India’s MOM Mars Probe Images Earth’s Children Prior to Nail Biting Red Planet Insertion

First ever image of Earth Taken by Mars Color Camera aboard India’s Mars Orbiter Mission (MOM) spacecraft while orbiting Earth and before the Trans Mars Insertion firing on Dec. 1, 2013. Image is focused on the Indian subcontinent. Credit: ISRO

CAPE CANAVERAL, FL – MOM is looking at you, kid!

And if the spectacular new image of billions of Earth’s children captured by India’s Mars Orbiter Mission (MOM) is any indication (see above), then we can expect absolutely gorgeous scenes of the Red Planet once the groundbreaking probe arrives there in September 2014.

But despite all that’s been accomplished so far, the space drama is still in its infant stages – because MOM still needs to ignite her thrusters this weekend in order to achieve escape velocity, wave good bye to Earth forever and eventually say hello to Mars!

The picture – snapped from Earth orbit – is focused on the Indian subcontinent, the probes origin.

MOM has captured the imagination of space enthusiasts worldwide.

And she’s the pride of all India – as the country’s first ever interplanetary space mission.

During testing of the MOM probes payloads – while it’s still flying in a highly elliptical orbit around our Home Planet – engineers from India’s space agency turned the crafts camera homewards to capture the “First ever image of Earth Taken by Mars Color Camera,” according to the Indian Space Research Organization (ISRO).

The beautiful image was taken on Nov. 20 at around 1350 hrs (IST) from a height of almost 70,000 km above earth and has a spatial resolution of 3.5 km, said ISRO.

The image also gives a rather good approximation of what MOM’s color camera will actually see from apoapsis after reaching the Red Planet since the probe will enter a similarly highly elliptical orbit around Mars – ranging in altitude from 366 kilometers (km) x 80,000 kilometers (km).

MOM has just passed by its penultimate perigee.  With this, the final orbit of MOM around Earth begins! Credit: ISRO
MOM has just passed by its penultimate perigee. With this, the final orbit of MOM around Earth begins! Credit: ISRO

Following a 10 month interplanetary cruise, MOM is due to arrive in the vicinity of Mars on September 24, 2014 to study the Red Planets’ atmosphere.

At that time, the 440 Newton liquid fueled main engine must fire precisely as planned during the absolutely essential Mars orbital insertion burn to place the probe into orbit about Mars.

But before MOM can accomplish anything at Mars, she must first successfully fire her main engine – to complete the crucial departure from Earth and Trans Mars Insertion (TMI) scheduled for this Saturday!

MOM’s picture perfect Nov. 5 liftoff atop India’s highly reliable four stage Polar Satellite Launch Vehicle (PSLV) C25 from the ISRO’s Satish Dhawan Space Centre SHAR, Sriharikota, precisely injected the spacecraft into an initial elliptical Earth parking orbit of 247 x 23556 kilometers with an inclination of 19.2 degrees.

Since then the engine has fired 6 times to gradually raise the spacecrafts apogee.

The most recent orbit raising maneuver occurred at 01:27 hrs (IST) on Nov 16, 2013 with a burn time of 243.5 seconds increased the apogee from 118,642 km to 192,874 km.

The nail-biting final main engine burn of 1351 seconds is set for this weekend on Dec. 1. It will place MOM on a precise interplanetary trajectory to the Red Planet.

Graphic of MOM approaching its penultimate perigee pass on Nov 26. Credit: ISRO
Graphic of MOM approaching its penultimate perigee pass on Nov 26. Credit: ISRO

If all continues to goes well, India will join an elite club of only four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

The low cost $69 Million MOM mission is the first of two new Mars orbiter science probes from Earth that flawlessly blasted off for the Red Planet this November.

Half a world away, NASA’s $671 Million MAVEN orbiter launched as scheduled on Nov. 18 – from Cape Canaveral, Florida.

Both MAVEN and MOM’s goal is to study the Martian atmosphere, unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

The MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere and climate history, MAVEN’s top scientist Prof. Bruce Jakosky told Universe Today.

Clouds on the ground !  The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Clouds on the ground ! The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

Stay tuned here for continuing MOM and MAVEN news and Ken’s MAVEN and SpaceX Falcon 9 launch reports from on site at the Kennedy Space Center press center and Cape Canaveral Air Force Station, Florida.

Ken Kremer

…………….

Learn more about MOM, MAVEN, Mars rovers, SpaceX, Orion and more at Ken’s upcoming presentations

Nov 28: “SpaceX launch, MAVEN & MOM Mars Launches and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN, MOM and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Elon Musk Briefs Universe Today & Media ahead of Revolutionary Falcon 9 Blastoff

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today on Sunday (Nov. 24) in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite set for Nov. 25, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
See live SpaceX webcast link below[/caption]

CAPE CANAVERAL, FL – A new space era potentially dawns today, Nov. 25, with the planned maiden launch of the next generation SpaceX Falcon 9 commercial rocket from Cape Canaveral, FL, that could completely revolutionize how we access the high frontier and “rock the space industry to its core” by cutting cost and production times – if all goes well.

Just a day before liftoff, SpaceX founder and CEO Elon Musk personally briefed reporters including Universe Today on Sunday (Nov. 24) in Cocoa Beach, FL, nearby the firms Cape Canaveral launch facility about today’s (Nov. 25) upcoming maiden launch of the companies upgraded Falcon 9 rocket, saying it was “very important” for the future.

“This launch is very important to the future of SpaceX. This is our toughest mission yet!” said Musk to a small group of reporters, including the author, gathered for Sunday’s exclusive pre-launch briefing.

“Whether or not this launch is successful, I’m confident we will certainly make it on some subsequent launch,” said Musk at the Cocoa Beach meeting with the media.

The Falcon 9 liftoff from Launch Complex 40 at Cape Canaveral, FL is scheduled for 5:37pm EST and will be webcast live by SpaceX for viewing at; www.spacex.com/webcast

Today’s (Nov. 25) inaugural blastoff of the privately developed Falcon 9 rocket with the commercial SES-8 HDTV and telecommunications satellite is especially noteworthy because it also features SpaceX’s first ever launch of any satellite to a Geostationary Transfer Orbit (GTO).

From the start, SpaceX designed the Falcon 9 rocket from a clean sheet aimed at radically reducing production and manufacturing costs and assembly times and thereby offer significantly lower launch price, says Musk.

“I don’t want to tempt fate, but I think it’s going to have a pretty significant impact on the world launch market and on the launch industry because our prices are the most competitive of any in the world,” Musk stated.

SpaceX founder and CEO Elon Musk (right) and Martin Halliwell (left), SES chief technical officer briefs reporters including Universe Today on Sunday (Nov. 24) in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite set for Nov. 25, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk (right) and Martin Halliwell (left), SES chief technical officer briefs reporters including Universe Today on Sunday (Nov. 24) in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite set for Nov. 25, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

SES-8 also represents SpaceX’s first launch of a Falcon 9 carrying a commercial satellite to space from the Florida Space Coast.

“This is really rocking the industry. Everybody has to look out,” said Martin Halliwell, SES chief technical officer, who joined Musk at Sunday’s meeting.

The 3,138 kg (6,918 lbs) SES-8 satellite is a hybrid Ku- and Ka-band spacecraft that will provide TV and communications coverage for the South Asia and Asia Pacific regions.

SpaceX founder and CEO Elon Musk (right) and Martin Halliwell (left), SES chief technical officer briefs reporters including Universe Today on Sunday (Nov. 24) in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite set for Nov. 25, 2013 from Cape Canaveral, FL. Credit: Urijan Poerink
SpaceX founder and CEO Elon Musk (right) and Martin Halliwell (left), SES chief technical officer briefs reporters including Universe Today on Sunday (Nov. 24) in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite set for Nov. 25, 2013 from Cape Canaveral, FL. Credit: Urijan Poerink

The SES-8 spacecrft was built by Orbital Sciences Corp and will be lofted to a 295 x 80,000 km geosynchronous transfer orbit inclined 20.75 degrees.

SpaceX has signed nearly 50 commercial and government launch contracts and thus already sports a very crowded launch manifest ahead of today’s Falcon 9 launch.

All five launches of SpaceX’s Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station were either test launches or flights to the International Space Station, under contract to NASA.

The five Falcon 9 launches to date from the Florida Space Coast also featured the original, less powerful and shorter version of the booster and has a 100% success rate.

This mighty new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level that rises to 1.5 million pounds as the rocket climbs to orbit.

Next Generation SpaceX Falcon 9 rocket with SES-8 communications satellite awaits launch from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket with SES-8 communications satellite awaits launch from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.

The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter. That compares to 13 stories for the original Falcon 9.

The payload fairing for SES-8 is 17 feet in diameter.

The Falcon 9/SES-8 launch window extends for 66 minutes until 6:43 p.m. EST.
Weather outlook is 80% favorable at this time.

SpaceX is planning a live webcast of the launch with commentary from SpaceX corporate headquarters in Hawthorne, CA.

The broadcast will begin at approximately 5:00 p.m. EDT and include detailed discussions about the Falcon 9 rocket, launch and flight sequences as well as about the SES-8 satellite.

Stay tuned here for continuing SpaceX & MAVEN news and Ken’s SpaceX launch reports from on site at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

…………….

Learn more about SpaceX, LADEE, MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 22-25: “SpaceX launch, MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS from Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS from Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

Maiden Next Gen SpaceX Falcon 9 launch from Cape Canaveral set for Nov. 25

Falcon 9 during processing at Cape Canaveral Pad 40 ahead of launch scheduled for Nov. 25, 2013. Credit: SpaceX

Falcon 9 during processing at Cape Canaveral Pad 40 ahead of launch scheduled for Nov. 25, 2013. Credit: SpaceX
See live SpaceX webcast link below[/caption]

CAPE CANAVERAL, FL – The maiden flight of the Next Generation commercial SpaceX Falcon 9 rocket from the firms Cape Canaveral launch facility is set to soar to space on Monday afternoon, Nov. 25 on a ground breaking mission that will be most difficult ever.

The upgraded Falcon 9 booster is slated to haul the commercial SES-8 telecommunications satellite for the satellite provider SES for SpaceX’s first ever payload delivery to a Geostationary Transfer Orbit (GTO).

Liftoff is scheduled for 5:37 p.m. EST from SpaceX’s Space Launch Complex 40 pad at Cape Canaveral Air Force Station.

Pad 40 is the same location as all prior SpaceX launches from the Florida Space Coast.

SpaceX CEO Elon Musk tweeted that this launch of the Falcon 9 will be the “toughest mission to date.”

SES- 8 Falcon 9
This mighty new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. Therefore it can boost a much heavier cargo load to the ISS, low Earth orbit and beyond.

The next generation Falcon 9 is a monster. It’s much taller than a standard Falcon 9 – some 22 stories tall vs. 13 stories.

In anticipation of Monday’s planned liftoff, SpaceX engineers successful completed a wet dress rehearsal and engine hotfire test this past Thursday.

Spectators can view the launch from local public areas, beaches and roads – just as with any other liftoff.

The launch window extends just over an hour until 6:43 p.m. EST.

Weather outlook is 80% favorable at this time but deteriorates in case of a 1 day delay to Tuesday.

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS from Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS from Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

SpaceX is planning a live webcast of the launch with commentary from SpaceX corporate headquarters in Hawthorne, CA.

The broadcast will begin at approximately 5:00 p.m. EDT and include detailed discussions about the Falcon 9 rocket, launch and flight sequences as well as about the SES- 8 satellite.

The webcast can be viewed at; www.spacex.com/webcast

The first launch of this next generation Falcon 9 v 1.1 rocket occurred on Sept 29, 2013 on a demonstration test flight from a SpaceX pad at Vandenberg AFB carrying a Canadian weather satellite to an elliptical earth orbit.

Falcon 9 lifts off from SpaceX’s pad at Vandenberg on Sept 29, 2013, carrying Canada’s CASSIOPE satellite to orbit. Credit: SpaceX
Falcon 9 lifts off from SpaceX’s pad at Vandenberg AFB on Sept 29, 2013, carrying Canada’s CASSIOPE satellite to orbit. Credit: SpaceX

SES-8 is a hybrid Ku- and Ka-band spacecraft that will provide communications coverage for the South Asia and Asia Pacific regions.

It was built by Orbital Sciences spacecraft, weighs 3,138 kg (6,918 lbs) and will be lofted to a 295 x 80,000 km geosynchronous transfer orbit inclined 20.75 degrees.

Stay tuned here for continuing SpaceX & MAVEN news and Ken’s SpaceX launch reports from on site at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

…………….

Learn more about SpaceX, LADEE, MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 22-25: “SpaceX launch, MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

NASA’s LADEE Probe Starts Science Study of Thin Lunar Atmosphere and Dusty Mystery

Artist’s concept of NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft in orbit above the moon as dust scatters light during the lunar sunset. Credit: NASA Ames / Dana Berry

KENNEDY SPACE CENTER, FL – NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) has descended to its planned low altitude orbit and begun capturing science data on its ground breaking mission to study the Moon’s ultra tenuous atmosphere and dust using a spacecraft based on a revolutionary new design aimed at speeding development and cutting costs.

LADEE set sail for Earth’s nearest neighbor during a spectacular night time launch atop the maiden flight of an Air Force Minotaur V rocket on Sept. 6 from NASA’s Wallops Island launch facility on Virginia’s Eastern shore.

The flawless launch thrilled spectators up and down virtually the entire US East coast region and yielded many memorable snapshots.

Following a month long voyage and three and a half long looping orbits of the Earth, LADEE successfully fired its main engine for 4 minutes and 12 seconds on Oct. 6 and successfully entered lunar orbit, Dawn McIntosh, LADEE deputy project manager at NASA Ames Research Center, told Universe Today in an exclusive interview.

A series of engine firings over the past month gradually circularized and lowered LADEE into its final science orbit around our Moon while engineers checked out the spacecraft during the commissioning phase of the mission.

The do or die initial Lunar Orbit Insertion burn (LOI-1) allowed LADEE to be captured into a highly elliptical, equatorial lunar orbit, said McIntosh.

Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia. Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia. Credit: Ken Kremer/kenkremer.com

“Two additional LOI burns on Oct. 6 and Oct 9 lowered LADEE to an approximately 4 hour orbit with a periapsis altitude of 234 Kilometers (km) and apoapsis altitude of 250 km” McIntosh told me.

The trio of LOI main engine firings used up most of LADEE’s precious on board fuel.

“LADEE launched with 134.5 kilograms (kg) of fuel. Post LOI-3, 80% of our fuel has been consumed,” said McIntosh.

“Additional orbit-lowering maneuvers with the orbital control system (OCS) and reaction control system (RCS) of approximately 40 seconds were used to get LADEE into the science orbit.

The spacecraft finally entered its planned two hour science orbit around the moon’s equator on Nov. 20.

Its flying at an extremely low altitude ranging from merely eight to 37 miles (12-60 kilometers) above the moon’s surface.

By circling in this very low altitude equatorial orbit, the washing machine sized probe will make frequent passes crossing from lunar day to lunar night enabling it to precisely measure changes and processes occurring within the moon’s tenuous atmosphere while simultaneously sniffing for uplifted lunar dust in the lunar sky.

The remaining fuel will be used to maintain LADEE’s orbit during the approximately 100 day long science mission. The mission length is dictated by the residual fuel available for thruster firings.

LADEE Science Instrument locations
LADEE Science Instrument locations

The purpose of LADEE is to collect data that will inform scientists in unprecedented detail about the ultra thin lunar atmosphere, environmental influences on lunar dust and conditions near the surface. In turn this will lead to a better understanding of other planetary bodies in our solar system and beyond.

“A thorough understanding of the characteristics of our lunar neighbor will help researchers understand other small bodies in the solar system, such as asteroids, Mercury, and the moons of outer planets,” said Sarah Noble, LADEE program scientist at NASA Headquarters in Washington.

By studying the raised dust, scientists also hope to solve a 40 year old mystery – Why did the Apollo astronauts and early unmanned landers see a glow of rays and streamers at the moon’s horizon stretching high into the lunar sky.

The $280 million probe is built on a revolutionary ‘modular common spacecraft bus’, or body, that could dramatically cut the cost of exploring space and also be utilized on space probes to explore a wide variety of inviting targets in the solar system.

“LADEE is the first in a new class of interplanetary exploration missions,” NASA Ames Director Worden told Universe Today. “It will study the pristine moon to study significant questions.”

“This is probably our last best chance to study the pristine Moon before there is a lot of human activity there changing things.”

LADEE_Poster_01

The 844 pound (383 kg) robot explorer was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.

LADEE arrived at the Moon last month in the midst of the US government shutdown – which negatively impacted a host of other NASA missions. Only a ‘skeleton crew’ was available.

“All burns went super well,” Worden told me. And he is extremely proud of the entire team of “dedicated” professional men and women who made it possible during the shutdown.

“It says a lot about our people’s dedication and capability when a skeleton crew’ can get a new spacecraft into lunar orbit and fully commissioned in the face of a shutdown!” Worden said to Universe Today.

Now the real science begins for LADEE and the team.

Stay tuned here for continuing LADEE news

Ken Kremer

…………….

Learn more about LADEE, MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 22-25: “SpaceX launch, MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

How to Watch the Spectacular Minotaur Night Launch on Nov. 19 with Record Setting 29 Satellite Payload

Elevation viewing map for Minotaur 1 rocket launch on Nov. 19 from NASA Wallops Island facility. Credit: Orbital Sciences

Tonight, Tuesday, Nov. 19, tens of millions of residents up and down the US East coast have another opportunity to watch a spectacular night launch from NASA’s Wallops Island facility in Virginia – weather permitting.

See a collection of detailed visibility and trajectory viewing maps, as well as streaming video of the launch, courtesy of rocket provider Orbital Sciences and NASA Wallops Flight Facility.

And to top that off, the four stage Minotaur 1 rocket is jam packed with a record setting payload of 29 satellites headed for Earth orbit.

And if that’s not enough to pique your interest, the Virginia seaside launch will also feature the first cubesat built by high school students.

And viewing is open to the public.

Minotaur 1 launch trajectory map for the US Capitol, Washington, DC.  Credit: Orbital Sciences
Minotaur 1 launch trajectory map for the US Capitol, Washington, DC. Credit: Orbital Sciences

Blastoff of the Minotaur I rocket for the Department of Defense’s Operationally Responsive Space Office on the ORS-3 mission is on target for tonight, Nov. 19, from the Mid-Atlantic Regional Spaceport’s Pad-0B at NASA’s Wallops Flight Facility on the eastern shore of Virginia.

The launch window for the 70 foot tall booster opens at 7:30 pm EST and extends until 9:15 pm EST.

Minotaur 1 launch trajectory map for Rockefeller Center N.Y.C.
Minotaur 1 launch trajectory map for Rockefeller Center N.Y.C.

The ORS-3 mission is a combined US Air Force and NASA endeavor that follows the flawless Nov. 18 launch of NASA’s MAVEN Mars orbiter from Florida by just 1 day.

However the pair of East coast launch pads are separated by some 800 miles.

Minotaur 1 launch trajectory map for Charleston S.C.
Minotaur 1 launch trajectory map for Charleston S.C.

According to NASA and Orbital Sciences, the launch may be visible along a wide swatch from northern Florida to southern Canada and well into the Midwest stretching to Indiana – if the clouds are minimal and atmospheric conditions are favorable from your particular viewing site.

The primary payload is the Space Test Program Satellite-3 (STPSat-3), an Air Force technology-demonstration mission, according to NASA.

Minotaur 1 launch trajectory map for Raleigh N.C.
Minotaur 1 launch trajectory map for Raleigh N.C.

Also loaded aboard are thirteen small cubesats being provided through NASA’s Cubesat Launch Initiative, NASA said in a statement. Among the cubesats is NASA’s Small Satellite Program PhoneSat 2 second generation smartphone mission and the first ever cubesat assembled by high schooler’s.

Minotaur 1 launch trajectory map for Philadelphia P.A.
Minotaur 1 launch trajectory map for Philadelphia P.A.

Locally, the NASA Visitor Center at Wallops and the Chincoteague National Wildlife Refuge/Assateague Island National Seashore will be open for viewing the launch. Visitors to Assateague need to be on the island by 6 p.m. before the entrance gate closes.

Live coverage of the launch is available via UStream beginning at 6:30 p.m. EST on launch day. Watch below:

Ken Kremer

MAVEN thunders to Space on Journey to Study Red Planet’s Watery History and Potential for Life

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) space probe thundered to space today (Nov. 18) following a flawless blastoff from Cape Canaveral Air Force Station’s Space Launch Complex 41 at 1:28 p.m. EST atop a powerful Atlas V rocket.

“Hey Guys we’re going to Mars!” gushed Bruce Jakosky, MAVEN’s Principal Investigator at a post launch briefing for reporters.

“Now I am a Martian,” beamed Jakosky gleefully, as well as is everyone else who has worked on MAVEN since the project was conceived some ten years ago, he noted.

Today’s countdown was absolutely perfect culminating in a spectacular and on time lift off that rumbled across the Florida Space Coast to the delight of cheering crowds assembled for the historic launch aimed at discovering the history of water and habitability stretching back over billions of years on Mars.

“I take great pride in the entire team,” said Jakosky.

“Everyone was absolutely committed to making this work.”

MAVEN launches atop Atlas V booster on Nov. 18, 2013 from NASA’s Kennedy Space Center, Florida.  Credit: Mike Killian/mikekillianphotography.com
MAVEN launches atop Atlas V booster on Nov. 18, 2013 from NASA’s Kennedy Space Center, Florida. Credit: Mike Killian/mikekillianphotography.com

The $671 Million MAVEN spacecraft separated from the Atlas Centaur upper stage some 52 minutes after liftoff, unfurled its wing like solar panels to produce life giving power and thus began a 10 month interplanetary voyage to the Red Planet.

“We’re currently about 14,000 miles away from Earth and heading out to the Red Planet right now,” said MAVEN Project Manager David Mitchell of NASA’s Goddard Space Flight Center at the briefing, after the 5,400-pound spacecraft had been soaring through space for barely two and a half hours.

“The first trajectory correction maneuver (TCM) is set for Dec. 3,” added Mitchell. There are a minimum of four TCM’s to ensure that the majestic probe remains precisely on course for Mars.

“Safe travels MAVEN!” said Mitchell. “We’re with you all the way.”

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

It will take the spacecraft 10 months to reach the Red Planet, with arrival scheduled for Sept. 22, 2014.

Jakosky noted that while the launch is a big milestone, it’s just the beginning.

MAVEN’s purpose is to accomplish world class science after arriving at Mars and completing a check-out period before it can finally begin collecting science data.

MAVEN will answer key questions about the evolution of Mars, its geology and the potential for the evolution of life.

“MAVEN is an astrobiology mission,” says Jakosky.

Mars was once wet billions of years ago, but no longer. Now it’s a cold arid world, not exactly hospitable to life.

“We want to determine what were the drivers of that change?” said Jakosky. “What is the history of Martian habitability, climate change and the potential for life?”

MAVEN will study Mars upper atmosphere to explore how the Red Planet may have lost its atmosphere over billions of years. It will measure current rates of atmospheric loss to determine how and when Mars lost its atmosphere and water.

The MAVEN probe carries nine sensors in three instrument suites.

The Particles and Fields Package, provided by the University of California at Berkeley with support from CU/LASP and NASA’s Goddard Space Flight Center in Greenbelt, Md., contains six instruments to characterize the solar wind and the ionosphere of Mars. The Remote Sensing Package, built by CU/LASP, will determine global characteristics of the upper atmosphere and ionosphere. The Neutral Gas and Ion Mass Spectrometer, built by Goddard, will measure the composition of Mars’ upper atmosphere.

“We need to know everything we can before we can send people to Mars,” said Dr. Jim Green, NASA’s Director of Planetary Science at NASA HQ in Washington, DC.

“MAVEN is a key step along the way. And the team did it under budget!” Green elaborated. “It is so exciting!”

Dr. Jim Green (4th from left), NASA’s Director of Planetary Science poses with space journalists and photographers covering the Nov. 18 MAVEN launch at the Kennedy Space Center, including Ken Kremer (left) from Universe Today/RocketSTEM Media Foundation.  Credit: Alan Walters/awaltersohoto.com
Dr. Jim Green (5th from left), NASA’s Director of Planetary Science, poses with MAVEN spacecraft model and space journalists and photographers covering the Nov. 18 MAVEN launch at the Kennedy Space Center – including Ken Kremer (left) from Universe Today/RocketSTEM Media Foundation. Credit: Alan Walters/awaltersohoto.com

Over the course of its one-Earth-year primary mission, MAVEN will observe all of Mars’ latitudes at altitudes ranging from 93 miles to more than 3,800 miles.

MAVEN will execute five deep dip maneuvers during the first year, descending to an altitude of 78 miles. This marks the lower boundary of the planet’s upper atmosphere.

Stay tuned here for continuing MAVEN and MOM news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press site.

Ken Kremer

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 18-21: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Mars bound MAVEN Orbiter “GO” for Astrobiology Expedition Launch on Nov. 18

NASA’s Mars bound MAVEN spacecraft atop Atlas V booster rolls out to Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 16, 2013. Credit: Ken Kremer/kenkremer.com

NASA’s Mars bound MAVEN spacecraft atop Atlas V booster rolls out to Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 16, 2013. Credit: Ken Kremer/kenkremer.com
Story updated[/caption]

KENNEDY SPACE CENTER, FL – NASA’s Mars bound MAVEN spacecraft was rolled out to the seaside launch pad on Saturday Nov. 16 on Florida’s space coast on an expedition to study the Red Planet’s atmosphere and its potential for astrobiology.

All systems are “GO” for MAVEN and the powerful Atlas booster that will set the probe streaking on a ten month interplanetary journey to the Red Planet.

MAVEN is targeted to launch Monday, Nov. 18 at 1:28 p.m. EST atop a United Launch Alliance Atlas V 401 rocket from Cape Canaveral Air Force Station in Florida.

NASA’s Mars bound MAVEN spacecraft and Atlas V booster poised to blastoff from Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Credit: Ken Kremer/kenkremer.com
NASA’s Mars bound MAVEN spacecraft and Atlas V booster poised to blastoff from Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Credit: Ken Kremer/kenkremer.com

The battery is being charged. After a day of rest for the launch pad crew, the countdown is set to resume at about 6:28 a.m. on Monday.

The Atlas launch window extends for 2 hours until about 3:30 p.m.

The weather outlook is somewhat iffy with a 60% chance of favorable conditions at launch time. The main threats are rain, winds and clouds.

Crowds of spectators are descending on Florida to view the historic launch and the local hotels are filling up. And I’ve spoken to many enthusiastic folks and kids hoping to witness a space spectacular.

Mars beckons humans for centuries as a place of myths and mysteries.

NASA Administrator Charles Bolden (right) shaking hands and congratulating MAVEN Mars probe chief scientist Bruce Jakosky (center) during media Q & A session with NASA Science Chief John Grunsfeld in front of the Atlas V rocket poised to blastoff from Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden (right) shaking hands and congratulating MAVEN Mars probe chief scientist Bruce Jakosky (center) during media Q & A session with NASA Science Chief John Grunsfeld in front of the Atlas V rocket poised to blastoff from Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Credit: Ken Kremer/kenkremer.com
MAVEN will answer key questions about the evolution of Mars, its geology and the potential for the evolution of life

“MAVEN is an astrobiology mission,” said Bruce Jakosky, MAVEN’s Principal Investigator from the University of Colorado at Boulder, at NASA’s Kennedy Space Center.

Mars was once wet billions of years ago, but no longer. Now it’s a cold arid world, not exactly hospitable to life.

“We want to determine what were the drivers of that change?” said Jakosky. “What is the history of Martian habitability, climate change and the potential for life?”

NASA’s MAVEN Mars orbiter – which stands for Mars Atmosphere and Volatile Evolution – is the first real attempt to investigating these fundamental questions that hold the key to solving the Martian mysteries perplexing the science community.

The 5,400 pound MAVEN probe carries nine sensors in three instrument suites.

The Particles and Fields Package, provided by the University of California at Berkeley with support from CU/LASP and NASA’s Goddard Space Flight Center in Greenbelt, Md., contains six instruments to characterize the solar wind and the ionosphere of Mars. The Remote Sensing Package, built by CU/LASP, will determine global characteristics of the upper atmosphere and ionosphere. The Neutral Gas and Ion Mass Spectrometer, built by Goddard, will measure the composition of Mars’ upper atmosphere.

You can watch the launch live on NASA TV.

Photojournalists and space reporters (including Ken Kremer of Universe Today) covering the MAVEN Mars orbiter launch pose for group photo op in front of the Atlas V rocket poised to blastoff from Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Credit: Nicolle Solomon
Thrilled band of photojournalists and space reporters (including Ken Kremer of Universe Today) covering the MAVEN Mars orbiter launch pose for group photo op in front of the Atlas V rocket poised to blastoff from Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Credit: Nicolle Solomon

Stay tuned here for continuing MAVEN and MOM news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press site.

Ken Kremer
…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 15-20: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Star Trek’s Geordi LeForge Explains NASA’s new MAVEN Mars Orbiter

Star Trek actor LeVar Burton Shares MAVEN’s Story in a New NASA public service announcement (PSA). Credit: NASA

Star Trek actor LeVar Burton Shares MAVEN’s Story in a New NASA public service announcement (PSA). Credit: NASA
Watch the PSA below[/caption]

KENNEDY SPACE CENTER, FL – Star Trek actor and space enthusiast LeVar Burton stars in a new action packed NASA public service announcement (PSA) about the agency’s next Mars-bound spacecraft, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft slated for blast off in barely two days time on Nov. 18 from the Florida Space Coast.

Burton played the beloved character of chief engineer ‘Geordi LeForge’ aboard the legendary Starship Enterprise on “Star Trek: The Next Generation” – known by audiences worldwide.

And Burton gives an appropriately other worldly narration in the NASA PSA containing exciting new animations explaining the goals and science behind the MAVEN Mars orbiter and how it will accomplish its tasks.

I was privileged to meet chief engineer ‘Geordi LeForge’ at a prior NASA launch event.

He is genuinely and truly dedicated to advancing science and education through his many STEM initiatives and participation in educational programming like the NASA PSA.

MAVEN will study the Red Planet’s atmosphere like never before and in unprecedented detail and is the first mission dedicated to studying Mars upper atmosphere.

MAVEN’s is aimed at unlocking one of the greatest Martian mysteries; Where did all the water go ? And when did the Red Planet’s water and atmosphere disappear ?

MAVEN’s suite of nine science instruments will help scientists understand the history, mechanism and causes of the Red Planet’s dramatic climate change over billions of years.

Burton’s PSA will be used at MAVEN scheduled events around the country and will also be shared on the web and social media, according to NASA. The goal is to educate the public about MAVEN and NASA’s efforts to better understand the Red Planet and the history of climate change there.

Be sure to check out the new video – below:



Video caption: NASA is returning to Mars! This NASA Public Service Announcement regarding the MAVEN mission is presented by LeVar Burton in which he shares the story about NASA’s Mars Atmosphere and Volatile Evolution mission—or MAVEN—and how it will explore Mars’ climate history and gather clues about the question scientists have been asking for decades. MAVEN will look at specific processes at Mars that led to the loss of much of its atmosphere…and MAVEN data could tell scientists a lot about the history of climate change on the Red Planet.

“NASA is thrilled to have LeVar Burton explain this mission to the greater public,” said Bert Ulrich, NASA’s multimedia liaison for film and TV collaborations in a NASA statement. “Thanks to Burton’s engaging talents and passion for space exploration, audiences of all ages will be able to share in the excitement of NASA’s next mission to Mars.”

MAVEN is targeted to launch Monday, Nov. 18 at 1:28 p.m. EST atop a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

You can watch the launch live on NASA TV

Stay tuned here for continuing MAVEN and MOM news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press site.

Ken Kremer

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 15-20: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

MAVEN’s Quest – Where Did Mars Water Go?

Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians prepare the MAVEN spacecraft for encapsulation inside its payload fairing. Credit: NASA/Kim Shiflett

KENNEDY SPACE CENTER, FL – MAVEN, NASA’s next spacecraft launching to the Red Planet in barely three days time on Nov. 18 seeks to unlock one of the greatest Martian mysteries; Where did all the water go ?

From the accumulated evidence so far scientists believe that billions of years ago, Mars was gifted with a thick atmosphere like Earth and liquid water flowed across the surface.

The Red Planet was far bluer, warmer, wetter and hospitable to life four billion years ago – truly a lot more Earth-like.

And then Mars lost its atmosphere starting somewhere around 3.5 to 3.7 Billion years ago. As the atmosphere thinned and the pressure decreased, the water evaporated and Mars evolved into the cold arid world we know today.

But why and exactly when did Mars undergo such a radical climatic transformation?

“Where did the water go and where did the carbon dioxide go from the early atmosphere? What were the mechanisms?” asks Bruce Jakosky, MAVEN’s Principal Investigator from the University of Colorado at Boulder

MAVEN is NASA’s next Mars orbiter and is due to blastoff on Nov. 18 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center.  With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars.  Credit: Ken Kremer/kenkremer.com
MAVEN is NASA’s next Mars orbiter and is due to blastoff on Nov. 18 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars. Credit: Ken Kremer/kenkremer.com

Although there are lots of theories, NASA’s MAVEN Mars orbiter – which stands for Mars Atmosphere and Volatile Evolution – is the first real attempt to investigating these fundamental questions that hold the key to solving the Martian mysteries perplexing the science community.

“We don’t know the driver of the change,” explains Jakosky.

MAVEN Mated to Atlas. On  Nov. 8,2013, NASA's Mars Atmosphere and Volatile Evolution, or MAVEN spacecraft, is hoisted to the top of a United Launch Alliance Atlas V rocket at the Vertical Integration Facility at Launch Complex 41. Credit: NASA/Kim Shiflett
MAVEN Mated to Atlas. On Nov. 8,2013, NASA’s Mars Atmosphere and Volatile Evolution, or MAVEN spacecraft, is hoisted to the top of a United Launch Alliance Atlas V rocket at the Vertical Integration Facility at Launch Complex 41. Credit: NASA/Kim Shiflett
By studying and understanding specific processes in the upper atmosphere of Mars, MAVEN’s seeks to determine how and why Mars atmosphere and water disappeared billions of years ago and what effect that had on the history of climate change and habitability.

“The major questions about the history of Mars center on the history of its climate and atmosphere and how that’s influenced the surface, geology and the possibility for life,” says Jakosky.

MAVEN is equipped with three instrument suites holding nine science instruments

MAVEN will focus on understanding the history of the atmosphere, how the climate has changed through time, and how that influenced the evolution of the surface and the potential for habitability by microbes on Mars.”

“That’s what driving our exploration of Mars with MAVEN,” said Jakosky

The 5,400 pound MAVEN probe carries nine sensors in three instrument suites.

MAVEN Spacecraft Positioned Atop Atlas V Rocket  at Launch Complex 41 on Cape Canaveral. Credit: NASA
MAVEN Spacecraft Positioned Atop Atlas V Rocket at Launch Complex 41 on Cape Canaveral. Credit: NASA
The Particles and Fields Package, provided by the University of California at Berkeley with support from CU/LASP and NASA’s Goddard Space Flight Center in Greenbelt, Md., contains six instruments to characterize the solar wind and the ionosphere of Mars. The Remote Sensing Package, built by CU/LASP, will determine global characteristics of the upper atmosphere and ionosphere. The Neutral Gas and Ion Mass Spectrometer, built by Goddard, will measure the composition of Mars’ upper atmosphere.

I personally inspected MAVEN inside the clean room at the Kennedy Space Center on Sept. 27 with fellow journalists when the solar arrays were fully unfurled.

The probe spanned 37 feet in length from wingtip to wingtip.

Since then MAVEN has been folded and encapsulated inside the payload fairing, transported to the pad at Launch Complex 41 and hoisted on top of the Atlas V rocket on Cape Canaveral Air Force Station (CCAFS) in Florida.

The $671 Million MAVEN spacecraft has been powered on and awaits liftoff.

MAVEN is the second of two Mars bound probes launching from Earth this November.

India’s Mars Orbiter Mission (MOM) spacecraft staged a spectacular lift off from the Indian spaceport on Nov. 5. Both probes are due to arrive at the Red Planet in September 2014.

Stay tuned here for continuing MAVEN and MOM news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press site.

Ken Kremer

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 14-20: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

India’s Mars Orbiter Mission (MOM) Requires Extra Thruster Firing after Premature Engine Shutdown

Spectacular view of the PSLV C25 leaving the First launch pad with ISRO's Mars Orbiter Mission spacecraft on Nov. 5, 2013. Credit: ISRO

India’s Mars Orbiter Mission (MOM) probe suffered a surprise hiccup overnight (Nov. 11 IST) when the main engine shut down prematurely and left the country’s first ever mission to the Red Planet flying in a significantly lower than planned interim elliptical orbit around Earth – following what was to be her 4th orbit raising burn since last week’s flawless launch.

MOM is in normal health,” at this time according to the Indian Space Research Organization (ISRO) – which has now scheduled a supplementary main engine firing for early Tuesday (Nov. 12) to boost the crafts orbit the missing 20,000 km required.

Monday’s engine firing only raised MOM’s apogee (farthest point to Earth) from 71,623 km to 78,276 km compared to the originally planned apogee of about 100,000 [1 lakh] km), said ISRO in a press release.

This is the first serious problem to strike MOM in space. And it seemed clear to me something might be amiss when ISRO failed to quickly announce a successful completion of the 4th firing as had been the pattern for the initial three burns.

Trajectory graphic showing new supplemental 5th Midnight Maneuver thruster firing of ISRO's Mars Orbiter Mission Spacecraft planned for Nov. 12 (IST) following the premature main engine shutdown during 4th orbit raising engine burn on Nov. 11. Credit: ISRO
Trajectory graphic showing new supplemental 5th Midnight Maneuver thruster firing of ISRO’s Mars Orbiter Mission Spacecraft planned for Nov. 12 (IST) following the premature main engine shutdown during 4th orbit raising engine burn on Nov. 11. Credit: ISRO

The premature shutdown of the liquid fueled 440 Newton main engine “imparted an incremental velocity of 35 metres/second as against 130 metres/second originally planned,” ISRO stated.

That’s barely a quarter of what was hoped for.

“A supplementary orbit-raising operation is planned tomorrow (November 12, 2013) at 0500 hrs IST to raise the apogee to nearly 1 lakh [100,000] km.”

A series of six absolutely essential firings of the 440 Newton main engine – dubbed “midnight maneuvers” – had been originally scheduled by Indian space engineers.

The purpose of the “midnight maneuvers” is to achieve Earth escape velocity by gradually raising MOM’s apogee over several weeks, and set her on a trans Mars trajectory to the Red Planet, following the spectacular blastoff on Nov. 5 from India’s spaceport.

Graphic showing trajectory that had been planned for the Fourth Midnight Maneuver of ISRO's Mars Orbiter Mission Spacecraft on Nov. 11 until early shutdown of the 440N liquid fueled main engine.  Credit: ISRO
Graphic showing trajectory that had been planned for the Fourth Midnight Maneuver of ISRO’s Mars Orbiter Mission Spacecraft on Nov. 11 until early shutdown of the 440N liquid fueled main engine. Credit: ISRO

MOM was due to depart Earth’s orbit on Dec. 1 after accomplishing the 6th of the originally scheduled thruster firings – and begin a 10 month long interplanetary cruise to Mars.

MOM’s picture perfect Nov. 5 liftoff atop India’s highly reliable four stage Polar Satellite Launch Vehicle (PSLV) C25 from the ISRO’s Satish Dhawan Space Centre SHAR, Sriharikota, precisely injected the spacecraft into an initial elliptical Earth parking orbit of 247 x 23556 kilometers with an inclination of 19.2 degrees.

The 1st, 2nd and 3rd thruster firings were spot on and incrementally raised MOM’s apogee from 23556 km to 28814 km, 40186 km and 71,623 km respectively.

The next firing had been slated for Nov. 16.

Here’s how ISRO described the source of the main engine shutdown:

“During the fourth orbit-raising operations held today (November 11, 2013), the redundancies built-in for the propulsion system were exercised, namely, (a) energising the primary and redundant coils of the solenoid flow control valve of 440 Newton Liquid Engine and (b) logic for thrust augmentation by the attitude control thrusters, when needed.

However, when both primary and redundant coils were energised together, as one of the planned modes, the flow to the Liquid Engine stopped. The thrust level augmentation logic, as expected, came in and the operation continued using the attitude control thrusters. This sequence resulted in reduction of the incremental velocity.”

Artists concept shows Midnight Maneuver thruster firing of the liquid engine of ISRO’s Mars Orbiter Mission Spacecraft.  Credit: ISRO
Artists concept shows Midnight Maneuver thruster firing of the liquid engine of ISRO’s Mars Orbiter Mission Spacecraft. Credit: ISRO

It is not known at this time how or whether the requirement for a supplemental “midnight maneuver” engine firing will affect the mission’s timing at Earth and its operations and longevity at Mars.

Why are the firings called midnight maneuvers?

“Firing has to happen near the perigee and in the visibility from ISTRAC ground stations. All these orbits have argument of perigee of ~285 deg. When all these constraints are put together, firings time will almost always fall in to midnights of Indian sub continent,” said ISRO in response to a readers inquiry.

In the latest update, ISRO reports: “After achieving an apogee of around 78,000 km in last night’s Maneuver, ISRO’s Mars Orbiter Mission Spacecraft is all set to reach the apogee of One lakh km in a supplementary maneuver scheduled for 5 AM tomorrow. [Nov 12].”

MOM was to arrive in the vicinity of Mars on September 24, 2014 when the absolutely essential Mars orbital insertion firing by the 440 Newton liquid fueled main engine will slow the probe and place it into a 366 km x 80,000 km elliptical orbit.

Clouds on the ground !  The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Clouds on the ground ! The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

If all goes well, India will join an elite club of only four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

The low cost $69 Million MOM mission is the first of two new Mars orbiter science probes from Earth blasting off for the Red Planet this November.

Half a world away, NASA’s $671 Million MAVEN orbiter remains on target to launch in less than one week on Nov. 18 – from Cape Canaveral, Florida.

Both MAVEN and MOM’s goal is to study the Martian atmosphere, unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

The MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere and climate history, MAVEN’s top scientist Prof. Bruce Jakosky told Universe Today.

Stay tuned here for continuing MOM and MAVEN news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press center

Ken Kremer

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM