On Earth, geologists study rocks to help better understand the history of our planet. In contrast, planetary geologists study meteorites to help better understand the history of our solar system. While these space rocks put on quite the spectacle when they enter our atmosphere at high speeds, they also offer insights into both the formation and evolution of the solar system and the planetary bodies that encompass it. But what happens as a meteorite traverses our thick atmosphere and lands on the Earth? Does it stay in its pristine condition for scientists to study? How quickly should we contain the meteorite before the many geological processes that make up our planet contaminate the specimen? How does this contamination affect how the meteorite is studied?
Continue reading “Meteorites are Contaminated Quickly When They Reach Earth”Magnetars are Extreme in Every Way, Even Their Volcanoes
In a recent study published in Nature Astronomy, an international team of researchers led by NASA and The George Washington University examined data from an October 2020 detection of what’s known as a “large spin-down glitch event”, also known as an “anti-glitch”, from a type of neutron star known as a magnetar called SGR 1935+2154 and located approximately 30,000 light-years from Earth, with SGR standing for soft gamma repeaters. Such events occur when the magnetar experiences a sudden decrease in its rotation rate, which in this case was followed by three types of radio bursts known as extragalactic fast radio bursts (FRBs) and then pulsed radio emissions for one month straight after the initial rotation rate decrease.
Continue reading “Magnetars are Extreme in Every Way, Even Their Volcanoes”A Green Bank Telescope Prototype Radar System Can Image the Moon in High-Resolution and Detect Asteroids
Everyone loves taking pictures of the Moon. Whether it’s with their phones or through the wonders of astrophotography, photographing the Moon reminds us about the wonders and awesomeness of the universe. But while we can take awesome images of the whole Moon from the Earth, it’s extremely difficult to get close-up images of its surface given the enormous distance we are from our nearest celestial neighbor at 384,400 km (238,855 mi). This is because the closer we try to zoom in on its surface, the blurrier, or more pixelated, the images become. Essentially, the resolution of the images becomes worse and worse. But what if we could take high-resolution images of the Moon’s surface from Earth instead of relying on satellites presently in lunar orbit to take them for us?
Continue reading “A Green Bank Telescope Prototype Radar System Can Image the Moon in High-Resolution and Detect Asteroids”Astronomers still scratching their heads over population of ocean-world exoplanets
In a recent study submitted to The Astrophysical Journal Letters, an international team of researchers led by the University of California, Los Angeles (UCLA) examine the potential for water-worlds around M-dwarf stars. Water-worlds, also known as ocean worlds, are planets that possess bodies of liquid water either directly on its surface, such as Earth, or somewhere beneath it, such as Jupiter’s moon, Europa and Saturn’s moon, Enceladus.
Continue reading “Astronomers still scratching their heads over population of ocean-world exoplanets”Freezing Ocean Might Not Be Responsible for Cryovolcanic Flows on Pluto’s Moon, Charon
In a recent study scheduled to be published in the journal Icarus in March 2023, a team of researchers led by the Southwest Research Institute (SwRI) modeled a potential correlation between an ancient freezing ocean with cryovolcanic flows and surface canyons on Pluto’s largest moon, Charon. Their hypothesis was that when Charon’s interior ocean froze long ago, the significant stress put on the icy outer shell from the addition of more ice to the bottom of the existing shell could have been responsible for the cryovolcanic flows on the surface.
Continue reading “Freezing Ocean Might Not Be Responsible for Cryovolcanic Flows on Pluto’s Moon, Charon”South Korea’s Danuri Mission Sends Home Pictures of the Earth and Moon
The Korea Aerospace Research Institute (KARI) both ended 2022 and started 2023 on a very high note as its first-ever lunar orbiter, Danuri, sent back black-and-white images of the Earth with the Moon’s surface in the foreground that were photographed between December 24 and January 1, KARI announced in a January 3rd statement. Both the images and videos were taken less than 120 kilometers (75 miles) above the Moon’s surface, and will be “used to select potential sites for a Moon landing in 2032,” KARI added in the statement.
Continue reading “South Korea’s Danuri Mission Sends Home Pictures of the Earth and Moon”The Outer Solar System Supplied a Surprising Amount of Earth’s Water
In a recent study published in Science, a team of researchers at Imperial College London examined 18 meteorites containing the volatile element zinc to help determine their origin, as it has been long hypothesized that Earth’s volatiles materials, including water, were derived from asteroids closer to our home planet. However, their results potentially indicate a much different origin story.
Continue reading “The Outer Solar System Supplied a Surprising Amount of Earth’s Water”Scientists Examine Geological Processes of Monad Regio on Neptune’s Largest Moon, Triton
In a recent study submitted to the journal Icarus, a team of researchers at the International Research School of Planetary Science (IRSPS) located at the D’Annunzio University of Chieti-Pescara in Italy conducted a geological analysis of a region on Neptune’s largest moon, Triton, known as Monad Regio to ascertain the geological processes responsible for shaping its surface during its history, and possibly today. These include what are known as endogenic and exogenic processes, which constitute geologic processes occurring internally (endo-) and externally (exo-) on a celestial body. So, what new insights into planetary geologic processes can we learn from this examination of Monad Regio?
Continue reading “Scientists Examine Geological Processes of Monad Regio on Neptune’s Largest Moon, Triton”Does Failing to Detect Aliens Mean We’ll Never Be Contacted?
In a recent paper submitted to The Astronomical Journal in November 2022, a scientist at the Swiss Federal Institute of Technology Lausanne quantifies how the Earth has not heard a radio signal from an extraterrestrial technological civilization over the course of approximately the last 60 years, which is when the Search for Extraterrestrial Intelligence (SETI) began listening for such signals. They also quantify the potential likelihood pertaining to when we might hear a signal, along with recommending potential strategies that could aid in the ongoing search for detecting a signal from an extraterrestrial technological civilization.
Continue reading “Does Failing to Detect Aliens Mean We’ll Never Be Contacted?”A Martian Meteorite Contains Organic Compounds. The Raw Ingredients for Life?
In a recent study published in Sciences Advances, an international team of scientists led by the Technical University of Munich examined the Martian meteorite Tissint, which fell near the village of Tissint, Morocco, on July 18, 2011, with pieces of the meteorite found as far as approximately 50 kilometers (30 miles) from the village. What makes Tissint intriguing is the presence of a “huge organic diversity”, as noted in the study, which could help scientists better understand if life ever existed on Mars, and even the geologic history of Earth, as well.
Continue reading “A Martian Meteorite Contains Organic Compounds. The Raw Ingredients for Life?”