Here it is, the high resolution photo of MU69 we’ve all been waiting for.

High-resolution image of Ultima Thule. Credit: NASA/JHUAPL/SwRI

On December 31st, 2018, NASA’s New Horizons mission made history by being the first spacecraft to rendezvous with a Kuiper Belt Object (KBO) named Ultima Thule (2014 MU69). This came roughly two and a half years after New Horizons became the first mission in history to conduct a flyby of Pluto. Much like the encounter with Pluto, the probe’s rendezvous with Ultima Thule led to a truly stunning encounter image.

And now, thanks to a team of researchers from the John Hopkins University Applied Physics Lab (JHUAPL), this image has been enhanced to provide a more detailed and high-resolution look at Ultima Thule and its surface features. Thanks to these efforts, scientists may be able to learn more about the history of this object and how it was formed, which could tell us a great deal about the early days of the Solar System.

Continue reading “Here it is, the high resolution photo of MU69 we’ve all been waiting for.”

What Would be the Benefits of an Interstellar Probe?

Artist's concept of the Bussard Ramjet, which would harness hydrogen from the interstellar medium to power its fusion engines. Credit: futurespacetransportation.weebly.com

On July 14th, 2015, the New Horizons mission made history when it became the first robotic spacecraft to conduct a flyby of Pluto. On December 31st, 2018, it made history again by being the first spacecraft to rendezvous with a Kuiper Belt Object (KBO) – Ultima Thule (2014 MU69). In addition, the Voyager 2 probe recently joined its sister probe (Voyager 1) in interstellar space.

Given these accomplishments, it is understandable that proposals for interstellar missions are once again being considered. But what would such a mission entail, and is it even worth it? Kelvin F. Long, the co-founder of the Initiative for Interstellar Studies (i4iS) and a major proponent of interstellar flight, recently published a paper that supports the idea of sending robotic missions to nearby star systems to conduct in-situ reconnaissance.

Continue reading “What Would be the Benefits of an Interstellar Probe?”

Blue Origin has Shown off a New Video of its New Glenn Rocket Design

The New Glenn spacecraft. Credit: Blue Origin

Blue Origin, the private aerospace company founded by multi-billionaire (and founder of Amazon) Jeff Bezos, is looking to make its presence felt in the rapidly expanding NewSpace industry. To this end, Blue Origin has spent years developing a fleet of reusable rockets that they hope will someday rival those of their greatest competitor, SpaceX.

So far, these efforts have led to the New Shepard rocket, which can send payloads (and soon, space tourists) to suborbital altitudes. In the coming years, Blue Origin hopes to go farther with their New Glenn rocket, a reusable launch vehicle capable of reaching Low-Earth Orbit (LEO). The company recently released a new video of the New Glenn, which showcased the designs latest features and specifications.

Continue reading “Blue Origin has Shown off a New Video of its New Glenn Rocket Design”

Planetary Scientists Continue to Puzzle Over the Mysterious Slope Streaks on Mars. Liquid? Sand? What’s Causing Them?

A splitting slope streak on Mars captured by High Resolution Imaging Science Experiment (HiRISE). Image Id: ESP_053518_1955. Credit: NASA/JPL/University of Arizona

Since they were first observed in the 1970s by the Viking missions, the slope streaks that periodically appear along slopes on Mars have continued to intrigue scientists. After years of study, scientists still aren’t sure exactly what causes them. While some believe that “wet” mechanisms are the culprit, others think they are the result of “dry” mechanisms.

Luckily, improvements in high-resolution sensors and imaging capabilities – as well as improved understanding of Mars’ seasonal cycles – is bringing us closer to an answer. Using a terrestrial analog from Bolivia, a research team from Sweden recently conducted a study that explored the mechanisms for streak formation and suggest that wet mechanisms appear to account for more, which could have serious implications for future missions to Mars.

Continue reading “Planetary Scientists Continue to Puzzle Over the Mysterious Slope Streaks on Mars. Liquid? Sand? What’s Causing Them?”

Steam-Powered Spacecraft Could Explore the Asteroid Belt Forever, Refueling Itself in Space

Artist's impression of a Near-Earth Asteroid passing by Earth. Credit: ESA

The era of renewed space exploration has led to some rather ambitious proposals. While many have been on the books for decades, it has only been in recent years that some of these plans have become technologically feasible. A good example is asteroid mining, where robotic spacecraft would travel to Near-Earth Asteroids and the Main Asteroid Belt to harvest minerals and other resources.

At the moment, one of the main challenges is how these craft would be able to get around and refuel once they are in space. To address this, the New York-based company Honeybee Robotics has teemed up with the University of Central Florida (UFC) to develop a steam-powered robotic spacecraft. The company recently released a demonstration video that shows their prototype World is Not Enough (WINE) “steam hopper” in action.

Continue reading “Steam-Powered Spacecraft Could Explore the Asteroid Belt Forever, Refueling Itself in Space”

Geothermal Heating Could Make Life Possible on the Super Earth Planet at Barnard’s Star

The nearest single star to the Sun hosts an exoplanet at least 3.2 times as massive as Earth — a so-called super-Earth. Data from a worldwide array of telescopes, including ESO’s planet-hunting HARPS instrument, have revealed this frozen, dimly lit world. The newly discovered planet is the second-closest known exoplanet to the Earth and orbits the fastest moving star in the night sky. This image shows an artist’s impression of the planet’s surface. Credit: ESO

In 2018, scientists announced the discovery of a extrasolar planet orbiting Barnard’s star, an M-type (red dwarf) that is just 6 light years away. Using the Radial Velocity method, the research team responsible for the discovery determined that this exoplanet (Barnard’s Star b) was at least 3.2 times as massive as Earth and experienced average surface temperatures of about -170 °C (-274 °F) – making it both a “Super-Earth” and “ice planet”.

Based on these findings, it was a foregone conclusion that Barnard b would be hostile to life as we know it. But according to new study by a team of researchers from Villanova University and the Institute of Space Studies of Catalonia (IEEC), it is possible – assuming the planet has a hot iron/nickel core and experiences enhanced geothermal activity – that this giant iceball of a planet could actually support life.

Continue reading “Geothermal Heating Could Make Life Possible on the Super Earth Planet at Barnard’s Star”

Seeding the Milky Way with Life Using Genesis Missions

An artist's illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. The leakage from such beams as they sweep across the sky would appear as Fast Radio Bursts (FRBs), similar to the new population of sources that was discovered recently at cosmological distances. Credit: M. Weiss/CfA

When exploring other planets and celestial bodies, NASA missions are required to abide by the practice known as “planetary protection“. This practice states that measures must be taken during the designing of a mission to ensure that biological contamination of both the planet/body being explored and Earth (in the case of sample-return missions) are prevented.

Looking to the future, there is the question of whether or not this same practice will be extended to extra-solar planets. If so, it would conflict with proposals to “seed” other worlds with microbial life to kick-start the evolutionary process. To address this, Dr. Claudius Gros of Goethe University’s Institute for Theoretical Physics recently published a paper that looks at planetary protection and makes the case for “Genesis-type” missions.

Continue reading “Seeding the Milky Way with Life Using Genesis Missions”

There’s Life on the Moon! China’s Lander Just Sprouted the First Plants

China's Chang'e-4 lander on the lunar surface. Image Credit: CNSA/CLEP
China's Chang'e-4 lander on the lunar surface. Image Credit: CNSA/CLEP

It’s official, for the first time ever, scientists have found a living organism on the Moon! Well, not so much found, we put it there. But the implications are immense nonetheless! According to photos and a statement released by the China National Space Administration this week (Mon. Jan. 14th), the Chang’e-4 mission’s Lunar Micro Ecosystem (LME) experiment has produced its first sprouted plant.

Continue reading “There’s Life on the Moon! China’s Lander Just Sprouted the First Plants”

Bizarre Double Star System Flipped its Planetary Disk on its Side

This illustration shows a binary star surrounded by a thick disc of material in a polar orbit. Copyright and credit: University of Warwick/Mark Garlick

Astronomers theorize that when our Sun was still young, it was surrounded by a disc of dust and gas from which the planets eventually formed. It is further theorized that the majority of stars in our Universe are initially surrounded in this way by a “protoplanetary disk“, and that in roughly 30% of cases, these disks will go on to become a planet or system of planets.

Ordinarily, these disks are thought to orbit around the equatorial band (aka. the ecliptic) of a star or system of stars. However, new research conducted by an international group of scientists has discovered the first example of a binary star system where the orientation was flipped and the disk now orbits the stars around their poles (perpendicular to the ecliptic).

Continue reading “Bizarre Double Star System Flipped its Planetary Disk on its Side”

Habitable Planets Around Red Dwarf Stars Might not get Enough Photons to Support Plant Life

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

In recent years, the number of extra-solar planets discovered around nearby M-type (red dwarf stars) has grown considerably. In many cases, these confirmed planets have been “Earth-like“, meaning that they are terrestrial (aka. rocky) and comparable in size to Earth. These finds have been especially exciting since red dwarf stars are the most common in the Universe – accounting for 85% of stars in the Milky Way alone.

Unfortunately, numerous studies have been conducted of late that indicate that these planets may not have the necessary conditions to support life. The latest comes from Harvard University, where postdoctoral researcher Manasvi Lingam and Professor Abraham Loeb demonstrate that planets around M-type stars may not get enough radiation from their stars for photosynthesis to occur.

Continue reading “Habitable Planets Around Red Dwarf Stars Might not get Enough Photons to Support Plant Life”