SpaceX and Orbital under terms allowed by the contract.
SpaceX was granted five additional Dragon flights and Orbital ATK was given three additional Cygnus flights, for a total of 10 Cygnus resupply missions through about 2018.
The CRS-2 contract is valued at between $1.0 Billion and $1.4 Billion per year and NASA requires this service from approximately 2018 through 2024 according to the RFI.
NASA expects delivery of 14,250 to 16,750 kilograms per year of pressurized cargo as well as 1,500 to 4,000 kg per year of unpressurized cargo and return or disposal of up to 14,250 to 16,750 kg per year of pressurized cargo under CRS 2.
Watch for my onsite reports from the Kennedy Space Center press site for the Orbital Atlas OA-4 cargo liftoff on Dec. 3.
“We are anxious to get flying again not only for our own sake, but really for NASA and the crew!” Frank DeMauro, Orbital ATK Vice President for Human Spaceflight Systems Programs, said in an interview with Universe Today.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.