Imaging the Galaxy’s Centre in Unprecedented Detail Reveals More Mysterious Filaments

Milky Way centre by the MeerKAT array of 65 radio dishes in South Africa. Credit: SAROA

The inner 600 light years of our galaxy is a maelstrom of cosmic radiation, turbulent swirling gas clouds, intense star formation, supernovae, huge bubbles of radio energy, and of course a giant supermassive black hole. This bustling downtown of the Milky Way is a potential treasure trove of discovery but has been difficult to study as the galaxy’s central regions are obscured by dust and glaring radiation. But a new image of this region with unprecedented detail reveals more than we’ve ever seen before. We find some familiar objects like supernovae but also some mysterious structures – gaseous filaments dozens of light years long channeling electrons at near light speed.

Behold, the galaxy’s centre as never seen before:

The new MeerKAT image of the Galactic centre region is shown with the Galactic plane running horizontally across the image. Many new and previously-known radio features are evident, including supernova remnants, compact star-forming regions, and the large population of mysterious radio filaments. Colours indicate bright radio emission, while fainter emission is shown in greyscale. Credit: I. Heywood, SARAO. Image description: SARAO
Continue reading “Imaging the Galaxy’s Centre in Unprecedented Detail Reveals More Mysterious Filaments”

“TrekTalks” Telethon Calls upon Star Trek Fandom to Meet the Needs of the Many

I grew up watching Star Trek inspired by what Trek imagined the future could be.

Earth had done away with poverty, disease, war. Humanity, in cooperation with other alien civilizations, explored the Galaxy on ships like the USS Enterprise doing good where possible. Diplomatic missions, crisis relief, medical aid. Star Trek is a view of what humanity could be if we were brave and bold but also empathetic and kind – us at our best.

Lately our 21st century world has been…well…a hard place to be – harder for some than others. What if the Star Trek fandom could take some inspiration from that imagined future to make change in the present? This weekend is a chance to make it so with “TrekTalks” – a livestream telethon featuring an incredible lineup of Star Trek cast and crew to benefit the Hollywood Food Coalition starting tomorrow (January 15th) at 11:45am Pacific Time and running to 7:45pm PT

TrekTalks livestream link
Continue reading ““TrekTalks” Telethon Calls upon Star Trek Fandom to Meet the Needs of the Many”

A New Way to Detect Alien Megastructures

Dyson Sphere as Depicted in the videogame "Stellaris", developed and published by Paradox Interactive. Used with permission. Screenshot by author

How do you power a super advanced alien civilization? Soak up a star. We harness the power of the Sun using solar panels. What if you were to scale this idea to astronomical proportions? Surround an entire star with solar collecting structures or satellites to power your sprawling alien galactic empire. Such massive structures are known as a “megastructures” – in this case a “Dyson Sphere.” We are already trying to detect possible megastructures in space using the dimming of a star and the glow of megastructure components in infrared light. But recent research provides a new detection method – a Dyson Sphere may cause its host star to swell and cool.

Dyson Sphere as depicted in the videogame “Stellaris”, developed and published by Paradox Interactive. Used with permission. Screenshot by author
Continue reading “A New Way to Detect Alien Megastructures”

The Radio Signal From Proxima Centauri Came From Earth After All

The three telescopes at CSIRO’s Parkes Observatory. Credit: Red Empire Media/CSIRO.

Turns out we were hearing ourselves! Earth can be a noisy place when listening to stars.

Late last year, a story was leaked indicating that the Murriyang radio telescope in Australia had detected a “signal-of-interest”. Dubbed “blc1” (Breakthrough Listen Candidate 1), the signal appeared to originate from the direction of Proxima Centauri, the closest neighbouring star to the Sun. The signal had yet to be fully analyzed when the story was leaked. Now that the analysis is complete, research shows blc1 is in fact “RFI” – radio frequency interference – and not an interstellar signal.

But while it’s not aliens – or “Proxima Centaurians” as lead author on the signal analysis Dr. Sofia Sheikh whimsically refers to them – new methodologies for conducting radio-based SETI (Search for Extraterrestrial Intelligence) have been developed by analyzing blc1; further honing our ability to distinguish future potential ET signals from our own planet.

Simulation of Proxima Centauri b , Rocky World in the Proxima Centauri System – SpaceEngine by author
Continue reading “The Radio Signal From Proxima Centauri Came From Earth After All”

Advanced Civilizations Could use Their Stars to Communicate (and as Telescopes)

A schematic of a on-axis stellar relay transmission system, opening angles, distances, and sizes not to scale. The initial unfocused transmission beam may even have an annular pattern to prevent flux from being lost to the disk of the Sun.A reversed arrangement can be used to receive signals from a distant star by focusing rays onto the spacecraft. c. Kerby and Wright 2021

A Long Distance Call

E.T. managed to call home with a Speak and Spell, buzzsaw blade, and an umbrella. The reality of interstellar communication is a bit more complicated. Space is really, really big. The power needed to transmit a signal across the void is huge. However, rather than using super high power transmitters, recent research by Stephen Kerby and Jason T. Wright shows that we could make use of a natural signal gain boost built into solar systems – the gravitational lensing of a solar system’s star. Networking a series of stars as nodes could get signals across vast tracts of the Milky Way. And we may be able to detect if our Sun is already part of an alien galactic communication network.

Distant Satellites at the far reaches of the solar system may use the natural focusing of light by the Sun to communicate across space – c. NASA
Continue reading “Advanced Civilizations Could use Their Stars to Communicate (and as Telescopes)”

The Galactic Beauty of Star Formation

Image of Galaxy NGC 3627 located in the constellation LEO. The golden gas glow corresponds to clouds of ionized hydrogen, while the bluish regions reveal the distribution of slightly older stars. Credit: ESO/PHANGS

I’d never seen galaxy images like this before. Nobody had! These images highlight star forming regions in nearby(ish) galaxies. There are still a number of unanswered questions surrounding how star formation actually occurs. To answer those questions, we are observing galaxies that are actively forming stars within giant clouds of gas. Until recently, we didn’t have the resolution needed to clearly image the individual gas clouds themselves. But images released by a project called PHANGS (Physics at High Angular resolution in Nearby GalaxieS) in a collaboration between the European Southern Observatory Very Large Telescope and the Atacama Large millimeter/submillmeter Array (ALMA) have provided never before seen detail of star forming clouds in other galaxies.

This image combines observations of the nearby galaxies NGC 1300, NGC 1087, NGC 3627 (top, from left to right), NGC 4254 and NGC 4303 (bottom, from left to right) taken with the Multi-Unit Spectroscopic Explorer (MUSE) on ESO’s Very Large Telescope (VLT). Each individual image is a combination of observations conducted at different wavelengths of light to map stellar populations and warm gas.. Image and Image Description PHANGS/ESO. Original Image
Continue reading “The Galactic Beauty of Star Formation”

The Center of the Milky Way is the Most Likely Place to Find a Galactic Civilization

Composite image of the Milky Way's core created by Hubble, Spitzer, and Chandra telescopes. Credit X-ray: NASA/CXC/UMass/D. Wang et al.; Optical: NASA/ESA/STScI/D.Wang et al.; IR: NASA/JPL-Caltech/SSC/S.Stolovy

Aim for the Center

The Milky Way is 13 BILLION years old. Some of our Galaxy’s oldest stars were born near the beginning of the Universe itself. During all these eons of time, we know at least one technological civilization has been born – US!

But if the Galaxy is so ancient, and we know it can create life, why haven’t we heard from anybody else? If another civilization was just 0.1% of the Galaxy’s age older than we are, they would be millions of years further along than us and presumably more advanced. If we are already on the cusp of sending life to other worlds, shouldn’t the Milky Way be teeming with alien ships and colonies by now?

Maybe. But it’s also possible that we’ve been looking in the wrong place. Recent computer simulations by Jason T. Wright et al suggest that the best place to look for ancient space-faring civilizations might be the core of the Galaxy, a relatively unexplored target in the search for extra terrestrial intelligence.

Animation showing the settlement of the galaxy. White points are unsettled stars, magenta spheres are settled stars, and white cubes represent a settlement ship in transit. The spiral structure formed is due to galactic shear as the settlement wave expands. Once the Galaxy’s center is reached, the rate of colonization increases dramatically. Credit: Wright et al
Continue reading “The Center of the Milky Way is the Most Likely Place to Find a Galactic Civilization”

What Would It Take To See Artificial Lights at Proxima Centauri B?

Feature Image Description: Ecumenopolis Planet orbiting Proxima Centauri-like Red Dwarf Star - Graphics from the video game Stellaris, developed and published by Paradox Interactive. - used with permission

Is there an alien civilization next door? It’s…possible(ish). In late 2020, we discovered a signal from the direction of Proxima Centauri (not necessarily from Proxima Centauri), our closest neighbour star. Named BLC- 1 by project Break Through Listen, the signal is still being analyzed to ensure it isn’t simply an echo of our own civilization – typically what they turn out to be. But why not just directly look at planets in Proxima Centauri and see if a civilization is there?

From space, the most obvious sign somebody lives on Earth is the glow from the nightside of our planet. Our cities emit light that’s shed into the Cosmos. Problem is that our current generation of telescopes are not powerful enough to see lights on distant worlds. But several researchers are testing the capabilities of the next generation of telescopes already on the drawing board. The finding? Yes! if advanced enough…or glowy enough…we would be able to see if another civilization has the lights on at Proxima Centauri.

8k compilation of footage taken from the International Space Station orbiting above Earth’s City Lights
Continue reading “What Would It Take To See Artificial Lights at Proxima Centauri B?”

“Ain’t like Dusting Crops!” How We’ll Actually Navigate Interstellar Space

Simulated Hyperspace Travel
We're not at Hyperspace yet, but the next gen of interstellar space craft might be traveling at a good fraction of the speed of light c. - SpaceEngine by Author

May the 4th be With You!

Blasting out of Mos Eisley Space Port, the Millennium Falcon carries our adventurers off Tatooine bringing Luke Skywalker across the threshold into space. With Imperial Star Destroyers closing, Luke bemoans Han Solo’s delay in jumping to Hyperspace. It takes time to make these calculations through the Falcon’s “Navicomputer.” Han explains that otherwise they could “fly right through a star” or “bounce too close to a supernova.” (probably the same effect of each – also are supernovas bouncy?)

Celestial calculations are needed to figure out where you’re going. In Star Wars these are done by ship computers, or later by trusty astromech droids like R2-D2. But, for the first time, simulations have been conducted of an uncrewed ship’s ability to autonavigate through interstellar space. While not at Hyperspace speeds, the simulations do account for velocities at up to half the speed of light. Created by Coryn A.L. Bailer-Jones of the Max Plank Institute for Astronomy, these simulations may be our first step to creating our own “Navicomputers” (or R2-D2s if they have a personality).

The most distant object we’ve ever sent into space, Voyager1, was launched in 1977 (same year as the release of Star Wars). It took 4 decades to leave the solar system. The next generation of interstellar craft may be far faster but also need their own way to navigate
c. NASA
Continue reading ““Ain’t like Dusting Crops!” How We’ll Actually Navigate Interstellar Space”

More Audio from Perseverance: the Crunch of its Wheels on the Martian Regolith

Some of Perseverance's first tire tracks as captured by one of Percy's "hazcams" or Hazard Avoidance Cameras. c. NASA/JPL

In absence of (yet) being able to step foot on Mars, we have robotic vicarious experiences through our rovers including Perseverance which landed this past February 18th. In addition to photos we’ve collected from the surface over the decades, our ever-improving data connection to Mars made it possible to see video from Perseverance’s landing. That dramatic unfurl of the parachute and dust spray of the landing thrusters – astonishing! I’m not ashamed to admit I cried. Through Perseverance we’re also experiencing Mars exploration with another sense – SOUND! Sound from another planet!! Using Perseverance’s Entry, Descent, and Landing Microphone (EDL Mic) we recently recorded audio of Perseverance’s wheels rolling across the Martian regolith (broken rocks and dust or “soil”). The audio segment below is an edited portion of sound highlights from a longer 16 minute raw audio file.

NASA engineers combined three segments from the raw audio file recorded while the Perseverance Mars rover rolled across a section of Jezero Crater on sol 16 of the mission. Sections 0:20-0:45, 6:40-7:10, and 14:30-15:00 were combined into this 90-second highlight clip. There has been processing and editing to filter out some of the noise.
C. NASA/JPL-Caltech
Continue reading “More Audio from Perseverance: the Crunch of its Wheels on the Martian Regolith”