How Many Moons Does Jupiter Have?

Illustration of Jupiter and the Galilean satellites. Credit: NASA

Jupiter was appropriately named by the Romans, who chose to name it after the king of the gods. In addition to being the largest planet in our Solar System – with two and a half times the mass of all the other planets combined – it also has the most moons of any Solar planet. So far, 67 natural satellites have been discovered around the gas giant, and more could be on the way.

The moons of Jupiter are so numerous and so diverse that they are broken down into several groups. First, there are the largest moons known as the Galileans, or Main Group. Together with the smaller Inner Group, they make up Jupiter’s Regular Satellites. Beyond them, there are the many Irregular Satellites that circle the planet, along with its debris rings. Here’s what we know about them…

Discovery and Naming:

Using a telescope of his own design, which allowed for 20 x normal magnification, Galileo Galilei was able to make the first observations of celestial bodies that were not visible to the naked eye. In 1610, he made the first recorded discovery of moons orbiting Jupiter, which later came to be known as the Galilean Moons.

At the time, he observed only three objects, which he believed to be fixed stars. However, between January and March of 1610, he continued to observe them, and noted a fourth body as well. In time, he realized that these four bodies did not behave like fixed stars, and were in fact objects that orbited Jupiter.

Portrait of Galileo Galilei by Giusto Sustermans, 1636 . Credit:
Portrait of Galileo Galilei by Giusto Sustermans, 1636 . Credit: Royal Museum Greenwhich

These discoveries proved the importance of using the telescope to view celestial objects that had previously remained unseen. More importantly, by showing that planets other than Earth had their own system of satellites, Galileo dealt a significant blow to the Ptolemaic model of the universe, which was still widely accepted.

Seeking the patronage of the Grand Duke of Tuscany, Cosimo de Medici, Galileo initially sought permission to name the moons the “Cosmica Sidera” (or Cosimo’s Stars). At Cosimo’s suggestion, Galileo changed the name to Medicea Sidera (“the Medician stars”), honouring the Medici family. The discovery was announced in the Sidereus Nuncius (“Starry Messenger”), which was published in Venice in March 1610.

However, German astronomer Simon Marius had independently discovered these moons at the same time as Galileo. At the behest of Johannes Kepler, he named the moons after the lovers of Zues (the Greek equivalent of Jupiter). In his treatise titled Mundus Jovialis (“The World of Jupiter”, published in 1614) he named them Io, Europa, Ganymede, and Callisto.

Galileo steadfastly refused to use Marius’ names and instead invented the numbering scheme that is still used today, alongside proper moon names. In accordance with this scheme, moons are assigned numbers based on their proximity to their parent planet and increase with distance. Hence, the moons of Io, Europa, Ganymede and Callisto were designated as Jupiter I, II, III, and IV, respectively.

Drawing of Jupiter made on Nov. 1, 1880 by French artist and astronomer Etienne Trouvelot showing transiting moon shadows and a much larger Great Red Spot. Credit: E.L. Trouvelot, New York Public Library
Drawing of Jupiter made on Nov. 1, 1880 by French artist and astronomer Etienne Trouvelot showing transiting moon shadows and a much larger Great Red Spot. Credit: E.L. Trouvelot, New York Public Library

After Galileo made the first recorded discovery of the Main Group, no additional satellites were discovered for almost three centuries – not until E. E. Barnard observed Amalthea in 1892. In fact, it was not until the 20th century, and with the aid of telescopic photography and other refinements, that  most of the Jovian satellites began to be discovered.

Himalia was discovered in 1904, Elara in 1905, Pasiphaë in 1908, Sinope in 1914, Lysithea and Carme in 1938, Ananke in 1951, and Leda in 1974. By the time Voyager space probes reached Jupiter around 1979, 13 moons had been discovered, while Voyager herself discovered an additional three –  Metis, Adrastea, and Thebe.

Between October 1999 and February 2003, researchers using sensitive ground-based detectors found and later named another 34 moons, most of which were discovered by a team led by Scott S. Sheppard and David C. Jewitt. Since 2003, 16 additional moons have been discovered but not yet named, bringing the total number of known moons of Jupiter to 67.

Though the Galilean moons were named shortly after their discovery in 1610, the names of Io, Europa, Ganymede and Callisto fell out of favor until the 20th century. Amalthea (aka. Jupiter V) was not so named until an unofficial convention took place in 1892, a name that was first used by the French astronomer Camille Flammarion.

Jupiter and moons. Image credit: NASA/JPL
Jupiter and its largest moons. Image credit: NASA/JPL

The other moons, in the majority of astronomical literature, were simply labeled by their Roman numeral (i.e. Jupiter IX) until the 1970s. This began in 1975 when the International Astronomical Union’s (IAU) Task Group for Outer Solar System Nomenclature granted names to satellites V–XIII, thus creating a formal naming process for any future satellites discovered. The practice was to name newly discovered moons of Jupiter after lovers and favorites of the god Jupiter (Zeus); and since 2004, also after their descendants.

Regular Satellites:

Jupiter’s Regular Satellites are so named because they have prograde orbits – i.e. they orbit in the same direction as the rotation of their planet. These orbits are also nearly circular and have a low inclination, meaning they orbit close to Jupiter’s equator. Of these, the Galilean Moons (aka. the Main Group) are the largest and the most well known.

These are Jupiter’s largest moons, not to mention the Solar System’s fourth, sixth, first and third largest satellites, respectively. They contain almost 99.999% of the total mass in orbit around Jupiter, and orbit between 400,000 and 2,000,000 km from the planet. They are also among the most massive objects in the Solar System with the exception of the Sun and the eight planets, with radii larger than any of the dwarf planets.

They include Io, Europa, Ganymede, and Callisto, and were all discovered by Galileo Galilei and named in his honor. The names of the moons, which are derived from the lovers of Zeus in Greek mythology, were prescribed by Simon Marius soon after Galileo discovered them in 1610. Of these, the innermost is Io, which is named after a priestess of Hera who became Zeus’ lover.

This global view of Jupiter's moon, Io, was obtained during the tenth orbit of Jupiter by NASA's Galileo spacecraft. Credit: NASA
This global view of Jupiter’s moon, Io, was obtained during the tenth orbit of Jupiter by NASA’s Galileo spacecraft. Credit: NASA

With a diameter of 3,642 kilometers, it is the fourth-largest moon in the Solar System. With over 400 active volcanoes, it is also the most geologically active object in the Solar System. Its surface is dotted with over 100 mountains, some of which are taller than Earth’s Mount Everest.

Unlike most satellites in the outer Solar System (which are covered with ice), Io is mainly composed of silicate rock surrounding a molten iron or iron sulfide core. Io has an extremely thin atmosphere made up mostly of sulfur dioxide (SO2).

The second innermost Galilean moon is Europa, which takes its name from the mythical Phoenician noblewoman who was courted by Zeus and became the queen of Crete. At 3121.6 kilometers in diameter, it is the smallest of the Galileans, and slightly smaller than the Moon.

Europa’s surface consists of a layer of water surrounding the mantle which is thought to be 100 kilometers thick. The uppermost section is solid ice while the bottom is believed to be liquid water, which is made warm due to heat energy and tidal flexing. If true, then it is possible that extraterrestrial life could exist within this subsurface ocean, perhaps near a series of deep-ocean hydrothermal vents.

The surface of Europa is also one of the smoothest in the Solar System, a fact which supports the idea of liquid water existing beneath the surface. The lack of craters on the surface is attributed to the surface being young and tectonically active. Europa is primarily made of silicate rock and likely has an iron core, and a tenuous atmosphere composed primarily of oxygen.

Next up is Ganymede. At 5262.4 kilometers in diameter, Ganymede is the largest moon in the Solar System. While it is larger than the planet Mercury, the fact that it is an icy world means that it has only half of Mercury’s mass. It is also the only satellite in the Solar System known to possess a magnetosphere, likely created through convection within the liquid iron core.

Ganymede is composed primarily of silicate rock and water ice, and a salt-water ocean is believed to exist nearly 200 km below Ganymede’s surface – though Europa remains the most likely candidate for this. Ganymede has a high number of craters, most of which are now covered in ice, and boasts a thin oxygen atmosphere that includes O, O2, and possibly O3 (ozone), and some atomic hydrogen.

Callisto is the fourth and farthest Galilean moon. At 4820.6 kilometers in diameter, it is also the second largest of the Galileans and third largest moon in the Solar System. Callisto is named after the daughter of the Arkadian King, Lykaon, and a hunting companion of the goddess Artemis.

Composed of approximately equal amounts of rock and ices, it is the least dense of the Galileans, and investigations have revealed that Callisto may also have an interior ocean at depths greater than 100 kilometers from the surface.

Callisto is also one of the most heavily cratered satellites in the Solar System – the greatest of which is the 3000 km wide basin known as Valhalla. It is surrounded by an extremely thin atmosphere composed of carbon dioxide and probably molecular oxygen. Callisto has long been considered the most suitable place for a human base for future exploration of the Jupiter system since it is furthest from the intense radiation of Jupiter.

This natural color view of Ganymede was taken from the Galileo spacecraft during its first encounter with the Jovian moon. Credit: NASA/JPL
This natural color view of Ganymede was taken from the Galileo spacecraft during its first encounter with the Jovian moon. Credit: NASA/JPL

The Inner Group (or Amalthea group) are four small moons that have diameters of less than 200 km, orbit at radii less than 200,000 km, and have orbital inclinations of less than half a degree. This groups includes the moons of Metis, Adrastea, Amalthea, and Thebe.

Along with a number of as-yet-unseen inner moonlets, these moons replenish and maintain Jupiter’s faint ring system – Metis and Adrastea helping Jupiter’s main ring, while Amalthea and Thebe maintain their own faint outer rings.

Metis is the closest moon to Jupiter at a distance of 128,000 km. It is roughly 40 km in diameter, tidally-locked, and highly-asymmetrical in shape (with one of the diameters being almost twice as large as the smallest one). It was not discovered until the 1979 flyby of Jupiter by the Voyager 1 space probe. It was named in 1983 after the first wife of Zeus.

The second closest moon is Adrastea, which is about 129,000 km from Jupiter and 20 km in diameter. Also known as Jupiter XV, Amalthea is the second by distance, and the smallest of the four inner moons of Jupiter. It was discovered in 1979 when the Voyager 2 probe photographed it during a flyby.

A schema of Jupiter's ring system showing the four main components. For simplicity, Metis and Adrastea are depicted as sharing their orbit. Credit: NASA/JPL/Cornell University
A schema of Jupiter’s ring system showing the four main components. For simplicity, Metis and Adrastea are depicted as sharing their orbit. Credit: NASA/JPL/Cornell University

Amalthea, also known as Jupiter V, is the third moon of Jupiter in order of distance from the planet. It was discovered on September 9, 1892, by Edward Emerson Barnard and named after a nymph in Greek mythology. It is thought to consist of porous water ice with unknown amounts of other materials. Its surface features include large craters and ridges.

Thebe (aka. Jupiter XIV) is the fourth and final inner moon of Jupiter. It is irregularly shaped and reddish in colour, and is thought like Amalthea to consist of porous water ice with unknown amounts of other materials. Its surface features also include large craters and high mountains – some of which are comparable to the size of the moon itself.

Irregular Satellites:

The Irregular Satellites are those that are substantially smaller and have more distant and eccentric orbits than the Regular Satellites. These moons are broken down into families that have similarities in orbit and composition. It is believed that these were at least partially formed as a result of collisions, most likely by asteroids that were captured by Jupiter’s gravitational field.

 Amalthea, as photographed by the Galileo spacecraft. The left photograph is from August 12, 1999 at a range of 446,000 kilometers. The right photo is from November 26, 1999 at a range of 374,000. Credit: NASA/JPL
Amalthea, as photographed by the Galileo spacecraft. The left is from August 12, 1999 at a range of 446,000 km, the right from November 26, 1999 at a range of 374,000. Credit: NASA/JPL

Those that are grouped into families are all named after their largest member. For example, the Himalia group is named after Himalia – a satellite with a mean radius of 85 km, making it the fifth largest moon orbiting Jupiter. It is believed that Himalia was once an asteroid that was captured by Jupiter’s gravity, which then experienced a impact that formed the moons of Leda, Lysithea, and Elara. These moons all have prograde orbits, meaning they orbit in the same direction as Jupiter’s rotation.

The Carme group takes its name from the Moon of the same name. With a mean radius of 23 km, Carme is the largest member of a family of Jovian satellites which have similar orbits and appearance (uniformly red), and are therefore thought to have a common origin. The satellites in this family all have retrograde orbits, meaning they orbit Jupiter in the opposite direction of its rotation.

The Ananke group is named after its largest satellite, which has a mean radius of 14 km. It is believed that Ananke was also an asteroid that was captured by Jupiter’s gravity and then suffered a collision which broke off a number of pieces. Those pieces became the other 15 moons in the Ananke group, all of which have retrograde orbits and appear gray in color.

This image shows the Themis Main Belt which sits between Mars and Jupiter. Asteroid 24 Themis, one of the largest Main Belt asteroids, was examined by University of Tennessee scientist, Josh Emery, who found water ice and organic material on the asteroid's surface. His findings were published in the April 2010 issue of Nature. Credit: Josh Emery/University of Tennessee, Knoxville
This image shows the Themis Main Belt which sits between Mars and Jupiter. Credit: Josh Emery/University of Tennessee, Knoxville

The Pasiphae group is a very diverse group which ranges in color from red to grey – signifying the possibility of it being the result of multiple collisions. Named after Paisphae, which has a mean radius of 30 km, these satellites are retrograde, and are also believed to be the result of an asteroid that was captured by Jupiter and fragmented due to a series of collisions.

There are also several irregular satellites that are not part of any particular family. These include Themisto and Carpo, the innermost and outermost irregular moons, both of which have prograde orbits. S/2003 J 12 and S/2011 J 1 are the innermost of the retrograde moons, while S/2003 J 2 is the outermost moon of Jupiter.

Structure and Composition:

As a rule, the mean density of Jupiter’s moons decrease with their distance from the planet. Callisto, the least dense of the four, has an intermediate density between ice and rock, whereas Io has a density that indicates its made of rock and iron. Callisto’s surface also has a heavily cratered ice surface, and the way it rotates indicates that its density is equally distributed.

This suggests that Callisto has no rocky or metallic core, but consists of a homogeneous mix of ice and rock. The rotation of the three inner moons, in contrast, indicates differentiation between a core of denser matter (such as silicates, rock and metals) and a mantle of lighter material (water ice).

Surface features of the four members at different levels of zoom in each row
Surface features of the four members at different levels of zoom in each row. Credit: NASA/JPL

The distance from Jupiter also accords with significant alterations in the surface structure of its moons. Ganymede reveals past tectonic movement of the ice surface, which would mean that the subsurface layers underwent partial melting at once time. Europa reveals more dynamic and recent movement of this nature, suggesting a thinner ice crust. Finally, Io, the innermost moon, has a sulfur surface, active volcanism, and no sign of ice.

All this evidence suggests that the nearer a moon is to Jupiter, the hotter its interior – with models suggesting that the level of tidal heating is in inverse proportion to the square of their distance from the planet. It is believed that all of Jupiter’s moons may have once had an internal composition similar to that of modern-day Callisto, while the rest changed over time as a result of tidal heating caused by Jupiter’s gravitational field.

What this means is that for all of Jupiter’s moons, except Callisto, their interior ice melted, allowing rock and iron to sink to the interior and water to cover the surface. In Ganymede, a thick and solid ice crust then formed while in warmer Europa, a thinner more easily broken crust formed. On Io, the closest planet to Jupiter, the heating was so extreme that all the rock melted and the water boiled out into space.

Jupiter, a gas giant of immense proportions, was appropriately named after the king of the Roman pantheon. It is only befitting that such a planet has many, many moons orbiting it. Given the discovery process, and how long it has taken us, it would not be surprising if there are more satellites around Jupiter just waiting to be discovered. Sixty-seven and counting!

Universe Today has articles on Jupiter’s largest moon and Jupiter moons.

You should also check out Jupiter’s moons and rings and Jupiter’s largest moons.

For more information, try Jupiter’s moons and Jupiter.

Astronomy Cast also has an episode on Jupiter’s moons.

The Moons of Saturn

Saturn and its moons. Image credit: NASA/JPL/SSI

Saturn is well known for being a gas giant, and for its impressive ring system. But would it surprise you to know that this planet also has the second-most moons in the Solar System, second only to Jupiter? Yes, Saturn has at least 150 moons and moonlets in total, though only 53 of them have been given official names.

Most of these moons are small, icy bodies that are little more than parts of its impressive ring system. In fact, 34 of the moons that have been named are less than 10 km in diameter while another 14 are 10 to 50 km in diameter. However, some of its inner and outer moons are among the largest and most dramatic in the Solar System, measuring between 250 and 5000 km in diameter and housing some of greatest mysteries in the Solar System.

Discovery and Naming:

Prior to the invention of telescopic photography,  eight of Saturn’s moons were observed using simple telescopes. The first to be discovered was Titan, Saturn’s largest moon, which was observed by Christiaan Huygens in 1655 using a telescope of his own design. Between 1671 and 1684, Giovanni Domenico Cassini discovered the moons of Tethys, Dione, Rhea and Iapetus – which he collectively named the “Sider Lodoicea” (Latin for “Louisian Stars”, after King Louis XIV of France).

In 1789, William Herschel discovered Mimas and Enceladus, while father-and-son astronomers W.C Bond and G.P. Bond discovered Hyperion in 1848 – which was independently discovered by William Lassell that same year. By the end of the 19th century, the invention of long-exposure photographic plates allowed for the discovery of more moons – the first of which Phoebe, observed in 1899 by W.H. Pickering.

Saturn's moons (from left to right) Janus, Pandora, Enceladus, Mimas and Rhea. Rhea is on top of Saturn. Credit: NASA/JPL-Caltech/Space Science Institute
Saturn’s moons (from left to right) Janus, Pandora, Enceladus, Mimas and Rhea. Rhea is on top of Saturn. Credit: NASA/JPL-Caltech/Space Science Institute

In 1966, the tenth satellite of Saturn was discovered by French astronomer Audouin Dollfus, which was later named Janus. A few years later, it was realized that his observations could only be explained if another satellite had been present with an orbit similar to that of Janus. This eleventh moon was later named Epimetheus, which shares the same orbit with Janus and is the only known co-orbital in the Solar System.

By 1980, three additional moons were discovered and later confirmed by the Voyager probes. They were the trojan moons (see below) of Helene (which orbits Dione) as well as Telesto and Calypso (which orbit Tethys).

The study of the outer planets has since been revolutionized by the use of unmanned space probes. This began with the arrival of the Voyager spacecraft to the Cronian system in 1980-81, which resulted in the discovery of three additional moons – Atlas, Prometheus, and Pandora – bringing the total to 17. By 1990, archived images also revealed the existence of Pan.

This was followed by the Cassini-Huygens mission, which arrived at Saturn in the summer of 2004. Initially, Cassini discovered three small inner moons, including Methone and Pallene between Mimas and Enceladus, as well as the second Lagrangian moon of Dione – Polydeuces. In November of 2004, Cassini scientists announced that several more moons must be orbiting within Saturn’s rings. From this data, multiple moonlets and the moons of Daphnis and Anthe have been confirmed.

The moons of Saturn, from left to right: Mimas, Enceladus, Tethys, Dione, Rhea; Titan in the background; Iapetus (top) and irregularly shaped Hyperion (bottom). Some small moons are also shown. All to scale. Credit: NASA/JPL/Space Science Institute
The moons of Saturn, from left to right: Mimas, Enceladus, Tethys, Dione, Rhea; Titan in the background; Iapetus (top) and Hyperion (bottom). Credit: NASA/JPL/Space Science Institute

The study of Saturn’s moons has also been aided by the introduction of digital charge-coupled devices, which replaced photographic plates by the end of the 20th century. Because of this, ground-based telescopes have begun to discovered several new irregular moons around Saturn. In 2000, three medium-sized telescopes found thirteen new moons with eccentric orbits that were of considerable distance from the planet.

In 2005, astronomers using the Mauna Kea Observatory announced the discovery of twelve more small outer moons. In 2006, astronomers using Japan’s Subaru Telescope at Mauna Kea reported the discovery of nine more irregular moons. In April of 2007, Tarqeq (S/2007 S 1) was announced, and in May of that same year, S/2007 S 2 and S/2007 S 3 were reported.

The modern names of Saturn’s moons were suggested by John Herschel (William Herschel’s son) in 1847. In keeping with the nomenclature of the other planets, he proposed they be named after mythological figures associated with the Roman god of agriculture and harvest – Saturn, the equivalent of the Greek Cronus. In particular, the seven known satellites were named after Titans, Titanesses and Giants – the brothers and sisters of Cronus.

In 1848, Lassell proposed that the eighth satellite of Saturn be named Hyperion after another Titan. When in the 20th century, the names of Titans were exhausted, the moons were named after different characters of the Greco-Roman mythology, or giants from other mythologies. All the irregular moons (except Phoebe) are named after Inuit and Gallic gods and Norse ice giants.

Saturn’s Inner Large Moons:

Saturn’s moons are grouped based on their size, orbits, and proximity to Saturn. The innermost moons and regular moons all have small orbital inclinations and eccentricities and prograde orbits. Meanwhile, the irregular moons in the outermost regions have orbital radii of millions of kilometers, orbital periods lasting several years, and move in retrograde orbits.

Enceladus. Credit: NASA/JPL/Space Science Institute
Saturn’s moon of Enceladus. Credit: NASA/JPL/Space Science Institute

Saturn’s Inner Large Moons, which orbit within the E Ring (see below), include the larger satellites Mimas, Enceladus, Tethys, and Dione. These moons are all composed primarily of water ice, and are believed to be differentiated into a rocky core and an icy mantle and crust. With a diameter of 396 km and a mass of 0.4×1020 kg, Mimas is the smallest and least massive of these moons. It is ovoid in shape and orbits Saturn at a distance of 185,539 km with an orbital period of 0.9 days.

Enceladus, meanwhile, has a diameter of 504 km, a mass of 1.1×1020 km and is spherical in shape. It orbits Saturn at a distance of 237,948 km and takes 1.4 days to complete a single orbit. Though it is one of the smaller spherical moons, it is the only Cronian moon that is endogenously active – and one of the smallest known bodies in the Solar System that is geologically active. This results in features like the famous “tiger stripes” – a series of continuous, ridged, slightly curved and roughly parallel faults within the moon’s southern polar latitudes.

Large geysers have also been observed in the southern polar region that periodically release plumes of water ice, gas and dust which replenish Saturn’s E ring. These jets are one of several indications that Enceladus has liquid water beneath it’s icy crust, where geothermal processes release enough heat to maintain a warm water ocean closer to its core. With a geometrical albedo of more than 140%, Enceladus is one of the brightest known objects in the Solar System.

At 1066 km in diameter, Tethys is the second-largest of Saturn’s inner moons and the 16th-largest moon in the Solar System. The majority of its surface is made up of heavily cratered and hilly terrain and a smaller and smoother plains region. Its most prominent features are the large impact crater of Odysseus, which measures 400 km in diameter, and a vast canyon system named Ithaca Chasma – which is concentric with Odysseus and measures 100 km wide, 3 to 5 km deep and 2,000 km long.

Credit:
Dione’s heavily cratered surface, as observed by the Cassini flyby in June, 2015. Credit: NASA/JPL

With a diameter and mass of 1,123 km and 11×1020 kg, Dione is the largest inner moon of Saturn. The majority of Dione’s surface is heavily cratered old terrain, with craters that measure up to 250 km in diameter. However, the moon is also covered with an extensive network of troughs and lineaments which indicate that in the past it had global tectonic activity.

Saturn’s Large Outer Moons:

The Large Outer Moons, which orbit outside of the Saturn’s E Ring, are similar in composition to the Inner Moons – i.e. composed primarily of water ice and rock. Of these, Rhea is the second largest – measuring 1,527 km in diameter and 23×1020 kg in mass – and the ninth largest moon of the Solar System. With an orbital radius of 527,108 km, it is the fifth-most distant of the larger moons, and takes 4.5 days to complete an orbit.

Like other Cronian satellites, Rhea has a rather heavily cratered surface, and a few large fractures on its trailing hemisphere. Rhea also has two very large impact basins on its anti-Saturnian hemisphere – the Tirawa crater (similar to Odysseus on Tethys) and an as-yet unnamed crater – that measure 400 and 500 km across, respectively.

At 5150 km in diameter, and 1,350×1020 kg in mass, Titan is Saturn’s largest moon and comprises more than 96% of the mass in orbit around the planet. Titan is also the only large moon to have its own atmosphere, which is cold, dense, and composed primarily of nitrogen with a small fraction of methane. Scientists have also noted the presence of polycyclic aromatic hydrocarbons in the upper atmosphere, as well as methane ice crystals.

A composite image of Titan's atmosphere, created using blue, green and red spectral filters to create an enhanced-color view. Image Credit: NASA/JPL/Space Science Institute
A composite image of Titan’s atmosphere, created using blue, green and red spectral filters to create an enhanced-color view. Image Credit: NASA/JPL/Space Science Institute

The surface of Titan, which is difficult to observe due to persistent atmospheric haze, shows only a few impact craters, evidence of cryovolcanoes, and longitudinal dune fields that were apparently shaped by tidal winds. Titan is also the only body in the Solar System beside Earth with bodies of liquid on its surface, in the form of methane–ethane lakes in Titan’s north and south polar regions.

With an orbital distance of 1,221,870 km, it is the second-farthest large moon from Saturn, and completes a single orbit every 16 days. Like Europa and Ganymede, it is believed that Titan has a subsurface ocean made of water mixed with ammonia, which can erupt to the surface of the moon and lead to cryovolcanism.

Hyperion is Titan’s immediate neighbor. At an average diameter of about 270 km, it is smaller and lighter than Mimas. It is also irregularly shaped and quite odd in composition. Essentially, the moon is an ovoid, tan-colored body with an extremely porous surface (which resembles a sponge).  The surface of Hyperion is covered with numerous impact craters, most of which are 2 to 10 km in diameter. It also has a highly unpredictable rotation, with no well-defined poles or equator.

At 1,470 km in diameter and 18×1020 kg in mass, Iapetus is the third-largest of Saturn’s large moons. And at a distance of 3,560,820 km from Saturn, it is the most distant of the large moons, and takes 79 days to complete a single orbit. Due to its unusual color and composition – its leading hemisphere is dark and black whereas its trailing hemisphere is much brighter – it is often called the “yin and yang” of Saturn’s moons.

The two sides of Iapetus. Credit: NASA/JPL
The two sides of Iapetus, “Saturn’s yin yang moon”. Credit: NASA/JPL

Saturn’s Irregular Moons:

Beyond these larger moons are Saturn’s Irregular Moons. These satellites are small, have large-radii, are inclined, have mostly retrograde orbits, and are believed to have been acquired by Saturn’s gravity. These moons are made up of three basic groups – the Inuit Group, the Gallic Group, and the Norse Group.

The Inuit Group consists of five irregular moons that are all named from Inuit mythology – Ijiraq, Kiviuq, Paaliaq, Siarnaq, and Tarqeq. All have prograde orbits that range from 11.1 to 17.9 million km, and from 7 to 40 km in diameter. They are all similar in appearance (reddish in hue) and have orbital inclinations of between 45 and 50°.

The Gallic group are a group of four prograde outer moons named for characters in Gallic mythology -Albiorix, Bebhionn, Erriapus, and Tarvos. Here too, the moons are similar in appearance and have orbits that range from 16 to 19 million km. Their inclinations are in the 35°-40° range, their eccentricities around 0.53, and they range in size from 6 to 32 km.

Last, there is the Norse group, which consists of 29 retrograde outer moons that take their names from Norse mythology. These satellites range in size from 6 to 18 km, their distances from 12 and 24 million km, their inclinations between 136° and 175°, and their eccentricities between 0.13 and 0.77. This group is also sometimes referred to as the Phoebe group, due to the presence of a single larger moon in the group – which measures 240 km in diameter. The second largest, Ymir, measures 18 km across.

Saturns rings and moons Credit: NASA
Saturn’s rings and moons Credit: NASA

Within the Inner and Outer Large Moons, there are also those belonging to Alkyonide group. These moons – Methone, Anthe, and Pallene – are named after the Alkyonides of Greek mythology, are located between the orbits of Mimas and Enceladus, and are among the smallest moons around Saturn.

Some of the larger moons even have moons of their own, which are known as Trojan moons. For instance, Tethys has two trojans – Telesto and Calypso, while Dione has Helene and Polydeuces.

Moon Formation:

It is thought that Saturn’s moon of Titan, its mid-sized moons and rings developed in a way that is closer to the Galilean moons of Jupiter. In short, this would mean that the regular moons formed from a circumplanetary disc, a ring of accreting gas and solid debris similar to a protoplanetary disc. Meanwhile, the outer, irregular moons are believed to have been objects that were captured by Saturn’s gravity and remained in distant orbits.

However, there are some variations on this theory. In one alternative scenario, two Titan-sized moons were formed from an accretion disc around Saturn; the second one eventually breaking up to produce the rings and inner mid-sized moons. In another, two large moons fused together to form Titan, and the collision scattered icy debris that formed to create the mid-sized moons.

However, the mechanics of how the moon’s formed remains a mystery for the time being. With additional missions mounted to study the atmospheres, compositions and surfaces of these moons, we may begin to understand where they truly came from.

Much like Jupiter, and all the other gas giants, Saturn’s system of satellites is extensive as it is impressive. In addition to the larger moons that are believed to have formed from a massive debris field that once orbited it, it also has countless smaller satellites that were captured by its gravitational field over the course of billions of years. One can only imagine how many more remain to be found orbiting the ringed giant.

We have many great articles on Saturn and its moon’s here at Universe Today. For example, here’s How Many Moons Does Saturn Have? and Is Saturn Making a New Moon?

Here’s an article about the discovery of Saturn’s 60th moon, and another article about how Saturn’s moons could be creating new rings.

Want more information about Saturn’s moons? Check out NASA’s Cassini information on the moons of Saturn, and more from NASA’s Solar System Exploration site.

We have recorded two episodes of Astronomy Cast just about Saturn. The first is Episode 59: Saturn, and the second is Episode 61: Saturn’s Moons.

The Planet Neptune

Neptune photographed by Voyage. Image credit: NASA/JPL
Neptune photographed by Voyager 2. Image credit: NASA/JPL

Neptune is the eight planet from our Sun, one of the four gas giants, and one of the four outer planets in our Solar System. Since the “demotion” of Pluto by the IAU to the status of a dwarf planet – and/or Plutoid and Kuiper Belt Object (KBO) – Neptune is now considered to be the farthest planet in our Solar System.

As one of the planets that cannot be seen with the naked eye, Neptune was not discovered until relatively recently. And given its distance, it has only been observed up close on one occasion – in 1989 by the Voyager 2 spaceprobe. Nevertheless, what we’ve come to know about this gas (and ice) giant in that time has taught us much about the outer Solar System and the history of its formation.

Discovery and Naming:

Neptune’s discovery did not take place until the 19th century, though there are indications that it was observed before long that. For instance, Galileo’s drawings from December 28th, 1612, and January 27th, 1613, contained plotted points which are now known to match up with the positions of Neptune on those dates. However, in both cases, Galileo appeared to have mistaken it for a star.

1821, French astronomer Alexis Bouvard published astronomical tables for the orbit of Uranus. Subsequent observations revealed substantial deviations from the tables, which led Bouvard to hypothesize that an unknown body was perturbing Uranus’ orbit through gravitational interaction.

New Berlin Observatory at Linden Street, where Neptune was discovered observationally. Credit: Leibniz-Institut für Astrophysik Potsdam
New Berlin Observatory at Linden Street, where Neptune was discovered observationally. Credit: Leibniz-Institute for Astrophysics Potsdam

In 1843, English astronomer John Couch Adams began work on the orbit of Uranus using the data he had and produced several different estimates in the following years of the planet’s orbit. In 1845–46, Urbain Le Verrier, independently of Adams, developed his own calculations, which he shared with Johann Gottfried Galle of the Berlin Observatory. Galle confirmed the presence of a planet at the coordinates specified by Le Verrier on September 23rd, 1846.

The announcement of the discovery was met with controversy, as both Le Verrier and Adams claimed responsibility. Eventually, an international consensus emerged that both Le Verrier and Adams jointly deserved credit. However, a re-evaluation by historians in 1998 of the relevant historical documents led to the conclusion that Le Verrier was more directly responsible for the discovery and deserves the greater share of the credit.

Claiming the right of discovery, Le Verrier suggested the planet be named after himself, but this met with stiff resistance outside of France. He also suggested the name Neptune, which was gradually accepted by the international community. This was largely because it was consistent with the nomenclature of the other planets, all of which were named after deities from Greco-Roman mythology.

Neptune’s Size, Mass and Orbit:

With a mean radius of 24,622 ± 19 km, Neptune is the fourth largest planet in the Solar System and four times as large as Earth. But with a mass of 1.0243×1026 kg – which is roughly 17 times that of Earth – it is the third most massive, outranking Uranus. The planet has a very minor eccentricity of 0.0086, and orbits the Sun at a distance of 29.81 AU (4.459 x 109 km) at perihelion and 30.33 AU (4.537 x 109 km) at aphelion.

A size comparison of Neptune and Earth. Credit: NASA
A size comparison of Neptune and Earth. Credit: NASA

Neptune takes 16 h 6 min 36 s (0.6713 days) to complete a single sidereal rotation, and 164.8 Earth years to complete a single orbit around the Sun. This means that a single day lasts 67% as long on Neptune, whereas a year is the equivalent of approximately 60,190 Earth days (or 89,666 Neptunian days).

Because Neptune’s axial tilt (28.32°) is similar to that of Earth (~23°) and Mars (~25°), the planet experiences similar seasonal changes. Combined with its long orbital period, this means that the seasons last for forty Earth years. Also owing to its axial tilt being comparable to Earth’s is the fact that the variation in the length of its day over the course of the year is not any more extreme than it on Earth.

Neptune’s orbit also has a profound impact on the region directly beyond it, known as the Kuiper Belt (otherwise known as the “Trans-Neptunian Region”). Much in the same way that Jupiter’s gravity dominates the Asteroid Belt, shaping its structure, so Neptune’s gravity dominates the Kuiper Belt. Over the age of the Solar System, certain regions of the Kuiper belt became destabilised by Neptune’s gravity, creating gaps in the Kuiper belt’s structure.

There also exists orbits within these empty regions where objects can survive for the age of the Solar System. These resonances occur when Neptune’s orbital period is a precise fraction of that of the object – meaning they complete a fraction of an orbit for every orbit made by Neptune. The most heavily populated resonance in the Kuiper belt, with over 200 known objects, is the 2:3 resonance.

Objects in this resonance complete 2 orbits for every 3 of Neptune, and are known as plutinos because the largest of the known Kuiper belt objects, Pluto, is among them. Although Pluto crosses Neptune’s orbit regularly, the 2:3 resonance ensures they can never collide.

Neptune has a number of known trojan objects occupying both the Sun–Neptune L4 and L5 Lagrangian Points – regions of gravitational stability leading and trailing Neptune in its orbit. Some Neptune trojans are remarkably stable in their orbits, and are likely to have formed alongside Neptune rather than being captured.

Neptune’s Composition:

Due to its smaller size and higher concentrations of volatiles relative to Jupiter and Saturn, Neptune (much like Uranus) is often referred to as an “ice giant” – a subclass of a giant planet. Also like Uranus, Neptune’s internal structure is differentiated between a rocky core consisting of silicates and metals; a mantle consisting of water, ammonia and methane ices; and an atmosphere consisting of hydrogen, helium and methane gas.

The core of Neptune is composed of iron, nickel and silicates, with an interior model giving it a mass about 1.2 times that of Earth. The pressure at the center is estimated to be 7 Mbar (700 GPa), about twice as high as that at the center of Earth, and with temperatures as high as 5,400 K. At a depth of 7000 km, the conditions may be such that methane decomposes into diamond crystals that rain downwards like hailstones.

The mantle is equivalent to 10 – 15 Earth masses and is rich in water, ammonia and methane. This mixture is referred to as icy even though it is a hot, dense fluid, and is sometimes called a “water-ammonia ocean”.  Meanwhile, the atmosphere forms about 5% to 10% of its mass and extends perhaps 10% to 20% of the way towards the core, where it reaches pressures of about 10 GPa – or about 100,000 times that of Earth’s atmosphere.

Composition of Neptune. Image credit: NASA
Composition of Neptune. Image credit: NASA

Increasing concentrations of methane, ammonia and water are found in the lower regions of the atmosphere. Unlike Uranus, Neptune’s composition has a higher volume of ocean, whereas Uranus has a smaller mantle.

Neptune’s Atmosphere:

At high altitudes, Neptune’s atmosphere is 80% hydrogen and 19% helium, with a trace amount of methane. As with Uranus, this absorption of red light by the atmospheric methane is part of what gives Neptune its blue hue, although Neptune’s is darker and more vivid. Because Neptune’s atmospheric methane content is similar to that of Uranus, some unknown atmospheric constituent is thought to contribute to Neptune’s more intense coloring.

Neptune’s atmosphere is subdivided into two main regions: the lower troposphere (where temperature decreases with altitude), and the stratosphere (where temperature increases with altitude). The boundary between the two, the tropopause, lies at a pressure of 0.1 bars (10 kPa). The stratosphere then gives way to the thermosphere at a pressure lower than 10-5 to 10-4 microbars (1 to 10 Pa), which gradually transitions to the exosphere.

Neptune’s spectra suggest that its lower stratosphere is hazy due to condensation of products caused by the interaction of ultraviolet radiation and methane (i.e. photolysis), which produces compounds such as ethane and ethyne. The stratosphere is also home to trace amounts of carbon monoxide and hydrogen cyanide, which are responsible for Neptune’s stratosphere being warmer than that of Uranus.

In this image, the colors and contrasts were modified to emphasize the planet’s atmospheric features. The winds in Neptune’s atmosphere can reach the speed of sound or more. Neptune’s Great Dark Spot stands out as the most prominent feature on the left. Several features, including the fainter Dark Spot 2 and the South Polar Feature, are locked to the planet’s rotation, which allowed Karkoschka to precisely determine how long a day lasts on Neptune. (Image: Erich Karkoschka)
A modified color/contrast image emphasizing Neptune’s atmospheric features, including wind speed. Credit Erich Karkoschka)

For reasons that remain obscure, the planet’s thermosphere experiences unusually high temperatures of about 750 K (476.85 °C/890 °F). The planet is too far from the Sun for this heat to be generated by ultraviolet radiation, which means another heating mechanism is involved – which could be the atmosphere’s interaction with ion’s in the planet’s magnetic field, or gravity waves from the planet’s interior that dissipate in the atmosphere.

Because Neptune is not a solid body, its atmosphere undergoes differential rotation. The wide equatorial zone rotates with a period of about 18 hours, which is slower than the 16.1-hour rotation of the planet’s magnetic field. By contrast, the reverse is true for the polar regions where the rotation period is 12 hours.

This differential rotation is the most pronounced of any planet in the Solar System, and results in strong latitudinal wind shear and violent storms. The three most impressive were all spotted in 1989 by the Voyager 2 space probe, and then named based on their appearances.

The first to be spotted was a massive anticyclonic storm measuring 13,000 x 6,600 km and resembling the Great Red Spot of Jupiter. Known as the Great Dark Spot, this storm was not spotted five later (Nov. 2nd, 1994) when the Hubble Space Telescope looked for it. Instead, a new storm that was very similar in appearance was found in the planet’s northern hemisphere, suggesting that these storms have a shorter life span than Jupiter’s.

Reconstruction of Voyager 2 images showing the Great Black spot (top left), Scooter (middle), and the Small Black Spot (lower right). Credit: NASA/JPL
Reconstruction of Voyager 2 images showing the Great Black spot (top left), Scooter (middle), and the Small Black Spot (lower right). Credit: NASA/JPL

The Scooter is another storm, a white cloud group located farther south than the Great Dark Spot. This nickname first arose during the months leading up to the Voyager 2 encounter in 1989, when the cloud group was observed moving at speeds faster than the Great Dark Spot.

The Small Dark Spot, a southern cyclonic storm, was the second-most-intense storm observed during the 1989 encounter. It was initially completely dark; but as Voyager 2 approached the planet, a bright core developed and could be seen in most of the highest-resolution images.

Neptune’s Moons:

Neptune has 14 known satellites, all but one of which are named after Greek and Roman deities of the sea (S/2004 N 1 is currently unnamed). These moons are divided into two groups – the regular and irregular moons – based on their orbit and proximity to Neptune. Neptune’s Regular Moons – Naiad, Thalassa, Despina, Galatea, Larissa, S/2004 N 1, and Proteus – are those that are closest to the planet and which follow circular, prograde orbits that lie in the planet’s equatorial plane.

They range in distance from 48,227 km (Naiad) to 117,646 km (Proteus) from Neptune, and all but the outermost two (S/2004 N 1, and Proteus) orbit Neptune slower than its orbital period of 0.6713 days. Based on observational data and assumed densities, these moons range in size and mass from 96 x 60 x 52 km and 1.9 x 1017 kg (Naiad) to 436 x 416 x 402 km and 50.35 x 1017 kg (Proteus).

This composite Hubble Space Telescope picture shows the location of a newly discovered moon, designated S/2004 N 1, orbiting the giant planet Neptune, nearly 4.8 billion km (3 billion miles) from Earth. Credit: NASA, ESA, and M. Showalter (SETI Institute).
This composite Hubble Space Telescope picture shows the location of a newly discovered moon, designated S/2004 N 1, orbiting the giant planet Neptune, nearly 4.8 billion km (3 billion miles) from Earth. Credit: NASA, ESA, and M. Showalter (SETI Institute).

With the exception of Larissa and Proteus (which are largely rounded) all of Neptune’s inner moons are believed to be elongated in shape. Their spectra also indicates that they are made from water ice contaminated by some very dark material, probably organic compounds. In this respect, the inner Neptunian moons are similar to the inner moons of Uranus.

Neptune’s irregular moons consist of the planet’s remaining satellites (including Triton). They generally follow inclined eccentric and often retrograde orbits far from Neptune. The only exception is Triton, which orbits close to the planet, following a circular orbit, though retrograde and inclined.

In order of their distance from the planet, the irregular moons are Triton, Nereid, Halimede, Sao, Laomedeia, Neso and Psamathe – a group that includes both prograde and retrograde objects. With the exception of Triton and Nereid, Neptune’s irregular moons are similar to those of other giant planets and are believed to have been gravitationally captured by Neptune.

In terms of size and mass, the irregular moons are relatively consistent, ranging from approximately 40 km in diameter and 4 x 1016 kg in mass (Psamathe) to 62 km and 16 x 1016 kg for Halimede. Triton and Nereid are unusual irregular satellites and are thus treated separately from the other five irregular Neptunian moons. Between these two and the other irregular moons, four major differences have been noted.

First of all, they are the largest two known irregular moons in the Solar System. Triton itself is almost an order of magnitude larger than all other known irregular moons and comprises more than 99.5% of all the mass known to orbit Neptune (including the planet’s rings and thirteen other known moons).

Global Color Mosaic of Triton, taken by Voyager 2 in 1989. Credit: NASA/JPL/USGS
Global Color Mosaic of Triton, taken by Voyager 2 in 1989. Credit: NASA/JPL/USGS

Secondly, they both have atypically small semi-major axes, with Triton’s being over an order of magnitude smaller than those of all other known irregular moons. Thirdly, they both have unusual orbital eccentricities: Nereid has one of the most eccentric orbits of any known irregular satellite, and Triton’s orbit is a nearly perfect circle. Finally, Nereid also has the lowest inclination of any known irregular satellite

With a mean diameter of around 2700 km and a mass of 214080 ± 520 x 1017 kg, Triton is the largest of Neptune’s moons, and the only one large enough to achieve hydrostatic equilibrium (i.e. is spherical in shape). At a distance of 354,759 km from Neptune, it also sits between the planet’s inner and outer moons.

Triton follows a retrograde and quasi-circular orbit, and is composed largely of nitrogen, methane, carbon dioxide and water ices. With a geometric albedo of more than 70% and a Bond albedo as high as 90%, it is also one of the brightest objects in the Solar System. The surface has a reddish tint, owning to the interaction of ultraviolet radiation and methane, causing tholins.

Triton is also one of the coldest moons in the Solar System, with surface temperature of about 38 K (-235.2 °C). However, owing to the moon being geologically active (which results in cryovolcanism) and surface temperature variations that cause sublimation, Triton is one of only two moons in the Solar System that has a substantial atmosphere. Much like it’s surface, this atmosphere is composed primarily of nitrogen with small amounts of methane and carbon monoxide, and with an estimated pressure of about 14 nanobar.

Triton has a relatively high density of about 2 g/cm3 indicating that rocks constitute about two thirds of its mass, and ices (mainly water ice) the remaining one third. There also may be a layer of liquid water deep inside Triton, forming a subterranean ocean. Surface features include the large southern polar cap, older cratered planes cross-cut by graben and scarps, as well as youthful features caused by endogenic resurfacing.

Because of its retrograde orbit and relative proximity to Neptune (closer than the Moon is to Earth), Triton is grouped with the planet’s irregular moons (see below). In addition, it is believed to be a captured object, possibly a dwarf planet that was once part of the Kuiper Belt. At the same time, these orbital characteristics are the reason why Triton experiences tidal deceleration. and will eventually spiral inward and collide with the planet in about 3.6 billion years.

Nereid is the third-largest moon of Neptune. It has a prograde but very eccentric orbit and is believed to be a former regular satellite that was scattered to its current orbit through gravitational interactions during Triton’s capture. Water ice has been spectroscopically detected on its surface. Nereid shows large, irregular variations in its visible magnitude, which are probably caused by forced precession or chaotic rotation combined with an elongated shape and bright or dark spots on the surface.

Neptune’s Ring System:

Neptune has five rings, all of which are named after astronomers who made important discoveries about the planet – Galle, Le Verrier, Lassell, Arago, and Adams. The rings are composed of at least 20% dust (with some containing as much as 70%) while the rest of the material consists of small rocks. The planet’s rings are difficult to see because they are dark and vary in density and size.

The Galle ring was named after Johann Gottfried Galle, the first person to see the planet using a telescope; and at 41,000–43,000 km, it is the nearest of Neptune’s rings.  The La Verrier ring – which is very narrow at 113 km in width – is named after French astronomer Urbain Le Verrier, the planet’s co-founder.

At a distance of between 53,200 and 57,200 km from Neptune (giving it a width of 4,000 km) the Lassell ring is the widest of Neptune’s rings. This ring is named after William Lassell, the English astronomer who discovered Triton just seventeen days after Neptune was discovered. The Arago ring is 57,200 kilometers from the planet and less than 100 kilometers wide. This ring section is named after Francois Arago, Le Verrier’s mentor and the astronomer who played an active role in the dispute over who deserved credit for discovering Neptune.

The outer Adams ring was named after John Couch Adams, who is credited with the co-discovery of Neptune. Although the ring is narrow at only 35 kilometers wide, it is the most famous of the five due to its arcs. These arcs accord with areas in the ring system where the material of the rings is grouped together in a clump, and are the brightest and most easily observed parts of the ring system.

Although the Adams ring has five arcs, the three most famous are the “Liberty”, “Equality”, and “Fraternity” arcs. Scientists have been traditionally unable to explain the existence of these arcs because, according to the laws of motion, they should distribute the material uniformly throughout the rings. However, stronomers now estimate that the arcs are corralled into their current form by the gravitational effects of Galatea, which sits just inward from the ring.

The rings of Neptune as seen from Voyager 2 during the 1989 flyby. (Credit: NASA/JPL).
The rings of Neptune as seen from Voyager 2 during the 1989 flyby. Credit: NASA/JPL

The rings of Neptune are very dark, and probably made of organic compounds that have been altered due to exposition to cosmic radiation. This is similar to the rings of Uranus, but very different to the icy rings around Saturn. They seem to contain a large quantity of micrometer-sized dust, similar in size to the particles in the rings of Jupiter.

It’s believed that the rings of Neptune are relatively young – much younger than the age of the Solar System, and much younger than the age of Uranus’ rings. Consistent with the theory that Triton was a KBO that was seized, by Neptune’s gravity, they are believed to be the result of a collision between some of the planet’s original moons.

Exploration:

The Voyager 2 probe is the only spacecraft to have ever visited Neptune. The spacecraft’s closest approach to the planet occurred on August 25th, 1989, which took place at a distance of 4,800 km (3,000 miles) above Neptune’s north pole. Because this was the last major planet the spacecraft could visit, it was decided to make a close flyby of the moon Triton – similar to what had been done for Voyager 1s encounter with Saturn and its moon Titan.

The spacecraft performed a near-encounter with the moon Nereid before it came to within 4,400 km of Neptune’s atmosphere on August 25th, then passed close to the planet’s largest moon Triton later the same day. The spacecraft verified the existence of a magnetic field surrounding the planet and discovered that the field was offset from the center and tilted in a manner similar to the field around Uranus.

Neptune’s rotation period was determined using measurements of radio emissions and Voyager 2 also showed that Neptune had a surprisingly active weather system. Six new moons were discovered during the flyby, and the planet was shown to have more than one ring.

While no missions to Neptune are currently being planned, some hypothetical missions have been suggested. For instance, a possible Flagship Mission has been envisioned by NASA to take place sometime during the late 2020s or early 2030s. Other proposals include a possible Cassini-Huygens-style “Neptune Orbiter with Probes”, which was suggested back in 2003.

Another, more recent proposal by NASA was for Argo – a flyby spacecraft that would be launched in 2019, which would visit Jupiter, Saturn, Neptune, and a Kuiper belt object. The focus would be on Neptune and its largest moon Triton, which would be investigated around 2029.

With its icy-blue color, liquid surface, and wavy weather patterns, Neptune was appropriately named after the Roman god of the sea. And given its distance from our planet, there is still a great deal that remains to be learned about it. In the coming decades, one can only hope that a mission to the outer Solar System and/or Kuiper Belt includes a flyby of Neptune.

We have many interesting articles about Neptune here at Universe Today. Below is a comprehensive list for your viewing (and possibly researching) pleasure!

Characteristics of Neptune:

Position and Movement of Neptune:

Neptune’s Moon and Rings:

History of Neptune:

Neptune’s Surface and Structure:

How Many Moons Does Neptune Have?

Neptune and Moons
Neptune and its moons. Credit: NASA

Neptune, that icy gas giant that is the eighth planet from our Sun, was discovered in 1846 by two astronomers  – Urbain Le Verrier and Johann Galle. In keeping with the convention of planetary nomenclature, Neptune was named after the Roman god of the sea (the equivalent to the Greek Poseidon). And just seventeen days after it was discovered, astronomers began to notice that it too had a system of moons.

Initially, only Triton – Neptune’s largest moon – could be observed. But by the mid-20th century and after, thanks to improvements in ground-based telescopes and the development of robotic space probes, many more moons would be discovered. Neptune now has 14 recognized satellites, and in honor of of their parent planet, all are named for minor water deities in Greek mythology.

Discovery and Naming:

Triton, being the largest and most massive of Neptune’s moons, was the first to be discovered. It was observed by William Lassell on October 10th, 1846, just seventeen days after Neptune was discovered. It would be almost a century before any other moons would be discovered.

The first was Nereid, Neptune’s second largest and most massive moon, which was discovered on May 1st, 1949, by Gerard P. Kuiper (for whom the Kuiper Belt is named) using photographic plates from the McDonald Observatory in Fort Davis, Texas. The third moon, later named Larissa, was first observed by Harold J. Reitsema, William B. Hubbard, Larry A. Lebofsky and David J. Tholen on May 24th, 1981.

This composite Hubble Space Telescope picture shows the location of a newly discovered moon, designated S/2004 N 1, orbiting the giant planet Neptune, nearly 4.8 billion km (3 billion miles) from Earth. Credit: NASA, ESA, and M. Showalter (SETI Institute).
Hubble Space Telescope composite picture showing the location of a newly discovered moon, designated S/2004 N 1. Credit: NASA, ESA, and M. Showalter (SETI Institute).

The discovery of this moon was purely fortuitous, and occurred as a result of the ongoing search for rings similar to those discovered around Uranus four years earlier. If rings were in fact present, the star’s luminosity would decrease slightly just before the planet’s closest approach. While observing a star’s close approach to Neptune, the star’s luminosity dipped, but only for several seconds. This indicated the presence of a moon rather than a ring.

No further moons were found until Voyager 2 flew by Neptune in 1989. In the course of passing through the system, the space probe rediscovered Larissa and discovered five additional inner moons: Naiad, Thalassa, Despina, Galatea and Proteus.

In 2001, two surveys using large ground-based telescopes – the Cerro Tololo Inter-American Observatory and the Canada-France-Hawaii telescopes – found five additional outer moons bringing the total to thirteen. Follow-up surveys by two teams in 2002 and 2003 respectively re-observed all five of these moons – which were Halimede, Sao, Psamathe, Laomedeia, and Neso.

And then on July 15th, 2013, a team of astronomers led by Mark R. Showalter of the SETI Institute revealed that they had discovered a previously unknown fourteenth moon in images taken by the Hubble Space Telescope from 2004–2009. The as yet unnamed fourteenth moon, currently identified as S/2004 N 1, is thought to measure no more than 16–20 km in diameter.

In keeping with astronomical convention, Neptune’s moons are all taken from Greek and Roman mythology. In this case, all are named for gods of the sea, or for the children of Poseidon (which include Triton, Proteus, Depsina and Thalassa), minor Greek water dieties (Naiad and Nereid) or Nereids , the water nymphs in Greek mythology (Halimede, Galatea, Neso, Sao, Laomedeia and Psamathe).

However, many of the moons were not officially named until the 20th century. The name Triton, which was originally suggested by Camille Flammarion in his 1880 book Astronomie Populaire, but not into common usage until at least the 1930s.

Inner (Regular) Moons:

Neptune’s Regular Moons are those located closest to the planet and which follow circular prograde orbits that lie in the planet’s equatorial plane. They are, in order of distance from Neptune: Naiad (48,227 km), Thalassa (50,074 km), Despina (52,526 km), Galatea (61,953 km), Larissa (73,548 km), S/2004 N 1 (105,300 ± 50 km), and Proteus (117,646 km). All but the outer two are within Neptune-synchronous orbit (meaning that orbit Neptune slower than it’s orbital period (0.6713 days) and thus are being tidally decelerated.

The inner moons are closely associated with Neptune’s narrow ring system. The two innermost satellites, Naiad and Thalassa, orbit between the Galle and LeVerrier rings, whereas Despina orbits just inside the LeVerrier ring. The next moon, Galatea, orbits just inside the most prominent Adams ring and its gravity helps maintaining the ring by containing its particles.

Based on observational data and assumed densities, Naiad measures 96 × 60 × 52 km and weighs approximately 1.9 x 1017 kg. Meanwhile, Thalassa measures 108 x 100 × 52 km and weighs 3.5 x 1017 kg; Despina measures 180 x 148 x 128 and weighs 21 x 1017 kg; Galatea measures 204 x 184 x 144 and weighs 37.5 x 1017 kg; Larissa measures 216 x 204 x 168 and weighs 49.5 x 1017 kg; S/2004 N1 measures 16-20 km in diameter and weighs 0.5 ± 0.4 x 1017 kg; and Proteus measures 436 x 416 x 402 and weighs 50.35 x 1017 kg.

Only the two largest regular moons have been imaged with a resolution sufficient to discern their shapes and surface features. Nevertheless, with the exception of Larissa and Proteus (which are largely rounded) all of Neptune’s inner moons are believed to be elongated in shape. In addition, all the inner moons dark objects, with geometric albedo ranging from 7 to 10%.

Their spectra also indicated that they are made from water ice contaminated by some very dark material, probably organic compounds. In this respect, the inner Neptunian moons are similar to the inner moons of Uranus.

Outer (Irregular) Moons:

Neptune’s irregular moons consist of the planet’s remaining satellites (including Triton). They generally follow inclined eccentric and often retrograde orbits far from Neptune; the only exception is Triton, which orbits close to the planet following a circular orbit, though retrograde and inclined.

In order of their distance from the planet, the irregular moons are Triton, Nereid, Halimede, Sao, Laomedeia, Neso and Psamathe, a group that includes both prograde and retrograde objects. With the exception of Triton and Nereid, Neptune’s irregular moons are similar to those of other giant planets and are believed to have been gravitationally captured by Neptune.

In terms of size and mass, the irregular moons are relatively consistent, ranging from approximately 40 km in diameter and 4 x 1016 kg in mass (Psamathe) to 62 km and 16 x 1016 kg for Halimede.

Triton and Nereid:

Triton and Nereid are unusual irregular satellites and are thus treated separately from the other five irregular Neptunian moons. Between these two and the other irregular moons, four major differences have been noted.

First of all, they are the largest two known irregular moons in the Solar System. Triton itself is almost an order of magnitude larger than all other known irregular moons and comprises more than 99.5% of all the mass known to orbit Neptune (including the planet’s rings and thirteen other known moons).

Global Color Mosaic of Triton, taken by Voyager 2 in 1989. Credit: NASA/JPL/USGS
Global Color Mosaic of Triton, taken by Voyager 2 in 1989. Credit: NASA/JPL/USGS

Secondly, they both have atypically small semi-major axes, with Triton’s being over an order of magnitude smaller than those of all other known irregular moons. Thirdly, they both have unusual orbital eccentricities: Nereid has one of the most eccentric orbits of any known irregular satellite, and Triton’s orbit is a nearly perfect circle. Finally, Nereid also has the lowest inclination of any known irregular satellite

With a mean diameter of around 2700 km and a mass of 214080 ± 520 x 1017 kg, Triton is the largest of Neptune’s moons, and the only one large enough to achieve hydrostatic equilibrium (i.e. is spherical in shape). At a distance of 354,759 km from Neptune, it also sits between the planet’s inner and outer moons.

Triton follows a retrograde and quasi-circular orbit, and is composed largely of nitrogen, methane, carbon dioxide and water ices. With a geometric albedo of more than 70% and a Bond albedo as high as 90%, it is also one of the brightest objects in the Solar System. The surface has a reddish tint, owning to the interaction of ultraviolet radiation and methane, causing tholins.

Triton is also one of the coldest moons in the Solar System, with surface temperature of about 38 K (?235.2 °C). However, owing to the moon being geologically active (which results in cryovolcanism) and surface temperature variations that cause sublimation, Triton is one of only two moons in the Solar System that has a substantial atmosphere. Much like it’s surface, this atmosphere is composed primarily of nitrogen with small amounts of methane and carbon monoxide, and with an estimated pressure of about 14 ?bar.

Using the CRIRES instrument on ESO’s Very Large Telescope, a team of astronomers has been able to see that the summer is in full swing in Triton’s southern hemisphere. Credit: ESO
Using the CRIRES instrument on ESO’s Very Large Telescope, a team of astronomers has been able to see that the summer is in full swing in Triton’s southern hemisphere. Credit: ESO

Triton has a relatively high density of about 2 g/cm3 indicating that rocks constitute about two thirds of its mass, and ices (mainly water ice) the remaining one third. There also may be a layer of liquid water deep inside Triton, forming a subterranean ocean. Surface features include the large southern polar cap, older cratered planes cross-cut by graben and scarps, as well as youthful features caused by endogenic resurfacing.

Because of its retrograde orbit and relative proximity to Neptune (closer than the Moon is to Earth), Triton is grouped with the planet’s irregular moons (see below). In addition, it is believed to be a captured object, possibly a dwarf planet that was once part of the Kuiper Belt. At the same time, these orbital characteristics are the reason why Triton experiences tidal deceleration. and will eventually spiral inward and collide with the planet in about 3.6 billion years.

Nereid is the third-largest moon of Neptune. It has a prograde but very eccentric orbit and is believed to be a former regular satellite that was scattered to its current orbit through gravitational interactions during Triton’s capture. Water ice has been spectroscopically detected on its surface. Nereid shows large, irregular variations in its visible magnitude, which are probably caused by forced precession or chaotic rotation combined with an elongated shape and bright or dark spots on the surface.

Formation:

Given the lopsided distribution of mass in its moons, it is widely believed that Triton was captured after the formation of Neptune’s original satellite system – much of which would have been destroyed in the process of capture. Many theories have been offered regarding the mechanisms of its capture over the years.

The most widely-accepted is that Triton is a surviving member of a binary Kuiper Belt Object that was disrupted with an encounter with Neptune. In this scenario, Triton’s captured was the result of a three-body encounter, where it fell into a retrograde orbit while the other object was either destroyed or ejected in the process.

Triton’s orbit upon capture would have been highly eccentric, and would have caused chaotic perturbations in the orbits of the original inner Neptunian satellites, causing them to collide and reduce to a disc of rubble. Only after Triton’s orbit became circular again could some of the rubble re-accrete into the present-day regular moons. This means it is likely that Neptune’s present inner satellites are not the original bodies that formed with Neptune.

Numerical simulations show that there is a 0.41 probability that the moon Halimede collided with Nereid at some time in the past. Although it is not known whether any collision has taken place, both moons appear to have similar (“grey”) colors, implying that Halimede could be a fragment of Nereid.

Given its distance from the Sun, the only mission to ever study Neptune and its moons up close was the Voyager 2 mission. And though no missions are currently being planned, several proposals have been made that would see a robotic probe dispatched to the system sometime in the late 2020s or early 2030s.

We have many interesting articles on Neptune, Neptune’s Moons, and the Trans-Neptunian region here at Universe Today. Here’s a full article about Neptune’s Moon Triton, Naiad and Nereid and S/2004 N 1.

Here’s a lovely article on the latest Trans-Neptunian Objects to be discovered, and how Astronomer are Predicting at Least Two More Large Planets in the Solar System

For more information, check out NASA’s Solar System Exploration page titled “Neptune: The Windiest Planet”.

Solar System Guide

The Solar System. Image Credit: NASA
The Solar System. Image Credit: NASA

The Universe is a very big place, and we occupy a very small corner of it. Known as the Solar System, our stomping grounds are not only a tiny fraction of the Universe as we know it, but is also a very small part of our galactic neighborhood (aka. the Milky Way Galaxy). When it comes right down to it, our world is just a drop of water in an endless cosmic sea.

Nevertheless, the Solar System is still a very big place, and one which is filled with its fair share of mysteries. And in truth, it was only within the relatively recent past that we began to understand its true extent. And when it comes to exploring it, we’ve really only begun to scratch the surface.

Discovery:

With very few exceptions, few people or civilizations before the era of modern astronomy recognized the Solar System for what it was. In fact, the vast majority of astronomical systems posited that the Earth was a stationary object and that all known celestial objects revolved around it. In addition, they viewed it as being fundamentally different from other stellar objects, which they held to be ethereal or divine in nature.

Although there were some Greek, Arab and Asian astronomers during Antiquity and the Medieval period who believed that the universe was heliocentric in nature (i.e. that the Earth and other bodies revolved around the Sun) it was not until Nicolaus Copernicus developed his mathematically predictive model of a heliocentric system in the 16th century that it began to become widespread.

The first star party? Galileo shows of the sky in Saint Mark's square in Venice. Note the lack of adaptive optics. (Illustration in the Public Domain).
Galileo (1564 – 1642) would often show people how to use his telescope to view the sky in Saint Mark’s square in Venice. Note the lack of adaptive optics. Credit: Public Domain

During the 17th-century, scientists like Galileo Galilei, Johannes Kepler, and Isaac Newton developed an understanding of physics which led to the gradual acceptance that the Earth revolves round the Sun. The development of theories like gravity also led to the realization that the other planets are governed by the same physical laws as Earth.

The widespread use of the telescope also led to a revolution in astronomy. After Galileo discovered the moons of Jupiter in 1610, Christian Huygens would go on to discover that Saturn also had moons in 1655. In time, new planets would also be discovered (such as Uranus and Neptune), as well as comets (such as Halley’s Comet) and the Asteroids Belt.

By the 19th century, three observations made by three separate astronomers determined the true nature of the Solar System and its place the universe. The first was made in 1839 by German astronomer Friedrich Bessel, who successfully measured an apparent shift in the position of a star created by the Earth’s motion around the Sun (aka. stellar parallax). This not only confirmed the heliocentric model beyond a doubt, but revealed the vast distance between the Sun and the stars.

In 1859, Robert Bunsen and Gustav Kirchhoff (a German chemist and physicist) used the newly invented spectroscope to examined the spectral signature of the Sun. They discovered that it was composed of the same elements as existed on Earth, thus proving that Earth and the heavens were composed of the same elements.

With parallax technique, astronomers observe object at opposite ends of Earth's orbit around the Sun to precisely measure its distance. CREDIT: Alexandra Angelich, NRAO/AUI/NSF.
With parallax technique, astronomers observe object at opposite ends of Earth’s orbit around the Sun to precisely measure its distance. Credit: Alexandra Angelich, NRAO/AUI/NSF.

Then, Father Angelo Secchi  – an Italian astronomer and director at the Pontifical Gregorian University – compared the spectral signature of the Sun with those of other stars, and found them to be virtually identical. This demonstrated conclusively that our Sun was composed of the same materials as every other star in the universe.

Further apparent discrepancies in the orbits of the outer planets led American astronomer Percival Lowell to conclude that yet another planet, which he referred to as “Planet X“, must lie beyond Neptune. After his death, his Lowell Observatory conducted a search that ultimately led to Clyde Tombaugh’s discovery of Pluto in 1930.

Also in 1992, astronomers David C. Jewitt of the University of Hawaii and Jane Luu of the MIT discovered the Trans-Neptunian Object (TNO) known as (15760) 1992 QB1. This would prove to be the first of a new population, known as the Kuiper Belt, which had already been predicted by astronomers to exist at the edge of the Solar System.

Further investigation of the Kuiper Belt by the turn of the century would lead to additional discoveries. The discovery of Eris and other “plutoids” by Mike Brown, Chad Trujillo, David Rabinowitz and other astronomers would lead to the Great Planet Debate – where IAU policy and the convention for designating planets would be contested.

Structure and Composition:

At the core of the Solar System lies the Sun (a G2 main-sequence star) which is then surrounded by four terrestrial planets (the Inner Planets), the main Asteroid Belt, four gas giants (the Outer Planets), a massive field of small bodies that extends from 30 AU to 50 AU from the Sun (the Kuiper Belt). The system is then surrounded a spherical cloud of icy planetesimals (the Oort Cloud) that is believed to extend to a distance of 100,000 AU from the Sun into the Interstellar Medium.

The Sun contains 99.86% of the system’s known mass, and its gravity dominates the entire system. Most large objects in orbit around the Sun lie near the plane of Earth’s orbit (the ecliptic) and most planets and bodies rotate around it in the same direction (counter-clockwise when viewed from above Earth’s north pole). The planets are very close to the ecliptic, whereas comets and Kuiper belt objects are frequently at greater angles to it.

It’s four largest orbiting bodies (the gas giants) account for 99% of the remaining mass, with Jupiter and Saturn together comprising more than 90%. The remaining objects of the Solar System (including the four terrestrial planets, the dwarf planets, moons, asteroids, and comets) together comprise less than 0.002% of the Solar System’s total mass.

Sun and Planets
The Sun and planets to scale. Credit: Illustration by Judy Schmidt, texture maps by Björn Jónsson

Astronomers sometimes informally divide this structure into separate regions. First, there is the Inner Solar System, which includes the four terrestrial planets and the Asteroid Belt. Beyond this, there’s the outer Solar System that includes the four gas giant planets. Meanwhile, there’s the outermost parts of the Solar System are considered a distinct region consisting of the objects beyond Neptune (i.e. Trans-Neptunian Objects).

Most of the planets in the Solar System possess secondary systems of their own, being orbited by planetary objects called natural satellites (or moons). In the case of the four giant planets, there are also planetary rings – thin bands of tiny particles that orbit them in unison. Most of the largest natural satellites are in synchronous rotation, with one face permanently turned toward their parent.

The Sun, which comprises nearly all the matter in the Solar System, is composed of roughly 98% hydrogen and helium. The terrestrial planets of the Inner Solar System are composed primarily of silicate rock, iron and nickel. Beyond the Asteroid Belt, planets are composed mainly of gases (such as hydrogen, helium) and ices – like water, methane, ammonia, hydrogen sulfide and carbon dioxide.

Objects farther from the Sun are composed largely of materials with lower melting points. Icy substances comprise the majority of the satellites of the giant planets, as well as most of Uranus and Neptune (hence why they are sometimes referred to as “ice giants”) and the numerous small objects that lie beyond Neptune’s orbit.

Together, gases and ices are referred to as volatiles. The boundary in the Solar System beyond which those volatile substances could condense is known as the frost line, which lies roughly 5 AU from the Sun. Within the Kuiper Belt, objects and planetesimals are composed mainly of these materials and rock.

Formation and Evolution:

The Solar System formed 4.568 billion years ago from the gravitational collapse of a region within a large molecular cloud composed of hydrogen, helium, and small amounts of heavier elements fused by previous generations of stars. As the region that would become the Solar System (known as the pre-solar nebula) collapsed, conservation of angular momentum caused it to rotate faster.

The center, where most of the mass collected, became increasingly hotter than the surrounding disc. As the contracting nebula rotated faster, it began to flatten into a protoplanetary disc with a hot, dense protostar at the center. The planets formed by accretion from this disc, in which dust and gas gravitated together and coalesced to form ever larger bodies.

Due to their higher boiling points, only metals and silicates could exist in solid form closer to the Sun, and these would eventually form the terrestrial planets of Mercury, Venus, Earth, and Mars. Because metallic elements only comprised a very small fraction of the solar nebula, the terrestrial planets could not grow very large.

In contrast, the giant planets (Jupiter, Saturn, Uranus, and Neptune) formed beyond the point between the orbits of Mars and Jupiter where material is cool enough for volatile icy compounds to remain solid (i.e. the frost line).

The ices that formed these planets were more plentiful than the metals and silicates that formed the terrestrial inner planets, allowing them to grow massive enough to capture large atmospheres of hydrogen and helium. Leftover debris that never became planets congregated in regions such as the asteroid belt, Kuiper belt, and Oort cloud.

Within 50 million years, the pressure and density of hydrogen in the center of the protostar became great enough for it to begin thermonuclear fusion. The temperature, reaction rate, pressure, and density increased until hydrostatic equilibrium was achieved.

At this point, the Sun became a main-sequence star. Solar wind from the Sun created the heliosphere and swept away the remaining gas and dust from the protoplanetary disc into interstellar space, ending the planetary formation process.

The terrestrial planets of our Solar System at approximately relative sizes. From left, Mercury, Venus, Earth and Mars. Credit: Lunar and Planetary Institute
The terrestrial planets of our Solar System at approximately relative sizes. From left, Mercury, Venus, Earth and Mars. Credit: Lunar and Planetary Institute

The Solar System will remain roughly as we know it today until the hydrogen in the core of the Sun has been entirely converted to helium. This will occur roughly 5 billion years from now and mark the end of the Sun’s main-sequence life. At this time, the core of the Sun will collapse, and the energy output will be much greater than at present.

The outer layers of the Sun will expand to roughly 260 times its current diameter, and the Sun will become a red giant. The expanding Sun is expected to vaporize Mercury and Venus and render Earth uninhabitable as the habitable zone moves out to the orbit of Mars. Eventually, the core will be hot enough for helium fusion and the Sun will burn helium for a time, after which nuclear reactions in the core will start to dwindle.

At this point, the Sun’s outer layers will move away into space, leaving a white dwarf – an extraordinarily dense object that will have half the original mass of the Sun, but will be the size of Earth. The ejected outer layers will form what is known as a planetary nebula, returning some of the material that formed the Sun to the interstellar medium.

Inner Solar System:

In the inner Solar System, we find the “Inner Planets” – Mercury, Venus, Earth, and Mars – which are so named because they orbit closest to the Sun. In addition to their proximity, these planets have a number of key differences that set them apart from planets elsewhere in the Solar System.

For starters, the inner planets are rocky and terrestrial, composed mostly of silicates and metals, whereas the outer planets are gas giants. The inner planets are also much more closely spaced than their outer Solar System counterparts. In fact, the radius of the entire region is less than the distance between the orbits of Jupiter and Saturn.

Generally, inner planets are smaller and denser than their counterparts, and have few to no moons or rings circling them. The outer planets, meanwhile, often have dozens of satellites and rings composed of particles of ice and rock.

The terrestrial inner planets are composed largely of refractory minerals such as the silicates, which form their crusts and mantles, and metals such as iron and nickel which form their cores. Three of the four inner planets (Venus, Earth and Mars) have atmospheres substantial enough to generate weather. All of them have impact craters and tectonic surface features as well, such as rift valleys and volcanoes.

Of the inner planets, Mercury is the closest to our Sun and the smallest of the terrestrial planets. Its magnetic field is only about 1% that of Earth’s, and it’s very thin atmosphere means that it is hot during the day (up to 430°C) and freezing at night (as low as -187 °C) because the atmosphere can neither keep heat in or out. It has no moons of its own and is comprised mostly of iron and nickel. Mercury is one of the densest planets in the Solar System.

Venus, which is about the same size as Earth, has a thick toxic atmosphere that traps heat, making it the hottest planet in the Solar System. This atmosphere is composed of 96% carbon dioxide, along with nitrogen and a few other gases. Dense clouds within Venus’ atmosphere are composed of sulphuric acid and other corrosive compounds, with very little water. Much of Venus’ surface is marked with volcanoes and deep canyons – the biggest of which is over 6400 km (4,000 mi) long.

Earth is the third inner planet and the one we know best. Of the four terrestrial planets, Earth is the largest, and the only one that currently has liquid water, which is necessary for life as we know it. Earth’s atmosphere protects the planet from dangerous radiation and helps keep valuable sunlight and warmth in, which is also essential for life to survive.

Like the other terrestrial planets, Earth has a rocky surface with mountains and canyons, and a heavy metal core. Earth’s atmosphere contains water vapor, which helps to moderate daily temperatures. Like Mercury, the Earth has an internal magnetic field. And our Moon, the only one we have, is comprised of a mixture of various rocks and minerals.

Mars, as it appears today, Credit: NASA
Mars, as it appears today, Credit: NASA

Mars is the fourth and final inner planet, and is also known as the “Red Planet” due to the oxidization of iron-rich materials that form the planet’s surface. Mars also has some of the most interesting terrain features of any of the terrestrial planets. These include the largest mountain in the Solar System (Olympus Mons) which rises some 21,229 m (69,649 ft) above the surface, and a giant canyon called Valles Marineris – which is 4000 km (2500 mi) long and reaches depths of up to 7 km (4 mi).

Much of Mars’ surface is very old and filled with craters, but there are geologically newer areas of the planet as well. At the Martian poles are polar ice caps that shrink in size during the Martian spring and summer. Mars is less dense than Earth and has a smaller magnetic field, which is indicative of a solid core, rather than a liquid one.

Mars’ thin atmosphere has led some astronomers to believe that the surface water that once existed there might have actually taken liquid form, but has since evaporated into space. The planet has two small moons called Phobos and Deimos.

Outer Solar System:

The outer planets (sometimes called Jovian planets or gas giants) are huge planets swaddled in gas that have rings and plenty of moons. Despite their size, only two of them are visible without telescopes: Jupiter and Saturn. Uranus and Neptune were the first planets discovered since antiquity, and showed astronomers that the solar system was bigger than previously thought.

The outer planets of our Solar System at approximately relative sizes. From left, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute
The outer planets of our Solar System at approximately relative sizes. From left, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute

Jupiter is the largest planet in our Solar System and spins very rapidly (10 Earth hours) relative to its orbit of the sun (12 Earth years). Its thick atmosphere is mostly made up of hydrogen and helium, perhaps surrounding a terrestrial core that is about Earth’s size. The planet has dozens of moons, some faint rings and a Great Red Spot – a raging storm that has happening for the past 400 years at least.

Saturn is best known for its prominent ring system – seven known rings with well-defined divisions and gaps between them. How the rings got there is one subject under investigation. It also has dozens of moons. Its atmosphere is mostly hydrogen and helium, and it also rotates quickly (10.7 Earth hours) relative to its time to circle the Sun (29 Earth years).

Uranus was first discovered by William Herschel in 1781. The planet’s day takes about 17 Earth hours and one orbit around the Sun takes 84 Earth years. Its mass contains water, methane, ammonia, hydrogen and helium surrounding a rocky core. It has dozens of moons and a faint ring system. The only spacecraft to visit this planet was the Voyager 2 spacecraft in 1986.

Neptune is a distant planet that contains water, ammmonia, methane, hydrogen and helium and a possible Earth-sized core. It has more than a dozen moons and six rings. NASA’s Voyager 2 spacecraft also visited this planet and its system by 1989 during its transit of the outer Solar System.

How many moons are there in the Solar System? Image credit: NASA
How many moons are there in the Solar System? Image credit: NASA

Trans-Neptunian Region:

There have been more than a thousand objects discovered in the Kuiper Belt, and it’s theorized that there are as many as 100,000 objects larger than 100 km in diameter. Given to their small size and extreme distance from Earth, the chemical makeup of KBOs is very difficult to determine.

However, spectrographic studies conducted of the region since its discovery have generally indicated that its members are primarily composed of ices: a mixture of light hydrocarbons (such as methane), ammonia, and water ice – a composition they share with comets. Initial studies also confirmed a broad range of colors among KBOs, ranging from neutral grey to deep red.

This suggests that their surfaces are composed of a wide range of compounds, from dirty ices to hydrocarbons. In 1996, Robert H. Brown et al. obtained spectroscopic data on the KBO 1993 SC, revealing its surface composition to be markedly similar to that of Pluto (as well as Neptune’s moon Triton) in that it possessed large amounts of methane ice.

Water ice has been detected in several KBOs, including 1996 TO66, 38628 Huya and 20000 Varuna. In 2004, Mike Brown et al. determined the existence of crystalline water ice and ammonia hydrate on one of the largest known KBOs, 50000 Quaoar. Both of these substances would have been destroyed over the age of the Solar System, suggesting that Quaoar had been recently resurfaced, either by internal tectonic activity or by meteorite impacts.

Keeping Pluto company out in the Kuiper belt are many other objects worthy of mention. Quaoar, Makemake, Haumea, Orcus and Eris are all large icy bodies in the Belt and several of them even have moons of their own. These are all tremendously far away, and yet, very much within reach.

Oort Cloud and Farthest Regions:

The Oort Cloud is thought to extend from between 2,000 and 5,000 AU (0.03 and 0.08 ly) to as far as 50,000 AU (0.79 ly) from the Sun, though some estimates place the outer edge as far as 100,000 and 200,000 AU (1.58 and 3.16 ly). The Cloud is thought to be comprised of two regions – a spherical outer Oort Cloud of 20,000 – 50,000 AU (0.32 – 0.79 ly), and disc-shaped inner Oort (or Hills) Cloud of 2,000 – 20,000 AU (0.03 – 0.32 ly).

The outer Oort cloud may have trillions of objects larger than 1 km (0.62 mi), and billions that measure 20 kilometers (12 mi) in diameter. Its total mass is not known, but – assuming that Halley’s Comet is a typical representation of outer Oort Cloud objects – it has the combined mass of roughly 3×1025 kilograms (6.6×1025 pounds), or five Earths.

The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA
The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA

Based on the analyses of past comets, the vast majority of Oort Cloud objects are composed of icy volatiles – such as water, methane, ethane, carbon monoxide, hydrogen cyanide, and ammonia. The appearance of asteroids thought to be originating from the Oort Cloud has also prompted theoretical research that suggests that the population consists of 1-2% asteroids.

Earlier estimates placed its mass up to 380 Earth masses, but improved knowledge of the size distribution of long-period comets has led to lower estimates. The mass of the inner Oort Cloud, meanwhile, has yet to be characterized. The contents of both Kuiper Belt and the Oort Cloud are known as Trans-Neptunian Objects (TNOs), because the objects of both regions have orbits that that are further from the Sun than Neptune’s orbit.

Exploration:

Our knowledge of the Solar System also benefited immensely from the advent of robotic spacecraft, satellites, and robotic landers. Beginning in the mid-20th century, in what was known as “The Space Age“, manned and robotic spacecraft began exploring planets, asteroids and comets in the Inner and Outer Solar System.

All planets in the Solar System have now been visited to varying degrees by spacecraft launched from Earth. Through these unmanned missions, humans have been able to get close-up photographs of all the planets. In the case of landers and rovers, tests have been performed on the soils and atmospheres of some.

Sputnik 1
Photograph of a Russian technician putting the finishing touches on Sputnik 1, humanity’s first artificial satellite. Credit: NASA/Asif A. Siddiqi

The first artificial object sent into space was the Soviet satellite Sputnik 1, which was launched in space in 1957, successfully orbited the Earth for months, and collected information on the density of the upper atmosphere and the ionosphere. The American probe Explorer 6, launched in 1959, was the first satellite to capture images of the Earth from space.

Robotic spacecraft conducting flybys also revealed considerable information about the planet’s atmospheres, geological and surface features. The first successful probe to fly by another planet was the Soviet Luna 1 probe, which sped past the Moon in 1959. The Mariner program resulted in multiple successful planetary flybys, consisting of the Mariner 2 mission past Venus in 1962, the Mariner 4 mission past Mars in 1965, and the Mariner 10 mission past Mercury in 1974.

By the 1970’s, probes were being dispatched to the outer planets as well, beginning with the Pioneer 10 mission which flew past Jupiter in 1973 and the Pioneer 11 visit to Saturn in 1979. The Voyager probes performed a grand tour of the outer planets following their launch in 1977, with both probes passing Jupiter in 1979 and Saturn in 1980-1981. Voyager 2 then went on to make close approaches to Uranus in 1986 and Neptune in 1989.

Launched on January 19th, 2006, the New Horizons probe is the first man-made spacecraft to explore the Kuiper Belt. This unmanned mission flew by Pluto in July 2015. Should it prove feasible, the mission will also be extended to observe a number of other Kuiper Belt Objects (KBOs) in the coming years.

Orbiters, rovers, and landers began being deployed to other planets in the Solar System by the 1960’s. The first was the Soviet Luna 10 satellite, which was sent into lunar orbit in 1966. This was followed in 1971 with the deployment of the Mariner 9 space probe, which orbited Mars, and the Soviet Venera 9 which orbited Venus in 1975.

The Galileo probe became the first artificial satellite to orbit an outer planet when it reached Jupiter in 1995, followed by the CassiniHuygens probe orbiting Saturn in 2004. Mercury and Vesta were explored by 2011 by the MESSENGER and Dawn probes, respectively, with Dawn establishing orbit around the asteroid/dwarf planet Ceres in 2015.

The first probe to land on another Solar System body was the Soviet Luna 2 probe, which impacted the Moon in 1959. Since then, probes have landed on or impacted on the surfaces of Venus in 1966 (Venera 3), Mars in 1971 (Mars 3 and Viking 1 in 1976), the asteroid 433 Eros in 2001 (NEAR Shoemaker), and Saturn’s moon Titan (Huygens) and the comet Tempel 1 (Deep Impact) in 2005.

Curiosity Rover snapped this self portrait mosaic with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop where the robot conducted historic first sample drilling inside the Yellowknife Bay basin, on Feb. 8 (Sol 182) at lower left in front of rover. The photo mosaic was stitched from raw images snapped on Sol 177, or Feb 3, 2013, by the robotic arm camera - accounting for foreground camera distortion. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com).
Curiosity Rover self portrait mosaic, taken with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop in Feb. 2013. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer

To date, only two worlds in the Solar System, the Moon and Mars, have been visited by mobile rovers. The first robotic rover to land on another planet was the Soviet Lunokhod 1, which landed on the Moon in 1970. The first to visit another planet was Sojourner, which traveled 500 meters across the surface of Mars in 1997, followed by Spirit (2004), Opportunity (2004), and Curiosity (2012).

Manned missions into space began in earnest in the 1950’s, and was a major focal point for both the United States and Soviet Union during the “Space Race“. For the Soviets, this took the form of the Vostok program, which involved sending manned space capsules into orbit.

The first mission – Vostok 1 – took place on April 12th, 1961, and was piloted by Soviet cosmonaut Yuri Gagarin (the first human being to go into space). On June 6th, 1963, the Soviets also sent the first woman – Valentina Tereshvoka – into space as part of the Vostok 6 mission.

In the US, Project Mercury was initiated with the same goal of placing a crewed capsule into orbit. On May 5th, 1961, astronaut Alan Shepard went into space aboard the Freedom 7 mission and became the first American (and second human) to go into space.

After the Vostok and Mercury programs were completed, the focus of both nations and space programs shifted towards the development of two and three-person spacecraft, as well as the development of long-duration spaceflights and extra-vehicular activity (EVA).

Bootprint in the moon dust from Apollo 11. Credit: NASA
Bootprint in the moon dust from Apollo 11. Credit: NASA

This took the form of the Voshkod and Gemini programs in the Soviet Union and US, respectively. For the Soviets, this involved developing a two to three-person capsule, whereas the Gemini program focused on developing the support and expertise needed for an eventual manned mission to the Moon.

These latter efforts culminated on July 21st, 1969 with the Apollo 11 mission, when astronauts Neil Armstrong and Buzz Aldrin became the first men to walk on the Moon. As part of the Apollo program, five more Moon landings would take place through 1972, and the program itself resulted in many scientific packages being deployed on the Lunar surface, and samples of moon rocks being returned to Earth.

After the Moon Landing took place, the focus of the US and Soviet space programs then began to shift to the development of space stations and reusable spacecraft. For the Soviets, this resulted in the first crewed orbital space stations dedicated to scientific research and military reconnaissance – known as the Salyut and Almaz space stations.

The first orbital space station to host more than one crew was NASA’s Skylab, which successfully held three crews from 1973 to 1974. The first true human settlement in space was the Soviet space station Mir, which was continuously occupied for close to ten years, from 1989 to 1999. It was decommissioned in 2001, and its successor, the International Space Station, has maintained a continuous human presence in space since then.

Space Shuttle Columbia launching on its maiden voyage on April 12th, 1981. Credit: NASA
Space Shuttle Columbia launching on its maiden voyage on April 12th, 1981. Credit: NASA

The United States’ Space Shuttle, which debuted in 1981, became the only reusable spacecraft to successfully make multiple orbital flights. The five shuttles that were built (Atlantis, Endeavour, Discovery, Challenger, Columbia and Enterprise) flew a total of 121 missions before being decommissioned in 2011.

During their history of service, two of the craft were destroyed in accidents. These included the Space Shuttle Challenger – which exploded upon take-off on Jan. 28th, 1986 – and the Space Shuttle Columbia which disintegrated during re-entry on Feb. 1st, 2003.

In 2004, then-U.S. President George W. Bush announced the Vision for Space Exploration, which called for a replacement for the aging Shuttle, a return to the Moon and, ultimately, a manned mission to Mars. These goals have since been maintained by the Obama administration, and now include plans for an Asteroid Redirect mission, where a robotic craft will tow an asteroid closer to Earth so a manned mission can be mounted to it.

All the information gained from manned and robotic missions about the geological phenomena of other planets – such as mountains and craters – as well as their seasonal, meteorological phenomena (i.e. clouds, dust storms and ice caps) have led to the realization that other planets experience much the same phenomena as Earth. In addition, it has also helped scientists to learn much about the history of the Solar System and its formation.

As our exploration of the Inner and Outer Solar System has improved and expanded, our conventions for categorizing planets has also changed. Our current model of the Solar System includes eight planets (four terrestrial, four gas giants), four dwarf planets, and a growing number of Trans-Neptunian Objects that have yet to be designated. It also contains and is surrounded by countless asteroids and planetesimals.

Given its sheer size, composition and complexity, researching our Solar System in full detail would take an entire lifetime. Obviously, no one has that kind of time to dedicate to the topic, so we have decided to compile the many articles we have about it here on Universe Today in one simple page of links for your convenience.

There are thousands of facts about the solar system in the links below. Enjoy your research.

The Solar System:

Theories about the Solar System:

Moons:

Anything EXTREME!:

Solar System Stuffs:

Pluto’s Moon Nix

Artist's impression of Pluto and its moons. Credit: NASA / Johns Hopkins University Applied Physics Laboratory / Southwest Research Institute

Over the course of the past decade, many amazing discoveries have been made at the edge of the Solar System. Thanks to the work of astronomers working out of Earth-based observatories, with the Hubble Space Telescope, and those behind the recent New Horizons mission, not only have new objects been discovered, but additional discoveries have been made about the ones we already knew about.

For example, in 2005, two additional satellites were discovered in orbit of PlutoHydra and Nix. The discovery of these moons (which has since been followed by the discovery of two more) has taught astronomers much about the far-flung system of Pluto, and helped to advance our understanding of the Kuiper Belt.

Discovery and Naming:
Nix was discovered in June of 2005 by the Hubble Space Telescope Pluto Companion Search Team, using discovery images that were taken on May 15th and 18th, 2005. The team was composed of Hal A. Weaver, Alan Stern, Max J. Mutchler, Andrew J. Steffl, Marc W. Buie, William J. Merline, John R. Spencer, Eliot F. Young, and Leslie A. Young.

The discovery images of Nix (and Hydra) obtained by the Hubble Space Telescope. Credit: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI)
The discovery images of Nix (and Hydra) obtained by the Hubble Space Telescope. Credit: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI)

Nix and Hydra were also independently discovered by Max J. Mutchler on June 15th, 2005, and by Andrew J. Steffl on August 15th, 2005. At the time, Nix was given the provisional designation of S/2005 P 2 and casually referred to as “P2”. Once pre-recovery images from 2002 were confirmed, the discoveries were announced on October 31st, 2005.

In accordance with IAU guidelines concerning the naming of satellites in the Solar System, the moon was named Nix. Derived from Greek mythology, Nix is the goddess of darkness and night, the mother of Charon and the ferryman of Hades (the Greek equivalent of Pluto) who brought the souls of the dead to the underworld.

The name was officially announced on June 21st, 2006, in an IAU Circular, where the designation “Pluto II” is also given. The initials N and H (for Nix and Hydra) were also a deliberate reference to the New Horizons mission, which would be conducting a flyby of the Pluto system in less than ten years time after the announcement was made.

Images acquired by the New Horizon's probe of Nix (left) and Hydra (right). Credit: NASA/JHUAPL/SWRI
Images acquired by the New Horizon’s probe of Nix (left) and Hydra (right) on July 14th, 2015. Credit: NASA/JHUAPL/SWRI

Size, Mass and Orbit:
Based on observations with the Hubble Space Telescope of Nix’s geometric albedo and shape, the satellite was estimated to measure 56.3 km (35 mi) along its longest axis and 25.7 km (16 mi) wide. However, images provided by the New Horizons’ Ralph instrument on July 14th, 2015, indicated that Nix measures 42 km (26 mi) in length and 36 km (22 mi) wide.

Nix follows a circular orbit with very little eccentricity (0.0020) and a low inclination of approximately 0.13°. It is in the same orbital plane as Charon, is in a 3:2 orbital resonance with Hydra, and a 9:11 resonance with Styx. Its orbital period is roughly 24.9 days, meaning it takes about 25 days to complete a single orbit of Pluto.

As with Hydra and perhaps the other small Plutonian moons, Nix rotates chaotically, which is due mainly to its oblong shape. This means that the moon’s axial tilt and day length vary greatly over short timescales, to the point that it regularly flips over.

Composition:
Early observations conducted by Marc W. Buie and William M. Grundy at the Lowell Observatory appeared to show that Nix has a reddish color like Pluto, but unlike any of its other moons. However, more-recent studies conducted by S. Alan Stern et al. using the Hubble Space Telescope’s Advanced Camera for Surveys (ACS), have indicated that it is likely as grey as the remaining satellites.

From these observations, it is likely that the surface of Nix is composed primarily of water ice (like Hydra) and may or may also have trace amount of methane ice on its surface. If true, then the exposure of these deposits of methane ice to ultra-violet radiation from the Sun would result in the presence of tholins, which would give it a reddish hue.

However, when the New Horizons space probe photographed Hydra and Nix during its flyby of the Pluto system, it spotted a large region with a distinctive red tint, probably a crater. The appearance of this surface region – a spot of red against an otherwise grey landscape – may explain these conflicting results.

Exploration:
Thus far, only one mission has been performed to the Pluto system that resulted in close-up and detailed photographs of Nix. This would be the New Horizons mission, which flew through the Pluto-Charon system on July 14th, 2015 and photographed Hydra and Nix from an approximate distance of 640,000 km (400,000 mi).

Until July 13th, 2015, when NASA’s Long Range Reconnaissance Imager (LORRI) on board New Horizons determined Nix’s dimensions, its size was unknown. More images and information will be downloaded from the spacecraft between now and late 2016.

Prior to the discovery of Hydra and Nix in 2005, Pluto was believed to share its orbit with only the satellite of Charon – hence why astronomers often refer to it as the “Pluto-Charon system”. However, since the discovery of these two additional satellites in 2005, two more have been discovered – Kerberos in July of 2011 and Styx in July of 2012.

This raises the number of bodes in the Pluto-Charon system to one primary and five satellites. And thanks to the recent New Horizons flyby, we got to see all of them up close for the first time!

Like most large bodies in the Kuiper Belt (not to mention their satellites) much remains to be learned about Nix and its companions. In time, and with more missions to the outer Solar System, we are sure to address many of the mysteries surrounding this particular satellite, and will probably find many more waiting for us!

We have written many interesting articles on Pluto, its system of moons and the Kuiper Belt here at Universe Today.

Here’s Moons of Pluto, Pluto’s New Moons are Named Nix and Hydra, and Pluto’s Moons Nix and Hydra Get Real.

And here’s New Horizons Now Close Enough to See Pluto’s Smaller Moons, and Fifth Moon Found Around Pluto.

Astronomy Cast has a wonderful episode on the New Horizons mission, titled On Pluto’s Doorstep – Live Hangout with New Horizons Team.

For more information, check out NASA’s Solar System Exploration: Nix and PlanetEdu.com’s page on updated images of Nix and Pluto’s other moons..

The (Possible) Dwarf Planet 2007 OR10

An artist's conception of 2007 OR10, nicknamed Snow White. Astronomers suspect that its rosy color is due to the presence of irradiated methane. [Credit: NASA]

Over the course of the past decade, more and more objects have been discovered within the Trans-Neptunian region. With every new find, we have learned more about the history of our Solar System and the mysteries it holds. At the same time, these finds have forced astronomers to reexamine astronomical conventions that have been in place for decades.

Consider 2007 OR10, a Trans-Neptunian Object (TNO) located within the scattered disc that at one time went by the nicknames of “the seventh dwarf” and “Snow White”. Approximately the same size as Haumea, it is believed to be a dwarf planet, and is currently the largest object in the Solar System that does not have a name.

Discovery and Naming:

2007 OR10 was discovered in 2007 by Meg Schwamb, a PhD candidate at Caltech and a graduate student of Michael Brown, while working out of the Palomar Observatory. The object was colloquially referred to as the “seventh dwarf” (from Snow White and the Seven Dwarfs) since it was the seventh object to be discovered by Brown’s team (after Quaoar in 2002, Sedna in 2003, Haumea and Orcus in 2004, and Makemake and Eris in 2005).

Comparison of Sedna with the other largest TNOs and with Earth (all to scale). Credit: NASA/Lexicon
Comparison of Sedna with the other largest TNOs and with Earth (all to scale). Credit: NASA/Lexicon

At the time of its discovery, the object appeared to be very large and very white, which led to Brown giving it the other nickname of “Snow White”. However, subsequent observation has revealed that the planet is actually one of the reddest in the Kuiper Belt, comparable only to Haumea. As a result, the nickname was dropped and the object is still designated as 2007 OR10.

The discovery of 2007 OR10 would not be formally announced until January 7th, 2009.

Size, Mass and Orbit:

A study published in 2011 by Brown – in collaboration with A.J. Burgasser (University of California San Diego) and W.C. Fraser (MIT) – 2007 OR10’s diameter was estimated to be between 1000-1500 km. These estimates were based on photometry data obtained in 2010 using the Magellan Baade Telescope at the Las Campanas Observatory in Chile, and from spectral data obtained by the Hubble Space Telescope.

However, a survey conducted in 2012 by Pablo Santos Sanz et al. of the Trans-Neptunian region produced an estimate of 1280±210 km based on the object’s size, albedo, and thermal properties. Combined with its absolute magnitude and albedo, 2007 OR10 is the largest unnamed object and the fifth brightest TNO in the Solar System. No estimates of its mass have been made as of yet.

2007 OR10 also has a highly eccentric orbit (0.5058) with an inclination of 30.9376°. What this means is that at perihelion, it is roughly 33 AU (4.9 x 109 km/30.67 x 109 mi) from our Sun while at aphelion, it is as distant as 100.66 AU (1.5 x 1010 km/9.36 x 1010 mi). It also has an orbital period of 546.6 years, which means that the last time it was at perihelion was 1857 and it won’t reach aphelion until 2130. As such, it is currently the second-farthest known large body in the Solar System, and  will be farther out than both Sedna and Eris by 2045.

Composition:

According to the spectral data obtained by Brown, Burgasser and Fraser, 2007 OR10 shows infrared signatures for both water ice and methane, which indicates that it is likely similar in composition to Quaoar. Concurrent with this, the reddish appearance of 2007 OR10 is believed to be due to presence of tholins in the surface ice, which are caused by the irradiation of methane by ultraviolet radiation.

The presence of red methane frost on the surfaces of both 2007 OR10 and Quaoar is also seen as an indication of the possible existence of a tenuous methane atmosphere, which would slowly evaporate into space when the objects are closer to the Sun. Although 2007 OR10 comes closer to the Sun than Quaoar, and is thus warm enough that a methane atmosphere should evaporate, its larger mass makes retention of an atmosphere just possible.

Also, the presence of water ice on the surface is believed to imply that the object underwent a brief period of cryovolcanism in its distant past. According to Brown, this period would have been responsible not only for water ice freezing on the surface, but for the creation of an atmosphere that included nitrogen and carbon monoxide. These would have been depleted rather quickly, and a tenuous atmosphere of methane would be all that remains today.

However, more data is required before astronomers can say for sure whether or not 2007 OR10 has an atmosphere, a history of cryovolcanism, and what its interior looks like. Like other KBOs, it is possible that it is differentiated between a mantle of ices and a rocky core. Assuming that there is sufficient antifreeze, or due to the decay of radioactive elements, there may even be a liquid-water ocean at the core-mantle boundary.

Classification:

Though it is too difficult to resolve 2007 OR10’s size based on direct observation, based on calculations of 2007 OR10’s albedo and absolute magnitude, many astronomers believe it to be of sufficient size to have achieved hydrostatic equilibrium. As Brown stated in 2011, 2007 OR10 “must be a dwarf planet even if predominantly rocky”, which is based on a minimum possible diameter of 552 km and what is believed to be the conditions under which hydrostatic equilibrium occurs in cold icy-rock bodies.

That same year, Scott S. Sheppard and his team (which included Chad Trujillo) conducted a survey of bright KBOs (including 2007 OR10) using the Palomar Observatory’s 48 inch Schmidt telescope. According to their findings, they determined that “[a]ssuming moderate albedos, several of the new discoveries from this survey could be in hydrostatic equilibrium and thus could be considered dwarf planets.”

Currently, nothing is known of 2007 OR10’s mass, which is a major factor when determining if a body has achieved hydrostatic equilibrium. This is due in part to there being no known satellite(s) in orbit of the object, which in turn is a major factor in determining the mass of a system. Meanwhile, the IAU has not addressed the possibility of accepting additional dwarf planets since before the discovery of 2007 OR10 was announced.

Alas, much remains to be learned about 2007 OR10. Much like it’s Trans-Neptunian neighbors and fellow KBOs, a lot will depend on future missions and observations being able to learn more about its size, mass, composition, and whether or not it has any satellites. However, given its extreme distance and fact that it is currently moving further and further away, opportunities to observe and explore it via flybys will be limited.

However, if all goes well, this potential dwarf planet could be joining the ranks of such bodies as Pluto, Eris, Ceres, Haumea and Makemake in the not-too-distant future. And with luck, it will be given a name that actually sticks!

We have many interesting articles on Dwarf Planets, the Kuiper Belt, and Plutoids here at Universe Today. Here’s Why Pluto is no longer a planet and how astronomers are predicting Two More Large Planets in the outer Solar System.

Astronomy Cast also has an episode all about Dwarf Planets titled, Episode 194: Dwarf Planets.

For more information, check out the NASA’s Solar System Overview: Dwarf Planets, and the Jet Propulsion Laboratory’s Small-Body Database, as well as Mike Browns Planets.

 

The Dwarf Planet Orcus

Artist's impression of the Trans-Neptunian Object (TNO) 90482 Orcus. Credit: NASA

Since the early 2000s, more and more objects have been discovered in the outer Solar System that resemble planets. However, until they are officially classified, the terms Kuiper Belt Object (KBO) and Trans-Neptunian Object (TNO) are commonly used. This is certainly true of Orcus, another large object that was spotted in Pluto’s neighborhood about a decade ago.

Although similar in size and orbital characteristics to Pluto, Orcus is Pluto’s opposite in many ways. For this reason, Orcus is often referred to as the “anti-Pluto”, a fact that contributed greatly to the selection of its name. Although Orcus has not yet been officially categorized as a dwarf planet by the IAU, many astronomers agree that it meets all the requirements and will be in the future.

Discovery and Naming:
Orcus was discovered on February 17th, 2004, by Michael Brown of Caltech, Chad Trujillo of the Gemini Observatory, and David Rabinowitz of Yale University. Although discovered using images that were taken in 2004, prerecovery images of Orcus have been identified going back as far as November 8th, 1951.

Provisionally known as 90482 2004 DW, by November 22nd, 2004, the name Orcus was assigned. In accordance with the IAU’s astronomical conventions, objects with a similar size and orbit to that of Pluto are to be named after underworld deities. Therefore, the discovery team suggested the name Orcus, after the Etruscan god of the underworld and the equivalent of the Roman god Pluto.

90482 Orcus. The location of Orcus is shown in the green circle (top, left). Credit: NASA
90482 Orcus. The location of Orcus is shown in the green circle (top, left). Credit: NASA

Size, Mass and Orbit:
Given its distance, estimates of Orcus’ diameter and mass have varied over time. In 2008, observations made using the Spitzer Space Telescope in the far infrared placed its diameter at 958.4 ± 22.9 km. Subsequent observations made in 2013 using the Herschel Space Telescope at submillimeter wavelengths led to similar estimates being made.

In addition, Orcus appears to have an albedo of about 21% to 25%, which may be typical of trans-Neptunian objects approaching the 1000 km diameter range. However, these estimates were based on the assumption that Orcus was a singular object and not part of a system. The discovery of the relatively large satellite Vanth (see below) in 2007 by Brown et al. is likely to change these considerably.

The absolute magnitude of Vanth is estimated to be 4.88, which means that it is about 11 times fainter than Orcus itself. If the albedos of both bodies are the same at 0.23, then the diameter of Orcus would be closer to 892 -942 km, while Vanth would measure about 260 -293 km.

In terms of mass, the Orcus system is estimated to be 6.32 ± 0.05 ×1020 kg, which is about 3.8% the mass of the dwarf planet Eris. How this mass is partitioned between Orcus and Vanth depends of their relative sizes. If Vanth is 1/3rd the diameter Orcus, its mass is likely to be only 3% of the system. However, if it’s diameter is about half that of Orcus, then its mass could be as high as 1/12 of the system, or about 8% of the mass of Orcus.

Orcus compared to Earth and the Moon. Credit: Wikipedia Commons
Orcus compared to Earth and the Moon. Credit: Wikipedia Commons

Much like Pluto, Orcus has a very long orbital period, taking 245.18 years (89552 days) to complete a single rotation around the Sun. It also is in a 2:3 orbital resonance with Neptune and is above the ecliptic during perihelion. In addition, it’s orbit has a similar inclination and eccentricity as Pluto’s – 20.573° to the ecliptic, and 0.227, respectively.

In short, Orcus orbits the Sun at a distance of 30.27 AU (4.53 billion km) at perihelion and 48.07 AU (7.19 billion km) at aphelion. However, Pluto and Orcus are oriented differently. For one, Orcus is at aphelion when Pluto is at perihelion (and vice versa), and the aphelion of Orcus’s orbit points in nearly the opposite direction from Pluto’s. Hence why Orcus is often referred to as the “anti-Pluto”.

Composition:
The density of the primary (and secondary assuming they have the same density) is estimated to be 1.5 g/cm3. In addition, spectroscopic and near-infrared observations have indicated that the surface is neutral in color and shows signs of water. Further infrared observations in 2004 by the European Southern Observatory and the Gemini Observatory indicated the possible presence of water ice and carbonaceous compounds.

This would indicate that Orcus is most likely differentiated between a rocky core and an icy mantle composed of water and methane ices as well as tholins – though not as much as other KBOs which are more reddish in appearance. The water and methane ices are believed to cover no more than 50% and 30% of the surface, respectively – which would mean the proportion of ice on the surface is less than on Charon, but similar to that on Triton.

Another interesting feature on Orcus is the presence of crystalline ice on its surface – which may be an indication of cryovolcanism – and the possible presence of ammonia dissolved in water and/or methane/ethane ices. This would make Orcus quite unique, since ammonia has not been detected on any other TNO or icy satellite of the outer planets (other than Uranus’ moon Miranda).

Moon:
In 2011, Mike Brown and T.A. Suer detected a satellite in orbit of Orcus, based on images taken by the Hubble Space Telescope on November 13th, 2005. The satellite was given the designation S/2005 (90482) before being renamed Vanth on March 30th, 2005. This name was the result of an opinion poll where Mike Brown asked readers of his weekly column to submit their suggestions.

The name Vanth, after the Etruscan goddess who guided the souls of the dead to the underworld, was eventually chosen from among a large pool of submissions, which Brown then submitted to the IAU. The IAU’s Committee for Small Body Nomenclature assessed it and determined it fit with their naming procedures, and officially approved of it in March of 2010.

Vanth orbits Orcus in a nearly face-on circular orbit at a distance of 9030 ± 89 km. It has an eccentricity of about 0.007 and an orbital period of 9.54 days. In terms of how Orcus acquired it, it is not likely that it was the result of a collision with an object, since Vanth’s spectrum is very different from that of its primary.

Therefore, it is much more likely that Vanth is a captured KBO that Orcus acquired in the course of its history. However, it is also possible that Vanth could have originated as a result of rotational fission of the primordial Orcus, which would have rotated much faster billions of years ago than it does now.

Much like most other KBOs, there is much that we still don’t know about Orcus. There are currently no plans for a mission in the near future. But given the growing interest in the region, it would not be surprising at all if future missions to the outer Solar System were to include a flyby of this world. And as we learn more about Orcus’ size, shape and composition, we are likely to see it added to the list of confirmed dwarf planets.

We have many interesting articles on Dwarf Planets, Kuiper Belt Objects, and the Outer Solar System here at Universe Today. Here is What is a Dwarf Planet? and What is the Kuiper Belt?

And be sure to checkout How Many Planets are in the Solar System?, and this article about all the Bright Objects in the Kuiper Belt.

For more information on Orcus, Vanth, check out the Planetary Society’s page on Orcus and Vanth. To learn more about how they were discovered, consult Mike Brown’s Planets.

Astronomy Cast also has a great interview with Mike Brown from Caltech.

The Planet Uranus

Uranus as seen by NASA's Voyager 2. Credit: NASA/JPL

Uranus, which takes its name from the Greek God of the sky, is a gas giant and the seventh planet from our Sun. It is also the third largest planet in our Solar System, ranking behind Jupiter and Saturn. Like its fellow gas giants, it has many moons, a ring system, and is primarily composed of gases that are believed to surround a solid core.

Though it can be seen with the naked eye, the realization that Uranus is a planet was a relatively recent one. Though there are indications that it was spotted several times over the course of the past two thousands years, it was not until the 18th century that it was recognized for what it was. Since that time, the full-extent of the planet’s moons, ring system, and mysterious nature have come to be known.

Discovery and Naming:

Like the five classic planets – Mercury, Venus, Mars, Jupiter and Saturn – Uranus can be seen without the aid of a telescope. But due to its dimness and slow orbit, ancient astronomers believed it to be a star. The earliest known observation was performed by Hipparchos, who recorded it as a star in his star catalog in 128 BCE – observations which were later included in Ptolemy’s Almagest.

The earliest definite sighting of Uranus took place in 1690 when English astronomer John Flamsteed – the first Astronomer Royal – spotted it at least six times and cataloged it as a star (34 Tauri). The French astronomer Pierre Lemonnier also observed it at least twelve times between the years of 1750 and 1769.

A replica of the telescope which William Herschel used to observe Uranus. Credit:
A replica of the telescope which William Herschel used to observe Uranus. Credit: Wikipedia Commons

However, it was Sir William Herschel’s observation of Uranus on March 13th, 1781, that began the process of identifying it as a planet. At the time, he reported it as a comet sighting, but then engaged in a series of observations using a telescope of his own design to measure its position relative to the stars. When he reported on it to The Royal Society, he claimed it was a comet, but implicitly compared it to a planet.

Afterwards, several astronomers began to explore the possibility that Herschel’s “comet” was in fact a planet. These included Russian astronomer Anders Johan Lexell, who was the first to compute its nearly circular orbit, which led him to conclude it was a planet after all. Berlin astronomer Johann Elert Bode, a member of the “United Astronomical Society”, concurred with this after making similar observations of its orbit.

Soon, Uranus’ status as a planet became a scientific consensus, and by 1783, Herschel himself acknowledged this to the Royal Society. In recognition of his discovery, King George III of England gave Herschel an annual stipend of £200 on condition that he move to Windsor so that the Royal Family could look through his telescopes.

In honor of his new patron, William Herschel decided to name his discovery Georgium Sidus (“George’s Star” or “Georges Planet”). Outside of Britain, this name was not popular, and alternatives were soon proposed. These included French astronomer Jerome Lalande proposing to call it Hershel in honor of its discovery, and Swedish astronomer Erik Prosperin proposing the name Neptune.

Uranus. Image credit: Hubble
Images of Uranus captured by the Hubble Space Telescope. Image credit: NASA/ESA/Hubble

Johann Elert Bode proposed the name Uranus, the Latinized version of the Greek god of the sky, Ouranos. This name seemed appropriate, given that Saturn was named after the mythical father of Jupiter, so this new planet should be named after the mythical father of Saturn. Ultimately, Bode’s suggestion became the most widely used and became universal by 1850.

Uranus’ Size, Mass and Orbit:

With a mean radius of approximately 25,360 km, a volume of 6.833×1013 km3, and a mass of 8.68 × 1025 kg, Uranus is approximately 4 times the sizes of Earth and 63 times its volume. However, as a gas giant, its density (1.27 g/cm3) is significantly lower; hence, it is only 14.5 as massive as Earth. Its low density also means that while it is the third largest of the gas giants, it is the least massive (falling behind Neptune by 2.6 Earth masses).

The variation of Uranus’ distance from the Sun is also greater than that any other planet (not including dwarf planets or plutoids). Essentially, the gas giant’s distance from the Sun varies from 18.28 AU (2,735,118,100 km) at perihelion to 20.09 AU (3,006,224,700 km) at aphelion. At an average distance of 3 billion km from the Sun, it takes Uranus roughly 84 years (or 30,687 days) to complete a single orbit of the Sun.

The rotational period of the interior of Uranus is 17 hours, 14 minutes. As with all giant planets, its upper atmosphere experiences strong winds in the direction of rotation. At some latitudes, such as about 60 degrees south, visible features of the atmosphere move much faster, making a full rotation in as little as 14 hours.

Diameter comparison of Uranus and Earth. Approximate scale is 90 km/px. Credit: NASA
Diameter comparison of Uranus and Earth. Approximate scale is 90 km/px. Credit: NASA

One unique feature of Uranus is that it rotates on its side. Whereas all of the Solar System’s planets are tilted on their axes to some degree, Uranus has the most extreme axial tilt of 98°. This leads to the radical seasons that the planet experiences, not to mention an unusual day-night cycle at the poles. At the equator, Uranus experiences normal days and nights; but at the poles, each experience 42 Earth years of day followed by 42 years of night.

Uranus’ Composition:

The standard model of Uranus’s structure is that it consists of three layers: a rocky (silicate/iron–nickel) core in the center, an icy mantle in the middle and an outer envelope of gaseous hydrogen and helium. Much like Jupiter and Saturn, hydrogen and helium account for the majority of the atmosphere – approximately 83% and 15% – but only a small portion of the planet’s overall mass (0.5 to 1.5 Earth masses).

The third most abundant element is methane ice (CH4), which accounts for 2.3% of its composition and which accounts for the planet’s aquamarine or cyan coloring. Trace amounts of various hydrocarbons are also found in the stratosphere of Uranus, which are thought to be produced from methane and ultraviolent radiation-induced photolysis. They include ethane (C2H6), acetylene (C2H2), methylacetylene (CH3C2H), and diacetylene (C2HC2H).

In addition, spectroscopy has uncovered carbon monoxide and carbon dioxide in Uranus’ upper atmosphere, as well as the presence icy clouds of water vapor and other volatiles, such as ammonia and hydrogen sulfide. Because of this, Uranus and Neptune are considered a distinct class of giant planet – known as “Ice Giants” – since they are composed mainly of heavier volatile substances.

The ice mantle is not in fact composed of ice in the conventional sense, but of a hot and dense fluid consisting of water, ammonia and other volatiles. This fluid, which has a high electrical conductivity, is sometimes called a water–ammonia ocean.

Diagram of the interior of Uranus. Credit: Public Domain
Diagram of the interior of Uranus. Credit: Public Domain

The core of Uranus is relatively small, with a mass of only 0.55 Earth masses and a radius that is less than 20% of the planet’s overall size. The mantle comprises its bulk, with around 13.4 Earth masses, and the upper atmosphere is relatively insubstantial, weighing about 0.5 Earth masses and extending for the last 20% of Uranus’s radius.

Uranus’s core density is estimated to be 9 g/cm3, with a pressure in the center of 8 million bars (800 GPa) and a temperature of about 5000 K (which is comparable to the surface of the Sun).

Uranus’ Atmosphere:

As with Earth, the atmosphere of Uranus is broken into layers, depending upon temperature and pressure. Like the other gas giants, the planet doesn’t have a firm surface, and scientists define the surface as the region where the atmospheric pressure exceeds one bar (the pressure found on Earth at sea level). Anything accessible to remote-sensing capability – which extends down to roughly 300 km below the 1 bar level – is also considered to be the atmosphere.

Using these references points, Uranus’  atmosphere can be divided into three layers. The first is the troposphere, between altitudes of -300 km below the surface and 50 km above it, where pressures range from 100 to 0.1 bar (10 MPa to 10 kPa). The second layer is the stratosphere, which reaches between 50 and 4000 km and experiences pressures between 0.1 and 10-10 bar (10 kPa to 10 µPa).

Temperature profile of the Uranian troposphere and lower stratosphere. Cloud and haze layers are also indicated. Credit: Wikipedia/Ruslik0
Temperature profile of the Uranian troposphere and lower stratosphere. Cloud and haze layers are also indicated. Credit: Wikipedia/Ruslik0

The troposphere is the densest layer in Uranus’ atmosphere. Here, the temperature ranges from 320 K (46.85 °C/116 °F) at the base (-300 km) to 53 K (-220 °C/-364 °F) at 50 km, with the upper region being the coldest in the solar system. The tropopause region is responsible for the vast majority of Uranus’s thermal infrared emissions, thus determining its effective temperature of 59.1 ± 0.3 K.

Within the troposphere are layers of clouds – water clouds at the lowest pressures, with ammonium hydrosulfide clouds above them. Ammonia and hydrogen sulfide clouds come next. Finally, thin methane clouds lay on the top.

In the stratosphere, temperatures range from 53 K (-220 °C/-364 °F) at the upper level to between 800 and 850 K (527 – 577 °C/980 – 1070 °F) at the base of the thermosphere, thanks largely to heating caused by solar radiation. The stratosphere contains ethane smog, which may contribute to the planet’s dull appearance. Acetylene and methane are also present, and these hazes help warm the stratosphere.

The outermost layer, the thermosphere and corona, extend from 4,000 km to as high as 50,000 km from the surface. This region has a uniform temperature of 800-850 (577 °C/1,070 °F), although scientists are unsure as to the reason. Because the distance to Uranus from the Sun is so great, the amount of heat coming from it is insufficient to generate such high temperatures.

Like Jupiter and Saturn, Uranus’s weather follows a similar pattern where systems are broken up into bands that rotate around the planet, which are driven by internal heat rising to the upper atmosphere. As a result, winds on Uranus can reach up to 900 km/h (560 mph), creating massive storms like the one spotted by the Hubble Space Telescope in 2012. Similar to Jupiter’s Great Red Spot, this “Dark Spot” was a giant cloud vortex that measured 1,700 kilometers by 3,000 kilometers (1,100 miles by 1,900 miles).

Uranus’ Moons:

Uranus has 27 known satellites, which are divided into the categories of larger moons, inner moons, and irregular moons (similar to other gas giants). The largest moons of Uranus are, in order of size, Miranda, Ariel, Umbriel, Oberon and Titania. These moons range in diameter and mass from 472 km and 6.7 × 1019 kg for Miranda to 1578 km and 3.5 × 1021 kg for Titania. Each of these moons is particularly dark, with low bond and geometric albedos. Ariel is the brightest while Umbriel is the darkest.

A montage of Uranus's moons. Image credit: NASA
A montage of Uranus’s moons. Image credit: NASA

All of the large moons of Uranus are believed to have formed in the accretion disc, which existed around Uranus for some time after its formation, or resulted from the large impact suffered by Uranus early in its history. Each one is comprised of roughly equal amounts of rock and ice, except for Miranda which is made primarily of ice.

The ice component may include ammonia and carbon dioxide, while the rocky material is believed to be composed of carbonaceous material, including organic compounds (similar to asteroids and comets). Their compositions are believed to be differentiated, with an icy mantle surrounding a rocky core.

In the case of Titania and Oberon, it is believed that liquid water oceans may exist at the core/mantle boundary. Their surfaces are also heavily cratered; but in each case, endogenic resurfacing has led to a degree of renewal of their features. Ariel appears to have the youngest surface with the fewest impact craters while Umbriel appears to be the the oldest and most cratered.

The major moons of Uranus have no discernible atmosphere. Also, because of their orbit around Uranus, they experience extreme seasonal cycles. Because Uranus orbits the Sun almost on its side, and the large moons all orbit around Uranus’ equatorial plane, the northern and southern hemispheres experience prolonged periods of daytime and nighttime (42 years at a time).

As of 2008, Uranus is known to possess 13 inner moons whose orbits lie inside that of Miranda. They are, in order of distance from the planet: Cordelia, Ophelia, Bianca, Cressida, Desdemona, Juliet, Portia, Rosalind, Cupid, Belinda, Perdita, Puck and Mab. Consistent with the naming of the Uranus’ larger moons, all are named after characters from Shakespearean plays.

Uranus and Moons
Uranus and its system of Moons. Credit: NASA/JPL

All inner moons are intimately connected to Uranus’ ring system, which probably resulted from the fragmentation of one or several small inner moons. Puck, at 162 km, is the largest of the inner moons of Uranus – and the only one imaged by Voyager 2 in any detail – while Puck and Mab are the two outermost inner satellites of Uranus.

All inner moons are dark objects. They are made of water ice contaminated with a dark material, which is probably organic materials processed by Uranus’ radiation. The system is also chaotic and apparently unstable. Computer simulations estimate that collisions may occur, particularly between Desdemona and Cressida or Juliet within the next 100 million years.

As of 2005, Uranus is also known to have nine irregular moons, which orbit it at a distance much greater than that of Oberon. All the irregular moons are probably captured objects that were trapped by Uranus soon after its formation. They are, in order of distance from Uranus: Francisco, Caliban, Stephano, Trincutio, Sycorax, Margaret, Prospero, Setebos, and Ferdinard (once again, named for characters in Shakespearean plays).

Uranus’s irregular moons range in size from about 150 km (Sycorax) to 18 km (Trinculo). With the exception of Margaret, all circle Uranus in retrograde orbits (meaning they orbit the planet in the opposite direction of its spin).

Uranus’ Ring System:

Like Saturn and Jupiter, Uranus has a ring system. However, these rings are composed of extremely dark particles which vary in size from micrometers to a fraction of a meter – hence why they are not nearly as discernible as Saturn’s. Thirteen distinct rings are presently known, the brightest being the epsilon ring. And with the exception of two very narrow ones, these rings usually measure a few kilometers in width.

A Sharper View Of Uranus
Uranus viewed in the infrared spectrum, revealing internal heating and its ring system. Credit: Lawrence Sromovsky (Univ. Wisconsin-Madison)/Keck Observatory

The rings are probably quite young, and are not believed to have formed with Uranus. The matter in the rings may once have been part of a moon (or moons) that was shattered by high-speed impacts. From numerous pieces of debris that formed as a result of those impacts, only a few particles survived, in stable zones corresponding to the locations of the present rings.

The earliest known observations of the ring system took place on March 10th, 1977, by James L. Elliot, Edward W. Dunham, and Jessica Mink using the Kuiper Airborne Observatory. During an occultation of the star SAO 158687 (also known as HD 128598), they discerned five rings existing within a system around the planet, and observed four more later.

The rings were directly imaged when Voyager 2 passed Uranus in 1986, and the probe was able to detect two additional faint rings – bringing the number of observed rings to 11. In December 2005, the Hubble Space Telescope detected a pair of previously unknown rings, bringing the total to 13. The largest is located twice as far from Uranus as the previously known rings, hence why they are called the “outer” ring system.

In April 2006, images of the new rings from the Keck Observatory yielded the colors of the outer rings: the outermost is blue and the other one red. In contrast, Uranus’s inner rings appear grey. One hypothesis concerning the outer ring’s blue color is that it is composed of minute particles of water ice from the surface of Mab that are small enough to scatter blue light.

Exploration:

Uranus has only been visited once by any spacecraft: NASA’s Voyager 2 space probe, which flew past the planet in 1986. On January 24th, 1986, Voyager 2 passed within 81,500 km of the surface of the planet, sending back the only close up pictures ever taken of Uranus. Voyager 2 then continued on to make a close encounter with Neptune in 1989.

These two pictures of Uranus -- one in true color (left) and the other in false color -- were compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. Image credit: NASA/JPL
These two pictures of Uranus — one in true color (left) and the other in false color — were compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. Credit: NASA/JPL

The possibility of sending the Cassini spacecraft from Saturn to Uranus was evaluated during a mission extension planning phase in 2009. However, this never came to fruition, as it would have taken about twenty years for Cassini to get to the Uranian system after departing Saturn.

In terms of future missions, multiple proposals have been made. For instance, a Uranus orbiter and probe was recommended by the 2013–2022 Planetary Science Decadal Survey published in 2011. This proposal envisaged a launch taking place between 2020–2023 and a 13-year cruise to Uranus. A New Frontiers Uranus Orbiter has been evaluated and was recommended in the study, The Case for a Uranus Orbiter. However, this mission is considered to be lower-priority than future missions to Mars and the Jovian System.

Scientists from the Mullard Space Science Laboratory in the United Kingdom have proposed a joint NASA-ESA mission to Uranus known as Uranus Pathfinder. This mission would involve launching a medium-class mission by 2022, and estimates place its cost at €470 million (~$525 million USD).

Another mission to Uranus, called Herschel Orbital Reconnaissance of the Uranian System (HORUS), was designed by the Applied Physics Laboratory of Johns Hopkins University. The proposal is for a nuclear-powered orbiter carrying a set of instruments, including an imaging camera, spectrometers and a magnetometer. The mission would launch in April 2021 and arrive at Uranus 17 years later.

Uranus. Image credit: Hubble
Uranus, as imaged by the Hubble Space Telescope. Image credit: NASA/Hubble

In 2009, a team of planetary scientists from NASA’s Jet Propulsion Laboratory advanced possible designs for a solar-powered Uranus orbiter. The most favorable launch window for such a probe would be in August 2018, with arrival at Uranus in September 2030. The science package may include magnetometers, particle detectors and, possibly, an imaging camera.

Suffice it to say, Uranus is a hard target when it comes to exploration, and its distance has made the process of observing it recognizing it for what it was problematic in the past. And in the future, with most of our mission focused on exploring Mars, Europa, and Near-Earth Asteroids, the prospect of a mission to this region of the Solar System doesn’t seem very likely.

But budget environments change, as do scientific priorities. And with interest in the Kuiper Belt exploding thanks to the discovery of many Trans-Neptunian Objects in recent years, it is entirely possible that scientists will demand that a mission to the out solar system be mounted. If and when one occurs, it may be possible to have the probe swing by Uranus on its way out, gathering information and pictures to help advance our understanding of this “Ice Giant”.

We have many interesting articles about Uranus here at Universe Today. We hope you find what you are looking for in the list below:

The Dwarf Planet Quaoar

Credit: reborbit.com

The vast Kuiper Belt, which orbits at the outer edge of our Solar System, has been the site of many exciting discoveries in the past decade or so. Otherwise known as the Trans-Neptunian region, small bodies have been discovered here that have confounded our notions of what constitutes a planet and thrown our entire classification system for a loop. Of these, the most famous (and controversial) discovery was undoubtedly Eris.

First observed in 2005 by Mike Brown and his team, the discovery of Eris overturned decades of astronomical conventions. But both before and since then, many other “dwarf planets“, “plutoids” and “Trans-Neptunian Objects” (TNOs) have been found that further illustrated the need for reclassification. This includes the Kuiper Belt Object (KBO) 5000 Quaoar (or just Quaoar), which was actually discovered three years before Eris.

Discovery and Naming:

Quaoar was discovered on June 4th, 2002 by astronomers Chad Trujillo and Michael Brown of the California Institute of Technology, using images that were obtained with the Samuel Oschin Telescope at Palomar Observatory. The discovery was announced on October 7th, 2002, at a meeting of the American Astronomical Society. At the time, the object was designated as 2002 LM60, but would soon be renamed by Brown and Caltech his team.

Consistent with the IAU conventions for naming non-resonant Kuiper Belt Objects after creator deities, the object was given the name Quaoar after the Tongva creator god. The Tongva people (otherwise known as the Mission Indians) are native to the area around Los Angeles, where the discovery of Quaoar was made.

Images of Quaoar taken by the Oschin Telescope at Palomar, California, USA. Credit: Chad Trujillo & Michael Brown (Caltech)
Images of Quaoar taken using the Oschin Telescope at the Palomar Observatory, California. Credit: Chad Trujillo & Michael Brown (Caltech)

Size, Mass and Orbit:

Given its distance, accurate measurements of Quaoar have been difficult to obtain. In 2004, Brown and Trujillo made direct measurements of the object with the Hubble Space Telescope and came up with an estimated diameter of  1260 ± 190 km.

However, these estimates were subsequently revised downward in 2013 by teams using a stellar occultation, and with data obtained with the Herschel Observatory’s PACS instrument and the Spectral and Photometric Imaging Receiver (SPIRE) at the University of Lethbridge, Alberta.

Combining this information, estimates of its diameter were then changed to between 1110 ± 5 km and 1074±38 km. By these estimates, Quaoar was the largest object to be discovered in the Solar System since the discovery of Pluto. However, it would later be supplanted by the discoveries of Eris, Haumea, and Makemake.

In addition, new techniques and a greater knowledge of KBOs led scientists to conclude that the 2004 HST size estimate for Quaoar was approximately 40% too large, and that a more proper estimate would be about 900 km. Using a weighted average of the SST and corrected HST estimates, Quaoar, as of 2010, is now believed to be about 890±70 km in diameter.

Given these dimensions, Quaoar is roughly one-twelfth the diameter of Earth, one third the diameter of the Moon, and half the size of Pluto. And with an estimated mass of 1.4 ± 0.1 × 1021 kg, Quaoar is about as massive as Pluto’s moon Charon, equivalent to 0.12 times the mass of Eris, and approximately 2.5 times as massive as Orcus. 

Quaoar orbit around the Sun varies slightly, ranging from 45.114 AU (6.75 x 109 km / 4.19 x 109 mi) at aphelion to 41.695 AU (6.24 x 10 km9/3.88 x 109 mi) at perihelion. Quaoar has an orbital period of 284.5 years, and a sidereal rotation period of about 17.68 hours.

Its orbit is also nearly circular and moderately inclined at approximately 8°, which is typical for the population of small classical KBOs, but exceptional among the large KBO. Pluto, Makemake, Haumea, Orcus, Varuna, and Salacia are all on highly inclined, more eccentric orbits.

At 43 AU and with a near-circular orbit, Quaoar is not significantly perturbed by Neptune; unlike Pluto, which is in 2:3 orbital resonance with Neptune. As of 2008, Quaoar was only 14 AU from Pluto, which made it the closest large body to the Pluto–Charon system. By Kuiper Belt standards this is very close.

The orbit of Quaoar (yellow) and various other cubewanos compared to the orbit of Neptune (blue) and Pluto (pink)
The orbit of Quaoar (yellow) and various other cubewanos compared to the orbit of Neptune (blue) and Pluto (pink). Credit: Wikipedia Commons/kheider

Composition:

At the time of its discovery, not much was known about Kuiper belt objects. However, subsequent findings about this region have led scientists to conclude that the surface of Quaoar is likely to be highly similar to those of the icy satellites of Uranus and Neptune. This includes a low albedo, which could be as low as 0.1, which may be an indication that fresh ice has disappeared from its surface.

The surface is also moderately red, meaning that Quaoar is relatively more reflective in the red and near-infrared than in the blue. A 2006 model of internal heating via radioactive decay suggested that, unlike Orcus, Quaoar may not be capable of sustaining an internal ocean of liquid water at the mantle-core boundary.

Observations of Quaoar in the near infrared spectrum have indicated the presence of a small quantities of methane and ethane ice (about 5%). Scientists have also been surprised to find signs of crystalline ice on Quaoar, which is caused by sublimation and refreezing of water. This would indicate that the temperature rose to at least -160 °C (110 K or -260 °F) sometime in the last ten million years.

Artist's impression of the size difference between Quaoar Credit: NASA/JPL-Caltech
Artist’s impression of the size difference between Quaoar, Pluto, Sedna, Earth and the Moon. Credit: NASA/JPL-Caltech

Speculation as to what could have caused Quaoar to heat up from its natural temperature of -220 °C (55 K or -360 °F) have led to theories ranging from a barrage of mini-meteors that could have raised the temperature, to the presence of cryovolcanism. The latter theory, which is the more widely accepted one, holds that cryovolcanism occurred as a result of the decay of radioactive elements within Quaoar’s core.

Some scientist believe that Quaoar was nearly twice its current size before an ancient collision with another object, possibly Pluto, stripped it of its outer mantle. If true, it would mean that Quaoar once had more ice on its surface, and possibly a liquid water ocean at the core-mantle boundary.

Moon:

Quaoar has one known satellite, which was discovered on February 22nd, 2007. It orbits its primary at a distance of 14,500 km and has an orbital eccentricity of 0.14. Based on the assumption that the moon has the same albedo and density as Quaoar, the apparent magnitude of the moon indicates that it is 74 km in diameter and has 1/2000 the mass of Quaoar.

In terms of where it came from, Brown has suggested that it may be a remnant from a collision, which lost most of its mantle ice in the process. The choice for naming the moon was deferred to the Tongva people themselves, who selected the sky god Weymot, who is the son of Quaoar in Tongva mythology. The name became official on October 4th, 2009, with the publication of the Minor Planet Center’s latest issue.

Artist’s impression of the moderately red Quaoar and its moon Weywot. Credit: NASA/JPL-Caltech/R. Hurt (SSC-Caltech)
Artist’s impression of the moderately red Quaoar and its moon Weywot.
Credit: NASA/JPL-Caltech/R. Hurt (SSC-Caltech)

Classification:

According to the IAU, a dwarf planet is any celestial body that orbits a star, is massive enough to have become spherical under the power of its own gravity, but has not cleared its path of planetesimals, and is not the satellite of another object. Also, it must have enough mass to overcome its own compression and be in hydrostatic equilibrium.

Because Quaoar is a binary object, the mass of the system can be calculated from the orbit of the secondary. From this, Quaoar’s estimated density of 2.2 g/cm³ and its estimated diameter of 820 – 960 km suggest that it is large enough to be a dwarf planet.

This is based in part on estimates made by Mike Brown, who has claimed that rocky bodies around 900 km in diameter are sufficient to relax into hydrostatic equilibrium, whereas icy bodies can reach this state with diameters somewhere between 200 and 400 km.

In addition, Quaoar’s mass (which is believed to be greater than 1.6×1021 kg) is also greater than what the 2006 IAU draft definition of a planet claims is “usually” required for being in hydrostatic equilibrium (5×1020 kg, 800 km). Light-curve-amplitude analysis shows only small deviations, suggesting that Quaoar is indeed a spheroid with small albedo spots.

Therefore, while it is not currently classified as a dwarf planet, it is considered a viable candidate. In the coming years, it may go on to join the ranks of Pluto, Eris, Haumea and Makemake as being officially recognized as such by the IAU and other astronomical bodies.

Exploration:

So far, no missions have been planned to Quaoar. While some have advocated sending the New Horizons mission to visit Quaoar and/or Sedna now that it’s flyby of Pluto is complete, NASA has declared this to be impossible. Much like Sedna, Quaoar is too far from the trajectory of the spacecraft, but also insists that both KBOs will be high on the list of candidate targets for future missions to the outer Solar System.

It has further been calculated that a flyby mission to Quaoar could take 13.57 years, using a Jupiter gravity assist and based on the launch dates of December 25th, 2016, November 22nd, 2027, December 22nd, 2028, January 22nd, 2030, or December 20thm, 2040. During any of these launch windows, Quaoar would be at a distance of 41 to 43 AU from the Sun by the time the spacecraft arrived.

In the meantime, all we can do is wait, and continue to observe Quaoar and its fellow Kuiper Belt Objects from afar. In the coming years, a decision is also likely to be made about whether or not it will be included on the list of the Solar System’s acknowledge dwarf planets.

We have written many articles about Quaoar for Universe Today. Here’s an article about the discovery of Quaoar, and here’s an article about the Kuiper Belt.

If you’d like more info about Dwarf Planets, check out Solar System Exploration Guide on Dwarf Planets, and here’s a link to an article aboutthe dwarf planet, Ceres.

We’ve also recorded an entire episode of Astronomy Cast entitled Episode 194: Dwarf Planets and an interview with Mike Brown himself!

Sources: