Curiosity Reaches Out to Scrutinize Next Martian Drill Target at Mount Remarkable

Multisol composite photo mosaic shows deployment of Curiosity’s rovers robotic arm and APXS X-ray spectrometer onto the ‘Winjana’ rock target at Mount Remarkable for evaluation as missions third drill target inside Gale Crater on Mars. The colorized navcam raw images were stitched together from several Martian days up to Sol 612, April 26, 2014. Credit: NASA/JPL-Caltech/Ken Kremer - kenkremer.com/Marco Di Lorenzo

Multisol composite photo mosaic shows deployment of Curiosity rovers robotic arm and APXS X-ray spectrometer onto the ‘Winjana’ rock target at Mount Remarkable for evaluation as missions third drill target inside Gale Crater on Mars. The navcam raw images were stitched together from several Martian days up to Sol 612, April 26, 2014 and colorized. Credit: NASA/JPL-Caltech/Ken Kremer – kenkremer.com/Marco Di Lorenzo
See more Curiosity photo mosaics below[/caption]

To Drill or not to Drill?

That’s the momentous question posed by the international team of scientists and engineers who commanded NASA’s SUV sized Curiosity rover to reach out with her high tech robotic arm this weekend (Apr 25-27) and gather critical science measurements for high powered scrutiny of an outcrop on a Martian butte named Mount Remarkable.

See our multisol, composite photo mosaic – above – illustrating Curiosity’s arm in action pressing down her X-ray spectrometer on Saturday, April 26, Sol 612, at an alien rock on Mount Remarkable at the current stopping point at “The Kimberley Waypoint” along the epic trek to towering Mount Sharp.

Via a combination of laser shots, images, brushings and spectrometry the team is pondering new data streaming back daily across hundreds of millions of kilometers of interplanetary space to Earth to determine whether to bore into a sandstone slab being evaluated as the target for the missions third drilling campaign.

The team deployed the arm this weekend onto a rock target called “Windjana,” after a gorge in Western Australia.

Curiosity’s Panoramic view of Mount Remarkable at ‘The Kimberley Waypoint’ where rover will conduct 3rd drilling campaign inside Gale Crater on Mars.  The navcam raw images were taken on Sol 603, April 17, 2014, stitched and colorized.   Credit: NASA/JPL-Caltech/Ken Kremer - kenkremer.com/Marco Di Lorenzo
Curiosity’s Panoramic view of Mount Remarkable at ‘The Kimberley Waypoint’ where rover will conduct 3rd drilling campaign inside Gale Crater on Mars. The navcam raw images were taken on Sol 603, April 17, 2014, stitched and colorized. Credit: NASA/JPL-Caltech/Ken Kremer – kenkremer.com/Marco Di Lorenzo

After confirming that the 1 ton robot was in a stable position, the team commanded study observations on Saturday, Sol 612, using the APXS spectrometer and MAHLI camera on the terminus of the arm’s turret.

“The observation will document its chemical composition and morphology before drilling,” says science team member Ken Herkenoff in a mission update.

She also brushed off the potential ‘Windjana’ drill target with the wire-bristle Dust Removal Tool (DRT) to clear away obscuring Red Planet dirt and dust hindering the data collections.

NASA's Curiosity Mars rover has driven within robotic-arm's reach of the sandstone slab at the center of this April 23 view from the rover's Mast Camera. The rover team plans to have Curiosity examine a target patch on the rock, called "Windjana," to aid a decision about whether to drill there. Credit: NASA/JPL-Caltech/MSSS
NASA’s Curiosity Mars rover has driven within robotic-arm’s reach of the sandstone slab at the center of this April 23 view from the rover’s Mast Camera. The rover team plans to have Curiosity examine a target patch on the rock, called “Windjana,” to aid a decision about whether to drill there. Credit: NASA/JPL-Caltech/MSSS

The rover is also conducting continuing remote sensing observations with the ChemCam, Mastcam and Navcam cameras mounted on the Mast.

Today, April 27, Sol 613, “MAHLI will take another selfie of the rover” according to Herkenhoff.

In early April, the six wheeled rover pulled into a scientifically enticing science destination known as “The Kimberley Waypoint” in hopes of carrying out the next drilling operation into alien Martian terrain in search of further clues about ancient Martian environments that may have been favorable for life.

“We are officially in ‘The Kimberley’ now,” Curiosity Principal Investigator John Grotzinger, of the California Institute of Technology, Pasadena, told me at that time.

Since arriving in the Kimberley region, Curiosity’s earth bound handlers have been maneuvering the 1 ton robot around to thoroughly survey destination “Kimberley” in choosing the best drill site.

Why was Kimberley chosen as a science destination ?

“The Kimberley” has interesting, complex stratigraphy,” Grotzinger told me.

If Windjana meets the required criteria, Curiosity will bore into the sandstone rock, and then pulverize and filter it prior to delivery to the two onboard miniaturized chemistry labs – SAM and CheMin.

Windjana would be the first sandstone drill target, if selected. The first two drill locations at ‘John Klein’ and ‘Cumberland’ inside Yellowknife Bay were mudstone.

Curiosity scans scientifically intriguing rock outcrops of gorgeous Martian terrain at ‘The Kimberley’ waypoint in search of next drilling location beside Mount Remarkable butte, at right.  Mastcam color photo mosaic assembled from raw images snapped on Sol 590, April 4, 2014. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer - kenkremer.com
Curiosity scans scientifically intriguing rock outcrops of gorgeous Martian terrain at ‘The Kimberley’ waypoint in search of next drilling location beside Mount Remarkable butte, at right. Mastcam color photo mosaic assembled from raw images snapped on Sol 590, April 4, 2014. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer – kenkremer.com

Curiosity departed the ancient lakebed at the Yellowknife Bay region in July 2013 where she discovered a habitable zone with the key chemical elements and a chemical energy source that could have supported microbial life billions of years ago – and thereby accomplished the primary goal of the mission.

“We want to learn more about the wet process that turned sand deposits into sandstone here,” said Grotzinger, in a NASA statement.

“What was the composition of the fluids that bound the grains together? That aqueous chemistry is part of the habitability story we’re investigating.”

“Understanding why some sandstones in the area are harder than others also could help explain major shapes of the landscape where Curiosity is working inside Gale Crater. Erosion-resistant sandstone forms a capping layer of mesas and buttes. It could even hold hints about why Gale Crater has a large layered mountain, Mount Sharp, at its center,” NASA elaborated in the statement.

To date, Curiosity’s odometer totals 3.8 miles (6.1 kilometers) since landing inside Gale Crater on Mars in August 2012. She has taken over 143,000 images.

The sedimentary foothills of Mount Sharp, which reaches 3.4 miles (5.5 km) into the Martian sky, is the 1 ton robots ultimate destination inside Gale Crater because it holds caches of water altered minerals. Such minerals could possibly indicate locations that sustained potential Martian life forms, past or present, if they ever existed.

Curiosity has some 4 kilometers to go to reach the base of Mount Sharp sometime later this year.

Martian landscape with rows of curved rock outcrops at ‘Kimberly’ in the foreground and spectacular Mount Sharp on the horizon. NASA’s Curiosity Mars rover pulled into Kimberly waypoint dominated by layered rock outcrops as likely drilling site.  This colorized navcam camera photomosaic was assembled from imagery taken on Sol 576 (Mar. 20, 2014).  Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer-kenkremer.com
Martian landscape with rows of curved rock outcrops at ‘Kimberly’ in the foreground and spectacular Mount Sharp on the horizon. NASA’s Curiosity Mars rover pulled into Kimberly waypoint dominated by layered rock outcrops as likely drilling site. This colorized navcam camera photomosaic was assembled from imagery taken on Sol 576 (Mar. 20, 2014). Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer

Curiosity Mars rover captured this panoramic view of a butte called "Mount Remarkable" and surrounding outcrops at “The Kimberley " waypoint on April 11, 2014, Sol 597. Colorized navcam photomosaic was stitched by Marco Di Lorenzo and Ken Kremer.  Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer - kenkremer.com
Curiosity Mars rover captured this panoramic view of a butte called “Mount Remarkable” and surrounding outcrops at “The Kimberley ” waypoint on April 11, 2014, Sol 597. Colorized navcam photomosaic was stitched by Marco Di Lorenzo and Ken Kremer. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com

SpaceX CEO Elon Musk Sues Government to Break US Air Force’s National Security Launch Monopoly

SpaceX CEO Elon Musk announces lawsuit protesting Air Force launch contracts while speaking at the National Press Club in Washington, DC on April 25, 2014

SpaceX CEO Elon Musk announces lawsuit protesting Air Force launch contracts while speaking at the National Press Club in Washington, DC on April 25, 2014
Story updated[/caption]

Elon Musk, CEO and founder of the upstart commercial launch venture SpaceX, announced at a press conference today, Friday, April 25, that SpaceX is filing suit against the Federal Government to protest and break the US Air Force’s awarding of lucrative launch contracts for high priority national security satellites to a sole rocket provider – United Launch Alliance (ULA) – on a non competitive basis.

The gloves are officially off in the intensely mounting duel over multibillion dollar Air Force military launch contracts between SpaceX and ULA.

“The official protest document will be available Monday, April 28th at www.freedomtolaunch.com and will be filed with the United States Court of Federal Claims in Washington, D.C.,” said SpaceX in an official statement.

Musk said the Air Force launch contract with ULA amounted to a continuing monopoly, was unfair by blocking SpaceX from competing for launches of surveillance satellites and would cost taxpayers billions of extra dollars in coming years.

“What we feel is that this is not right – that the national security launches should be put up for competition and they should not be awarded on a sole source, uncompeted basis,” said Musk at the briefing called on short notice and held at the National Press Club in Washington, DC.

SpaceX is suing the Air Force for the right to compete for US national security satellites launches using Falcon 9 rockets such as this one which successfully launched the SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX is suing the Air Force for the right to compete for US national security satellites launches using Falcon 9 rockets such as this one which successfully launched the SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The latest Air Force launch contract dated to December 2013 guarantees the “block buy” purchase of 36 rocket cores from ULA for national security launches for the DOD, NRO and other government agencies, at a significantly reduced cost compared to earlier contracts.

A further 14 cores were to be awarded on a competitive basis, including bids from SpaceX and others who seek to gain Air Force certification. Several of those launch awards have now been deferred indefinitely.

ULA is a joint venture between aerospace giants Boeing and Lockheed Martin, formed in 2006, that has launched over 80 satellites to orbit and beyond including many NASA science and mission probes like Orion EFT-1, Curiosity, MAVEN, TDRS and more.

It manufactures the Delta IV and Atlas V unmanned, expendable rocket families that are currently the only boosters certified to launch the high value military payloads at issue in the lawsuit announced on Friday by Musk.

The newest versions of the Delta and Atlas rockets – known as EELV’s (Evolved Expendable Launch Vehicles) have had nearly flawless records of success since being introduced some dozen years ago by the companies individually, before the ULA merger.

Atlas V rocket and Super Secret NROL-67 intelligence gathering payload following rollout to Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, on March 24, 2014. Credit: Ken Kremer - kenkremer.com
Atlas V rocket and Super Secret NROL-67 intelligence gathering payload following rollout to Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, on March 24, 2014. Credit: Ken Kremer – kenkremer.com

Musk wants his company’s newer and he says much cheaper Falcon 9 and Falcon Heavy rockets to be certified by the Air Force and included in the competition for launch contracts.

To date the Falcon 9 has launched only 9 times. Only four of those were in the new and more powerful configuration needed by the Air Force.

Musk is not asking that the launches be awarded outright to SpaceX. But he does want the Air Force contract cancelled and re-competed.

“We’re just protesting and saying that the launches should be competed,” Musk said.

“If we compete and lose that’s fine. But why were they not even competed? That just doesn’t make sense.”

“So far we are most of the way through the certification process. And so far there have been zero changes to the rocket. Mostly it’s just been a paperwork exercise.”

“Since this is a large multiyear contract, why not wait a few months for the certification process to complete. And then do the competition. That seems very reasonable to me.”

Musk said it costs four times more to launch ULA’s Delta or Atlas rocket vs. a SpaceX Falcon rocket.

“The ULA rockets are basically four times more expensive than ours. So this contract is costing US taxpayers billions of dollars for no reason.”

“Each launch by ULA costs American taxpayers roughly $400 million per launch. They are insanely expensive. I don’t know why they are so expensive.”

The Falcon 9 lists for about $60 Million per launch, but rises to about $100 million after the certification costs are included, Musk explained.

“So yes the certification does make our Falcon 9 rocket more expensive. But not 400% more expensive.”

“Our rockets are 21st century design,” said Musk to obtain the most efficiency. He said ULA’s designs date back to the 90s and earlier with heritage hardware.

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

To date the Falcon 9 has already been used three times under a $1.6 Billion contract with NASA to launch the private SpaceX Dragon resupply vessel to the International Space Station (ISS) – most recently a week ago during the April 18 blastoff of the SpaceX CRS-3 mission from Cape Canaveral.

It is also being used to launch highly expensive communications satellites like SES-8 and Thaicom-6 for private companies to geostationary orbits.

“It just seems odd that if our vehicle is good enough for NASA and supporting a $100 billion space station, and it’s good enough for launching NASA science satellites, for launching complex commercial geostationary satellites, then there’s no reasonable basis for it not being capable of launching something quite simple like a GPS satellite,” said Musk.

“Our only option is to file a protest.”

Furthermore as I wrote here in a prior article, US National Security launches are now potentially at risk due to the ongoing crisis between Russian, Ukraine and Crimea because the RD-180 first stage engines powering the Atlas V are designed and manufactured in Russia by NPO Energomash, majority owned by the Russian Federation.

SpaceX CEO Elon Musk announces lawsuit protesting Air Force launch contracts while speaking at the National Press Club in Washington, DC on April 25, 2014.
SpaceX CEO Elon Musk announces lawsuit protesting Air Force launch contracts while speaking at the National Press Club in Washington, DC on April 25, 2014

“The head of the Russian space sector, Dmitry Rogozin, was sanctioned by the White House in March 2014 in the wake of Russia’s aggression in Ukraine,” says SpaceX.

The RD-180 engine supply could be cut off in a worst case scenario if economic sanctions against Russia are increased by the Western allies.

ULA has a two year contingency supply of the RD-180’s and blueprints to begin production, if needed.

However in the event of a cutoff, it would take at least three to five years to start and certify RD-180 engine production somewhere in the US, a ULA spokesperson told me recently at Cape Canaveral.

This possibly leaves a 1 to 3 year gap with no Atlas V 1st stage engine supply.

The Delta IV rockets and engines by contrast are manufactured in the US.

“In light of international events, this seems like the wrong time to send hundreds of millions of dollars to the Kremlin,” said Musk.

“Yet, this is what the Air Force’s arrangement with ULA does, despite the fact that there are domestic alternatives available that do not rely on components from countries that pose a national security risk.”

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Curiosity Captures First Ever Asteroid Images from Mars Surface

NASA's Curiosity Mars rover has caught the first image of asteroids taken from the surface of Mars. The image includes two asteroids, Ceres and Vesta. This version includes Mars' moon Deimos in a circular, exposure-adjusted inset and square insets at left from other observations the same night. Credit: NASA/JPL-Caltech/MSSS/Texas A&M

NASA’s Curiosity Mars rover has caught the first image of asteroids taken from the surface of Mars on April 20, 2014. The image includes two asteroids, Ceres and Vesta. This version includes Mars’ moon Deimos in a circular, exposure-adjusted inset and square insets at left from other observations the same night. Credit: NASA/JPL-Caltech/MSSS/Texas A&M
More night sky views and surface mosaics below[/caption]

The Curiosity rover has captured the first images of asteroids even taken by a Human probe from the alien surface of the Red Planet during night sky imaging.

And it’s not just one asteroid, but two asteroids caught in the same night time pointing on the Red Planet. Namely, asteroids Ceres and Vesta.

The stupendous image – seen above – was snapped by Curiosity’s high resolution Mastcam camera earlier this week on Sunday, April 20, 2014, Sol 606, whilst she was scanning about during daylight for her next drilling target at “The Kimberley” waypoint she pulled into at the start of this month.

Ceres and Vesta appear as streaks since the Mastcam image was taken as a 12 second time exposure.

“This imaging was part of an experiment checking the opacity of the atmosphere at night in Curiosity’s location on Mars, where water-ice clouds and hazes develop during this season,” said camera team member Mark Lemmon of Texas A&M University, College Station, in a statement.

“The two Martian moons were the main targets that night, but we chose a time when one of the moons was near Ceres and Vesta in the sky.”

View our “Kimberley” region photo mosiacs below to see exactly from where the six wheeled robot took the asteroid image shown above, while driving around the base of “Mount Remarkable”.

And those two asteroids are extra special because not only are they the two most massive objects in the Main asteroid belt between Mars and Jupiter, but they are also the destinations of another superlative NASA unmanned mission – Dawn.

Curiosity Mars rover captured this panoramic view of a butte called "Mount Remarkable" and surrounding outcrops at “The Kimberley " waypoint on April 11, 2014, Sol 597. Colorized navcam photomosaic was stitched by Marco Di Lorenzo and Ken Kremer.  Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer - kenkremer.com
Curiosity Mars rover captured this panoramic view of a butte called “Mount Remarkable” and surrounding outcrops at “The Kimberley ” waypoint on April 11, 2014, Sol 597. Colorized navcam photomosaic was stitched by Marco Di Lorenzo and Ken Kremer. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com

The exotic Dawn probe, propelled by a stream of ions, orbited Vesta for a year in 2011 and is now approaching Ceres for an exciting orbital mission in 2015.

Ceres, the largest asteroid, is about 590 miles (950 kilometers) in diameter. Vesta is the third-largest object in the main belt and measures about 350 miles (563 kilometers) wide.

And as if Curiosity’s mouthwatering and heavenly double asteroid gaze wasn’t already spectacular enough, the tinier of Mars’ moons, Deimos, was also caught in that same image.

A trio of star trails is also seen, again due to the 12 second time exposure time.

Furthermore, Mars largest moon Phobos as well as massive planets Jupiter and Saturn were also visible that same Martian evening, albeit in a different pointing.

These celestial objects are all combined in the composite image above.

“The background is detector noise, limiting what we can see to magnitude 6 or 7, much like normal human eyesight. The two asteroids and three stars would be visible to someone of normal eyesight standing on Mars. Specks are effects of cosmic rays striking the camera’s light detector,” says NASA.

An unannotated image is seen below.

NASA's Curiosity Mars rover has caught the first image of asteroids taken from the surface of Mars. The image includes two asteroids, Ceres and Vesta.  In this unannotated version of the 12-second-exposure image, the brightness of Deimos at lower right saturates the image, making the moon appear overly large.  Credit: NASA/JPL-Caltech/MSSS/Texas A&M
NASA’s Curiosity Mars rover has caught the first image of asteroids taken from the surface of Mars. The image includes two asteroids, Ceres and Vesta. In this unannotated version of the 12-second-exposure image, the brightness of Deimos at lower right saturates the image, making the moon appear overly large. Credit: NASA/JPL-Caltech/MSSS/Texas A&M

Curiosity’s makers back on Earth are nowhere to be seen. But check out the Curiosity’s earlier photo below of the Earth and Moon from my prior article – here.

To date, Curiosity’s odometer totals 3.8 miles (6.1 kilometers) since landing inside Gale Crater on Mars in August 2012. She has taken over 143,000 images.

The sedimentary foothills of Mount Sharp, which reaches 3.4 miles (5.5 km) into the Martian sky, is the 1 ton robots ultimate destination inside Gale Crater because it holds caches of water altered minerals. Such minerals could possibly indicate locations that sustained potential Martian life forms, past or present, if they ever existed.

Martian landscape with rows of curved rock outcrops at ‘Kimberly’ in the foreground and spectacular Mount Sharp on the horizon. NASA’s Curiosity Mars rover pulled into Kimberly waypoint dominated by layered rock outcrops as likely drilling site.  This colorized navcam camera photomosaic was assembled from imagery taken on Sol 576 (Mar. 20, 2014).  Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer-kenkremer.com
Martian landscape with rows of curved rock outcrops at ‘Kimberly’ in the foreground and spectacular Mount Sharp on the horizon. NASA’s Curiosity Mars rover pulled into Kimberly waypoint dominated by layered rock outcrops as likely drilling site. This colorized navcam camera photomosaic was assembled from imagery taken on Sol 576 (Mar. 20, 2014). Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Curiosity has some 4 kilometers to go to reach the base of Mount Sharp sometime later this year.

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer

You are here! – As an Evening Star in the Martian Sky. This evening-sky view taken by NASA’s Mars rover Curiosity shows the Earth and Earth’s moon as seen on Jan. 31, 2014, or Sol 529 shortly after sunset at the Dingo Gap inside Gale Crater.  Credit: NASA/JPL-Caltech/MSSS/TAMU
You are here! – As an Evening Star in the Martian Sky
This evening-sky view taken by NASA’s Mars rover Curiosity shows the Earth and Earth’s moon as seen on Jan. 31, 2014, or Sol 529 shortly after sunset at the Dingo Gap inside Gale Crater. Credit: NASA/JPL-Caltech/MSSS/TAMU
Mars rock rows and Mount Sharp. Martian landscape scene with rows of striated rocks in the foreground and Mount Sharp on the horizon. NASA's Curiosity Mars rover paused mid drive at the Junda outcrop to snap the component images for this navcam camera photomosaic on Sol 548 (Feb. 19, 2014) and then continued traveling southwards towards mountain base.   UHF Antenna at right. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer-kenkremer.com
Mars rock rows and Mount Sharp. Martian landscape scene with rows of striated rocks in the foreground and Mount Sharp on the horizon. NASA’s Curiosity Mars rover paused mid drive at the Junda outcrop to snap the component images for this navcam camera photomosaic on Sol 548 (Feb. 19, 2014) and then continued traveling southwards towards mountain base. UHF Antenna at right. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Easter Sunday Space Station Rendezvous and Berthing for SpaceX Dragon Freighter Successful

SpaceX Dragon resupply spacecraft arrives for successful berthing and docking at the International Space Station on Easter Sunday morning April 20, 2014. Credit: NASA TV

The SpaceX 3 Dragon commercial cargo freighter successfully arrived at the International Space Station (ISS) on Easter Sunday morning, April 20, as planned and was deftly captured by Expedition 39 Commander Koichi Wakata at 7:15 a.m. EDT at the controls of the Canadian built robotic arm.

The next step due shortly is berthing of Dragon at the Earth facing port of the Harmony module at approximately 9:30 a.m. EDT.

Berthing was officially completed at 10:06 a.m. EDT while the massive complex was soaring 260 miles above Brazil.

This story is being updated as events unfold. The mission is the company’s third cargo delivery flight to the station.

The Dragon vehicle loaded with nearly 2.5 tons of science experiments and supplies moved ever so slowly closely to within grappling distance – dramatically backdropped with gorgeous and ever changing scenery of our Home Planet sliding below.

The million pound orbiting lab complex and free flying SpaceX Dragon were soaring some 260 miles above Egypt and the Nile River as the 57 foot long robotic arm grappled the resupply ship.

SpaceX Dragon resupply spacecraft arrives for berthing at the International Space Station on Easter Sunday morning April 20, 2014. Credit: NASA TV
SpaceX Dragon resupply spacecraft arrives for berthing at the International Space Station on Easter Sunday morning April 20, 2014. Credit: NASA TV

Dragon was approximately 30 feet (10 meters) away from the stations hull at the time of capture.

Wakata, of the Japan Aerospace Exploration Agency, was assisted by NASA astronaut Rick Mastracchio, while both were working from inside the 7 windowed Cupola robotics work station. Newly arrived NASA astronaut Steve Swanson observed the proceedings with a big smile.

“Congratulations to the entire ops team for the successful launch, rendezvous and capture of Dragon,” Wakata radioed mission control moments after the successful grapple.

“Great work catching the Dragon, enabling fantastic science,” radioed Capcom Steve Fisher from NASA Houston Mission Control.

SpaceX Dragon resupply spacecraft grappled by Canada robotic arm for berthing at the International Space Station on Easter Sunday morning April 20, 2014. Backdrop of Erath look like dried out river channel on Mars! Credit: NASA TV
SpaceX Dragon resupply spacecraft grappled by Canada robotic arm for berthing at the International Space Station on Easter Sunday morning April 20, 2014. Backdrop of Earth looks like dried out river channel on Mars! Credit: NASA TV

Cheers and celebrations erupted at SpaceX Mission Control at the firms headquarters in Hawthorne, Calif.

Dragon arrived this morning following Friday afternoons, Apr 18, spectacular blastoff from Cape Canaveral, Fla, atop an upgraded SpaceX Falcon 9 booster.

A two day orbital chase ensued with a series of critical engine burns targeting the ISS for Easter Sunday’s rendezvous and docking activities.

Rick Mastracchio was at the controls for the actual berthing and latching in place at Harmony with Dragon’s Common Berthing Mechanism (CBM).

NASA astronaut Steve Swanson, ISS Commander Koichi Wakata and NASA Astronaut Rick Mastracchio work inside the 7 windowed Cupola robotics work station module during Dragon berthing on Easter Sunday morning April 20, 2017. Credit: NASA TV
NASA astronaut Steve Swanson, ISS Commander Koichi Wakata and NASA Astronaut Rick Mastracchio work inside the 7 windowed Cupola robotics work station module during Dragon berthing on Easter Sunday morning April 20, 2017. Credit: NASA TV

The berthing process started at about 9:30 a.m. EDT.

4 latches were driven for 1st stage of capture. Followed by all 16 bolts and latches in total during second stage capture to firmly hold Dragon in place.

The crew and mission control concluded the berthing procedure at 10:06 a.m. EDT flying over Brazil.

The next step is for the crew to pressurize the vestibule connecting Dragon to station.

Hatch opening is set to take place on Monday morning.

It’s a busy week ahead for the six person international crew representing the US, Russia and Japan.

A Russian Progress departs on Wednesday followed by the 2 person US spacewalk to replace the failed MDM unit.

Dragon will remain attached to the station until May 18.

This story is being updated. Check back.

ISS Schematic showing modules and Dragon, Soyuz and Progress docking ports.  Credit: NASA TV
ISS Schematic showing modules and Dragon, Soyuz and Progress docking ports. Credit: NASA TV

The SpaceX-3 mission marks the company’s third operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

There are over 150 science experiments loaded aboard the Dragon capsule for research to be conducted by the crews of ISS Expeditions 39 and 40.

This unmanned SpaceX mission dubbed CRS-3 mission will deliver some 5000 pounds of science experiments, a pair of hi tech legs for Robonaut 2, a high definition Earth observing imaging camera suite (HDEV), a laser optical communications experiment (OPALS) and essential gear, the VEGGIE lettuce growing experiment, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

NASA TV coverage of the Easter Sunday grappling process began at 5:45 a.m. EDT with berthing coverage beginning at 9:30 a.m. EDT: http://www.nasa.gov/ntv

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Screenshots by Rob v. Mackelenbergh.

Ken Kremer

SpaceX Makes Strides Towards 1st Stage Falcon Rocket Recovery during Space Station Launch

Blastoff of SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida on April 18, 2014. Credit: Alan Walters/AmericaSpace

Blastoff of SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida on April 18, 2014. Credit: Alan Walters/AmericaSpace
Story updated[/caption]

The powerful SpaceX Falcon 9 rocket that launched successfully on a cargo delivery run for NASA bound for the Space Station on Friday, April 18, from Cape Canaveral, Fla, also had a key secondary objective for the company aimed at experimenting with eventually recovering the rockets first stage via the use of landing legs and leading to the boosters refurbishment and reuse further down the road.

Marking a first of its kind test, this 20 story tall commercial Falcon 9 rocket was equipped with a quartet of landing legs to test controlled soft landing techniques first in the ocean and then back on solid ground at some later date this year or next – by reigniting the 1st stage engines for a guided touchdown.

The 12 foot diameter Falcon 9 rocket would sprout the legs just prior to water impact for the controlled soft landing in the Atlantic Ocean, guided by SpaceX engineers.

'Threading the needle', the Falcon 9/Dragon vehicle passes through the catenary lightning wires as it roars from the pad on the CRS-3 mission.  Credit: nasatech.net
‘Threading the needle’, the Falcon 9/Dragon vehicle passes through the catenary lightning wires as it roars from the pad on the CRS-3 mission. Credit: nasatech.net

Prior to the launch SpaceX managers were careful not to raise expectations.

“The entire recovery of the first stage is completely experimental,” said Hans Koenigsmann, SpaceX vice president of mission assurance. “It has nothing to do with the primary mission.”

He estimated the odds of successfully retrieving an intact booster at merely 30 or 40 percent.

Following Friday’s blastoff, SpaceX reported they made significant strides towards that goal of a 1st stage recovery.

1st stage of SpaceX Falcon 9 rocket equipped with landing legs and now scheduled for launch to the International Space Station on March 16, 2014 from Cape Canaveral, FL. Credit: SpaceX/Elon Musk
1st stage of SpaceX Falcon 9 rocket equipped with landing legs which launched to the International Space Station on April 18, 2014 from Cape Canaveral, FL. Credit: SpaceX/Elon Musk

SpaceX engineers had preprogrammed the spent first stage to relight several Merlin 1 D engines after completing the boost phase and stage seperation to stabilize it, reduce its roll rate and then gradually lower its altitude back down to the Atlantic Ocean’s surface for a soft landing attempt and later possible recovery by retrieval ships.

All these critical steps seemed to go fairly well in initial reports that are subject to change.

SpaceX CEO and founder Elon Musk reported at a post launch briefing and later tweeted further updates that the Falcon 9 first stage actually made a good water landing despite rough seas, with waves swelling at least six feet.

“Roll rate close to zero (v important!).”

“Data upload from tracking plane shows landing in Atlantic was good! Several boats enroute through heavy seas,” Musk tweeted.

Furthermore he reported that the 1st stage survived the ocean touchdown.

“Flight computers continued transmitting for 8 seconds after reaching the water. Stopped when booster went horizontal.”

Because of the high waves, the recovery boats had difficulty reaching the booster in the recovery area located some two hundred miles off shore from Cape Canaveral.

Several previous attempts by SpaceX to recover the first stage via parachutes and thrusters were not successful. So SpaceX adopted this new approach with the landing legs and 1st stage Merlin 1 D engines.

Further details will be proved when they become available.

SpaceX Falcon 9 rocket liftoff on April 18, 2014 from Space Launch Complex 40 at Cape Canaveral, Fla.  Credit: Julian Leek
SpaceX Falcon 9 rocket liftoff on April 18, 2014 from Space Launch Complex 40 at Cape Canaveral, Fla. Credit: Julian Leek

The attachment of the 25 foot long 1st stage landing legs to SpaceX’s next-generation Falcon 9 rocket for ocean recovery counts as a major step towards the firm’s future goal of building a fully reusable rocket and dramatically lowering launch costs compared to expendable boosters.

The eventual goal is to accomplish a successful first stage touchdown by the landing legs on solid ground back somewhere near on Cape Canaveral, Florida.

Musk said that SpaceX is still working out the details on finding a suitable landing location with NASA and the US Air Force.

SpaceX Falcon 9 rocket and Dragon resupply ship launch from the Cape Canaveral Air Force Station in Florida on April 18, 2014.   Credit:  Jeff Seibert/Wired4Space
SpaceX Falcon 9 rocket and Dragon resupply ship launch from the Cape Canaveral Air Force Station in Florida on April 18, 2014. Credit: Jeff Seibert/Wired4Space

Extensive work and testing remains to develop and refine the technology before a land landing will be attempted by the company, says Musk.

It will be left to future missions to accomplish a successful first stage touchdown by the landing legs back on solid ground back through a series of ramped up rocket tests at Cape Canaveral, Florida.

“Even though we probably won’t get the stage back, I think we’re really starting to connect the dots of what’s needed,” Musk said at the briefing.

“There are only a few more dots that need to be there to have it all work. I think we’ve got a decent chance of bringing a stage back this year, which would be wonderful.”

Overall Musk was very pleased with the performance of the rocket and the landing leg test.

“I would consider it a success in the sense that we were able to control the boost stage to a zero roll rate, which is previously what has destroyed the stage, an uncontrolled roll, where the on-board nitrogen thrusters weren’t able to control the aerodynamic torque and spun up.”

“This time, with more powerful thrusters and more nitrogen propellant, we were able to null the roll rates.”

“I’m feeling pretty excited,” Musk stated. “This is a happy day. Most important of all is that we did a good job for NASA.”

This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.

Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.

Indeed Dragon is loaded with nearly 5000 pounds of cargo, about double the weight carried previously.

If all goes well, Dragon will reach the ISS early on Easter Sunday morning after a two day orbital chase.

Station crew members Rick Mastracchio and Steven Swanson will grapple the Dragon cargo freighter with the 57 foot long Canadarm2 on Easter Sunday at about 7:14 a.m. and then berth it at the Earth-facing port of the Harmony module.

NASA TV coverage of the Easter Sunday grappling process will begin at 5:45 a.m. with berthing coverage beginning at 9:30 a.m. : http://www.nasa.gov/ntv

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Rising slowly from Pad 40, the fully loaded Dragon and Falcon 9 v1.1 vehicle begin the mission to ISS. Credit: nasatech.net
Rising slowly from Pad 40, the fully loaded Dragon and Falcon 9 v1.1 vehicle begin the mission to ISS. Credit: nasatech.net

SpaceX Commercial Dragon Resupply Ship Thunders to Space Bound for ISS and Easter Sunday Berthing – Photo Gallery

SpaceX Falcon 9 rocket and Dragon resupply ship launch from the Cape Canaveral Air Force Station in Florida on April 18, 2014. Credit: Jeff Seibert/Wired4Space

SpaceX Falcon 9 rocket and Dragon resupply ship launch from the Cape Canaveral Air Force Station in Florida on April 18, 2014. Credit: Jeff Seibert/Wired4Space
See expanding launch gallery below[/caption]

A mighty SpaceX rocket carrying the firms commercial Dragon resupply ship loaded with nearly 2.5 tons of NASA science instruments and critical supplies thundered to space this afternoon on a two day journey bound for the International Space Station.

The Dragon vessel launched atop the 20 story tall, upgraded Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida precisely on time at 3:25 p.m. EDT (1925 GMT), Friday, April 18.

“I want to congratulate SpaceX. Everyone did a great job” said William Gerstenmaier, NASA associate administrator for human exploration and operations, at a post launch briefing at the Kennedy Space Center press site.

“The SpaceX team went the extra mile to get everything ready for an on time launch.”

The spectacular blastoff went off without a hitch despite a poor weather prognosis in the morning that brightened considerably in the final hours leading up to the afternnon liftoff.

“Everything went well with the ascent,” said SpaceX CEO and founder Elon Muck at the briefing.

“I’m pretty excited. We did a good gob for our NASA customer and that’s very important,” Musk added.

The on time blastoff sets the stage for an Easter Sunday, April 20, rendezvous and berthing of the Dragon resupply spacecraft at the massive orbiting outpost packed with a striking variety of science experiments and needed supplies for the six person crew.

Station crew members Rick Mastracchio and Steven Swanson will grapple the Dragon cargo freighter with the 57 foot long Canadarm2 on Easter Sunday at about 7:14 a.m. if all goes well and then berth it at the Earth-facing port of the Harmony module.

The SpaceX-3 mission marks the company’s third resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

There are over 150 science experiments loaded aboard the Dragon capsule for research to be conducted by the crews of ISS Expeditions 39 and 40.

“SpaceX is delivering important research experiments and cargo to the space station,” said Gerstenmaier.

SpaceX Falcon 9 rocket clears the tree line on April 18, 2014 on science mission bound for the ISS from Cape Canaveral, Florida   Credit:  Nicole Solomon
SpaceX Falcon 9 rocket clears the tree line on April 18, 2014 on science mission bound for the ISS from Cape Canaveral, Florida. Credit: Nicole Solomon

“The diversity and number of new experiments is phenomenal. The investigations aboard Dragon will help us improve our understanding of how humans adapt to living in space for long periods of time and help us develop technologies that will enable deep space exploration.”

This unmanned SpaceX mission dubbed CRS-3 mission will deliver some 5000 pounds of science experiments, a pair of hi tech legs for Robonaut 2, a high definition imaging camera suite, an optical communications experiment (OPALS) and essential gear, the VEGGIE lettuce growing experiment, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

Robonaut 2 engineering model equipped with new legs like those heading to the ISS on upcoming SpaceX CRS-3 launch were on display at the Kennedy Space Center Visitor Complex on March 15, 2014. Credit: Ken Kremer - kenkremer.com
Robonaut 2 engineering model equipped with new legs like those heading to the ISS on upcoming SpaceX CRS-3 launch were on display at the Kennedy Space Center Visitor Complex on March 15, 2014. Credit: Ken Kremer – kenkremer.com

To date SpaceX had completed two operational cargo resupply missions and a test flight. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013 atop the initial version of the Falcon 9 rocket.

The next launch of Orbital Sciences Antares/Cygnus commercial rocket to the ISS from NASA Wallops, VA, was tentatively slated for May 6. But the target date will now slip to into mid-June since it can’t arrive until the Dragon departs.

Blastoff of SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida on April18, 2014.   Credit:  Alan Walters/AmericaSpace
Blastoff of SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida on April18, 2014. Credit: Alan Walters/AmericaSpace

Both the Dragon and Antares dock at the same port on the Harmony module at the end of the station.

This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket liftoff on April 18, 2014 from Space Launch Complex 40 at Cape Canaveral, Fla.  Credit: Julian Leek
SpaceX Falcon 9 rocket liftoff on April 18, 2014 from Space Launch Complex 40 at Cape Canaveral, Fla. Credit: Julian Leek
Blastoff of SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida on April18, 2014.   Credit:  John Studwell
Blastoff of SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida on April 18, 2014. Credit: John Studwell/AmericaSpace
Liftoff of SpaceX Falcon 9 rocket and Dragon from Cape Canaveral Air Force Station, Fla, April 18, 2014.   Credit: Ken Kremer/kenkremer.com
Liftoff of SpaceX Falcon 9 rocket and Dragon from Cape Canaveral Air Force Station, Fla, April 18, 2014. Credit: Ken Kremer/kenkremer.com
The SpaceX Falcon 9 rocket launches from the Cape Canaveral Air Force Station in Florida on April18, 2014.   Credit:   NASA TV
The SpaceX Falcon 9 rocket launches from the Cape Canaveral Air Force Station in Florida on April 18, 2014. Credit: NASA TV

NASA’s Highly Productive LADEE Dust Explorer Probe Crashes into the Moon as Planned

NASA’s LADEE lunar orbiter will firing its main engine on Oct. 6 to enter lunar orbit in the midst of the US government shutdown. Credit: NASA

NASA’s LADEE lunar orbiting dust and atmosphere explorer probe has bitten the dust and crashed into the Moon’s surface exactly as planned following a fabulously successful and groundbreaking science mission that exceeded all expectations.

The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft impacted the far side of the Moon sometime overnight between 12:30-1:22 a.m. EDT, Friday, April 18 (9:30 and 10:22 p.m. PDT, Thursday, April 17) according to a NASA statement.

Running low on fuel and unable to continue any further science observations, the couch sized spacecraft was intentionally plunged into the rugged lunar surface at a spot designed to keep it far away from disturbing any of the historic Apollo manned lunar landing sites or unmanned surveyors on the Moon’s near side.

LADEE_Poster_01

Mission controllers at NASA’s Ames Research Center allowed LADEE’s orbit to naturally decay following the conclusion of the probes extended mission in the final low orbit science phase.

The probe was likely smashed violently to smithereens and mostly vaporized from the heat generated upwards of several hundred degrees. Any surviving debris may be buried in shallow crater formed by the impact.

“At the time of impact, LADEE was traveling at a speed of 3,600 miles per hour – about three times the speed of a high-powered rifle bullet,” said Rick Elphic, LADEE project scientist at Ames, in a NASA statement.

“There’s nothing gentle about impact at these speeds – it’s just a question of whether LADEE made a localized craterlet on a hillside or scattered debris across a flat area. It will be interesting to see what kind of feature LADEE has created.”

The powerful NAC telescopic camera aboard NASA’s still orbiting Lunar Reconnaissance Orbiter (LRO) will be directed in coming months to try and photograph the impact site after engineers pinpoint the likely crash site.

LRO has already imaged LADEE while both were co-orbiting in different lunar orbits.

This dissolve  animation compares the LRO image (geometrically corrected) of LADEE  captured on Jan 14, 2014 with a computer-generated and labeled image of LADEE .  LRO and LADEE are both NASA science spacecraft currently in orbit around the Moon. Credit:  NASA/Goddard/Arizona State University

This dissolve animation compares the LRO image (geometrically corrected) of LADEE captured on Jan 14, 2014 with a computer-generated and labeled image of LADEE . LRO and LADEE are both NASA science spacecraft currently in orbit around the Moon. Credit: NASA/Goddard/Arizona State University

After completing its primary science mission in March, the already ultra low altitude of the lunar orbiting probe was reduced even further so that it was barely skimming just 2 kilometers (1 mile) above the pockmarked lunar surface.

Such a low altitude thus enabled LADEE to gather unprecedented science measurements of the Moon’s extremely tenuous atmosphere and dust particles since the species would be present at a higher concentration.

Lots of fuel is required to maintain LADEE’s orbit due to the uneven nature of the Moon’s global gravity field.

The final engine firing was commanded on April 11 to ensure a far side impact and the safety of all the historic lunar landing sites.

“LADEE also survived the total lunar eclipse on April 14 to 15. This demonstrated the spacecraft’s ability to endure low temperatures and a drain on batteries as it, and the moon, passed through Earth’s deep shadow,” said NASA

LADEE was launched on Sept. 6, 2013 from NASA Wallops in Virginia on a science mission to investigate the composition and properties of the Moon’s pristine and extremely tenuous atmosphere, or exosphere, and untangle the mysteries of its lofted lunar dust dating back to the Apollo Moon landing era.

All those objectives and more were accomplished during its nearly half year investigating Earth’s nearest neighbor.

Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com

It entered lunar orbit on Oct. 6, 2013 amidst the ridiculous government shutdown that negatively affected a number of science missions funded across the US federal government.

The science mission duration had initially been planned to last approximately 100 days and finish with a final impact on the Moon on about March 24th.

NASA granted LADEE a month long extension since the residual rocket fuel was more than anticipated due to the expertise of LADEE’s navigation engineers and the precision of the launch atop the Orbital Sciences Minotaur V rocket and orbital insertion.

“It’s bittersweet knowing we have received the final transmission from the LADEE spacecraft after spending years building it in-house at Ames, and then being in constant contact as it circled the moon for the last several months,” said Butler Hine, LADEE project manager at Ames.

The 844 pound (383 kg) robot explorer was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.

The $280 million probe is built on a revolutionary ‘modular common spacecraft bus’, or body, that could dramatically cut the cost of exploring space and also be utilized on space probes to explore a wide variety of inviting targets in the solar system.

Stay tuned here for Ken’s continuing LADEE, Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, Mars rover and more planetary and human spaceflight news.

Ken Kremer

Full scale model of NASA’s LADEE lunar orbiter on display at the free visitor center at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com
Full scale model of NASA’s LADEE lunar orbiter on display at the free visitor center at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

SpaceX Dragon launch to ISS Marches Towards April 18 Liftoff after Helium Leak Forces Scrub – Watch Live

The Falcon 9 and Dragon capsule stand ready for launch prior to the detection of a helium leak in one of the engines forcing a scrub of the launch attempt on April 14. 2014 - now reset to April 18, 2014. Credit: nasatech.net

NASA and SpaceX are marching forward towards a Friday, April 18 liftoff attempt for the Falcon 9 rocket sending a commercial Dragon cargo craft on the company’s third resupply mission to the International Space Station following the scrubbed launch attempt on Monday, April 14 – forced by the discovery of a Helium gas leak inside the rocket during the latter stages of the countdown.

An on time blastoff of the upgraded Falcon 9 sets the stage for an Easter Sunday rendezvous and berthing of the Dragon resupply spacecraft at the massive orbiting outpost packed with almost 5000 pounds of science experiments and supplies for the six person crew.

However the weather prognosis is rather iffy for Friday afternoons launch attempt at 3:25:21 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Forecasters predict only a 40 percent “GO” of acceptable weather conditions at the appointed liftoff time of the SpaceX-3 mission – roughly the time when the Earth’s rotation moves the rocket into the plane of the space stations orbit.

Remote cameras set up at SpaceX Falcon 9 launch pad 40 at Cape Canaveral.   Adorned with patch - Space for America’s Economic Growth.  Credit: Nicole Solomon
Remote cameras set up at SpaceX Falcon 9 launch pad 40 at Cape Canaveral. Adorned with patch – Space for America’s Economic Growth. Credit: Nicole Solomon

Meteorologists with the U.S. Air Force 45th Weather Squadron are predicting a significant chance of rain showers and thunderstorms in the Florida Space coast launch area that could violate three launch rules, namely the Thick Cloud, Lightning and Flight Through Precipitation rules.

In the event of a scrub for any reason on Friday, NASA, SpaceX and Air Force managers approved another backup launch opportunity on Saturday, April 19 at 3:02:42 p.m.

The weather outlook for a Saturday liftoff improves somewhat to 60 percent “GO”.

Originally, Monday and Friday were the only available launch target dates this week.

SpaceX Falcon 9 rocket preparing for April 18, 2014 liftoff from Space Launch Complex 40 at the Cape Canaveral Air Force Station, Fla.  Credit: Julian Leek
SpaceX Falcon 9 rocket preparing for April 18, 2014 liftoff from Space Launch Complex 40 at the Cape Canaveral Air Force Station, Fla. Credit: Julian Leek

Assuming a successful Falcon 9 launch on Friday, station crew members Rick Mastracchio and Steven Swanson will grapple the Dragon cargo freighter with the 57 foot long Canadarm2 on Easter Sunday morning, April 20, at 7:14 a.m. at then berth it at the Earth-facing port of the Harmony module.

You can watch the launch live on NASA TV: http://www.nasa.gov/ntv

NASA TV live coverage will begin at at 2:15 p.m. EDT

SpaceX live launch coverage begins at 2:45 p.m. ET: Webcast at www.spacex.com/webcast

NASA TV coverage of the Easter Sunday grappling process will begin at 5:45 a.m. with berthing coverage beginning at 9:30 a.m. : http://www.nasa.gov/ntv

Monday’s launch attempt was scrubbed about an hour before liftoff when SpaceX mission controllers and engineers detected that a helium valve in the pneumatic system for stage separation between the first and second stages was not holding the specified pressure.

The success of the mission was therefore dependent on the perfect operation of a backup check valve for the stage separation pistons.

Although no technical issues were detected with the backup valve, the anamolous situation violated SpaceX launch rules.

“SpaceX policy is not to launch with any known anomalies,” said SpaceX in a statement.

A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS is slated to launch on April 18, 2014 from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS is slated to launch on April 18, 2014 from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com

The erect Falcon 9 was lowered back to the horizontal position so that SpaceX engineers could swap out the faulty helium valve, as well as conduct a complete inspection of the rocket to look for signs of any other issues that may have contributed to the valve not working as designed, said SpaceX.

This unmanned SpaceX mission dubbed CRS-3 will deliver some 5000 pounds of science experiments, a pair of hi tech legs for Robonaut 2, a high definition imaging camera suite, an optical communications experiment (OPALS) and essential gear, the VEGGIE lettuce growing experiment, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

To date SpaceX has completed two operational cargo resupply missions and a test flight. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013 atop the initial version of the Falcon 9 rocket.

NASA awarded contracts to SpaceX and competitor Orbital Sciences to develop unmanned cargo freighters via CRS to restore US capability to resupply the ISS following the shutdown of the space shuttle program in 2011.

SpaceX is under contract to NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016 at a cost of about $1.6 Billion.

The next launch of Orbital Sciences Antares/Cygnus commercial rocket to the ISS from NASA Wallops, VA, is tentatively slated for May 6. But the target date hinges on when this SpaceX-3 mission actually flies and could slip into mid-June.

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX Leases Historic Launch Complex 39A from NASA for new Era of Commercial Space Launches

NASA Administrator Charlie Bolden, left, Gwynne Shotwell, president and chief operating officer of SpaceX and Kennedy Space Center Director Bob Cabana announce that NASA just signed a lease agreement with SpaceX of Hawthorne, Calif., for use and operation of NASA’s KSC Launch Complex 39A. Credit: Nicole Solomon

The keys to NASA’s historic launch Pad 39A that propelled humanity’s first man to walk on the Moon – Neil Armstrong – during the history making flight of Apollo 11, have been handed over to new owners, namely the private aerospace firm SpaceX for a new purpose – serving as a commercial launch facility.

NASA and Space Exploration Technologies Corporation (SpaceX) of Hawthorne, Calif., have just signed an agreement giving SpaceX rights to occupy and operate seaside Launch Complex 39A at the Kennedy Space Center (KSC) in Florida.

SpaceX was founded by billionaire, entrepreneur and space visionary Elon Musk.

SpaceX aims to give the now dormant pad a new lease on life in the emerging New Space era by revitalizing it as a commercial launch site for the company’s mammoth new Falcon Heavy rocket, currently under development, as well as for manned launches of the firm’s human rated Dragon spacecraft atop the Falcon 9 according to Gwynne Shotwell, president of SpaceX.

“We’ll make great use of this pad, I promise,” Shotwell told reporters at a briefing at the pad.

The liquid fueled Falcon Heavy will be the most powerful rocket in the world according to SpaceX, generating generating nearly four million pounds of liftoff thrust from 27 engines and thus significantly exceeding the power of the Delta IV Heavy manufactured by competitor United Launch Alliance.

Shotwell said renovations to pad 39A would start later this year. The maiden SpaceX launch from the complex is expected next year.

“We will launch the Falcon Heavy from here from this pad early next year,” Shotwell stated.

NASA Administrator Charlie Bolden, left, Gwynne Shotwell, president and chief operating officer of SpaceX and Kennedy Space Center Director Bob Cabana announce that NASA just signed a lease agreement with SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. Credit: Nicole Solomon
NASA Administrator Charlie Bolden, left, Gwynne Shotwell, president and chief operating officer of SpaceX and Kennedy Space Center Director Bob Cabana announce that NASA just signed a lease agreement with SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. Credit: Nicole Solomon

The SpaceX Dragon is one of three commercial crew vehicles being developed under a public-private partnership with NASA to ferry US astronauts to the International Space Station (ISS) and restore America’s human spaceflight capability lost since the shuttle’s retirement.

The Boeing CST-100 and Sierra Nevada Dream Chaser are also vying for the next round of private ‘space taxi’ funding from NASA.

Pad 39A has been inactive and mothballed since the last shuttle mission, STS-135, thundered to space in July 2011.

Not a single rocket has rolled up the ramp at KSC in nearly 3 years.

NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier. Credit: Ken Kremer/kenkremer.com
NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier.
Credit: Ken Kremer/kenkremer.com

The new lease agreement was signed by NASA and SpaceX officials and announced onsite at Pad 39 at the briefing.

“Today this historic site from which numerous Apollo and space shuttle missions began and from which I first flew and left the planet on STS-61C on Columbia, is beginning a new mission as a commercial launch site,” said NASA Administrator Charles Bolden.

“While SpaceX will use pad 39A at Kennedy, about a mile away on pad 39B, we’re preparing for our deep space missions to an asteroid and eventually Mars. The parallel pads at Kennedy perfectly exemplify NASA’s parallel path for human spaceflight exploration — U.S. commercial companies providing access to low-Earth orbit and NASA deep space exploration missions at the same time.”

Under terms of the new agreement with NASA, the lease with SpaceX spans 20 years.

“It’s exciting that this storied NASA launch pad is opening a new chapter for space exploration and the commercial aerospace industry,” said Bolden.

SpaceX will also maintain and operate Pad 39A at its own expense, with no US federal funding from NASA.

Pad 39A will be SpaceX’s third launch site. The company also launches its Falcon 9 rockets from nearby Pad 40 on Cape Canaveral Air Force Station and a west coast pad on Vandenberg Air Force Base, Calif.

Launch Pad 39A has lain dormant save dismantling since the final shuttle launch on the STS-135 mission in July 2011.  Not a single rocket has rolled up this ramp in nearly 3 years. SpaceX has now leased Pad 39A from NASA and American rockets will thunder aloft again with Falcon rocket boosters starting in 2015. Credit: Ken Kremer/kenkremer.com
Launch Pad 39A has lain dormant save dismantling since the final shuttle launch on the STS-135 mission in July 2011. Not a single rocket has rolled up this ramp at the Kennedy Space Center in nearly 3 years. SpaceX has now leased Pad 39A from NASA and American rockets will thunder aloft again with Falcon rocket boosters starting in 2015. Credit: Ken Kremer/kenkremer.com

The next Falcon 9 liftoff with an unmanned Dragon cargo freighter is currently slated from Friday, April 18 following Monday’s scrub.

NASA determined that the agency no longer has a use for pad 39A since the end of the shuttle era and has been looking for a new tenant to take over responsibility and pay for maintenance of the launch complex. The agency awarded the lease to SpaceX in December 2013.

Instead, NASA decided to completely upgrade, renovate and modernize Pad 39As twin, namely Launch Pad 39B, and invested in converting it into a 21st Century launch complex.

NASA will use Pad 39B to launch the state of the art Orion crew vehicle atop the new Space Launch System (SLS) booster for voyages beyond Earth and taking humans back to the vicinity of the Moon and further out on deep space missions to Asteroids, Mars and beyond.

The first unmanned SLS test flight from Pad 39B is slated for late 2017.

Pad 39A was an active NASA launch pad for nearly 35 years starting back near the dawn of the Space Age in the 1960s.

Apollo 4, the first flight of a Saturn V launch vehicle, rises from Launch Pad 39A. Credit: NASA
Apollo 4, the first flight of a Saturn V launch vehicle, rises from Launch Pad 39A. Credit: NASA

Apollo 4 was the first NASA booster to blast off from Pad 39A on Nov. 9, 1967 during the historic inaugural test flight of the Saturn V moon rocket that eventually served to dispatch all six US manned lunar landing missions.

The closing NASA use of Pad 39A took place on July 8, 2011 with the launch of STS-135 and orbiter Atlantis on the final flight of the space shuttle era.

The four person STS-135 crew delivered the last US pressurized module to the massive low-Earth orbiting ISS.

No Americans have launched to space from American soil since STS-135.

Launch Complex 39 was originally constructed to launch the Apollo moon landing missions atop NASA’s Saturn V booster in the 1960s and 1970s. Both pads were later modified to support the Space Shuttle program whose first launch took place in 1981 from pad 39A.

“Kennedy Space Center is excited to welcome SpaceX to our growing list of partners,” Center Director Bob Cabana said. “As we continue to reconfigure and repurpose these tremendous facilities, it is gratifying to see our plan for a multi-user spaceport shared by government and commercial partners coming to fruition.”

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Gwynne Shotwell, president of SpaceX, celebrates lease agreement for use and operation of NASA’s KSC Launch Complex 39A in Florida. Credit: Nicole Solomon
Gwynne Shotwell, president of SpaceX, celebrates lease agreement for use and operation of NASA’s KSC Launch Complex 39A in Florida. Credit: Nicole Solomon

SpaceX Cargo Launch to Station “GO” for April 14 – Watch Live Here

SpaceX Falcon 9 rocket preparing for April 18, 2014 liftoff from Space Launch Complex 40 at the Cape Canaveral Air Force Station, Fla. Credit: Julian Leek

SpaceX Falcon 9 rocket preparing for April 14, 2014 liftoff from Space Launch Complex 40 at the Cape Canaveral Air Force Station, Fla. Credit: Julian Leek
Watch the SpaceX Launch Live here – NASA TV link below[/caption]

Following closely on the heels of Thursday’s spectacular Atlas V rocket blastoff from Cape Canaveral and a last moment computer failure at the ISS over the weekend, an upgraded Space X Falcon 9 rocket is now poised to launch on Monday (April 14) and complete a double barreled salvo of liftoffs from the Florida Space Coast merely 4 days apart – if all goes well.

The SpaceX Falcon 9 rocket carrying a Dragon resupply freighter is slated to launch on Monday at 4:58 p.m. EDT, 2058 GMT, from Launch Complex 40 at the Cape Canaveral Air Force Station, Fla.

Update 4/14- 345 PM: Todays launch attempt scrubbed due to 1st stage Helium leak. Friday is earliest target date

This flight marks the third operational Dragon resupply mission to the 1 million pound International Space Station (ISS).

You can watch the launch live on NASA TV : http://www.nasa.gov/ntv

NASA TV live coverage will begin at 3:45 p.m. EDT and conclude at approximately 5:20 p.m.

Weather forecasters are predicting an 80 percent chance of favorable weather conditions at the scheduled liftoff time.

SpaceX Falcon 9 rocket preparing for April 14, 2014 liftoff from Space Launch Complex 40 at the Cape Canaveral Air Force Station, Fla.  Credit: Julian Leek
SpaceX Falcon 9 rocket preparing for April 14, 2014 liftoff from Space Launch Complex 40 at the Cape Canaveral Air Force Station, Fla. Credit: Julian Leek

Monday’s launch was temporarily put in doubt by the unexpected loss on Friday (April 11) of a backup computer command relay box called a multiplexer/demultiplexer (MDM) that resides in the station’s S0 truss.

The primary MDM continued to function normally.

The MDM’s provide commanding to the station’s external cooling system, Solar Alpha Rotary joints, Mobile Transporter rail car and insight into other truss systems.

It must function in order for the astronauts to use the robotic arm to grapple and berth the Dragon at a station docking port when it arrives on Wednesday, April 16, at about 7 a.m. EDT.

NASA managers held an extensive series of review meetings since Friday with ISS program managers, station partners, and SpaceX to exhaustively consider all possibilities and insure it was safe to fly the Dragon mission.

NASA gave the final go ahead after a readiness review this Sunday morning of managers, engineers and flight controllers.

ISS crew members will conduct a spacewalk to replace the failed MDM unit after the Dragon arrives.

This unmanned SpaceX mission dubbed CRS-3 mission will deliver some 5000 pounds of science experiments, a pair of hi tech legs for Robonaut 2, a high definition imaging camera suite, an optical communications experiment (OPALS) and essential gear, the VEGGIE lettuce growing experiment, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

Robonaut 2 engineering model equipped with new legs like those heading to the ISS on upcoming SpaceX CRS-3 launch were on display at the Kennedy Space Center Visitor Complex on March 15, 2014. Credit: Ken Kremer - kenkremer.com
Robonaut 2 engineering model equipped with new legs like those heading to the ISS on upcoming SpaceX CRS-3 launch were on display at the Kennedy Space Center Visitor Complex on March 15, 2014. Credit: Ken Kremer – kenkremer.com

This launch has already been postponed twice since mid-March.

The original March 16 launch target was postponed 2 days before liftoff due to contamination issues with insulation blankets located inside the unpressurized trunk section of Dragon.

The second postponement from March 30 occurred when an electrical short knocked out the critical Air Force tracking required to insure a safe launch from the Eastern Range in case the rocket veers off course towards populated ares and has to be destroyed in a split second.

SpaceX is under contract to NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights over the next few years at a cost of about $1.6 Billion.

To date SpaceX has completed two operational cargo resupply missions and a test flight. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013 atop the initial version of the Falcon 9 rocket.

The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30.  Credit: SpaceX
The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30. Credit: SpaceX
Another major goal for SpaceX with this launch involves the attachment of landing legs to the first stage of the firm’s next-generation Falcon 9 rocket that counts as a major first step towards a future goal of building a fully reusable rocket.

For this Falcon 9 flight, the rocket will sprout legs for a controlled soft landing in the Atlantic Ocean, guided by SpaceX engineers.

Eventually SpaceX will test land landings in a ramped up series of rocket tests

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer