How Does Carbon Capture Work?

High concentrations of carbon dioxide (in red) tend to congregate in the northern hemisphere during colder months, when plants can't absorb as much from the atmosphere. This picture is based on a NASA Goddard computer model from ground-based observations and depicts concentrations on March 30, 2006. Credit: NASA's Goddard Space Flight Center/B. Putman/YouTube (screenshot)

What if it were possible to just suck all the harmful pollutants out of the air so that they wouldn’t be such a nuisance? What if it were also possible to convert these atmospheric pollutants back into fossil fuels, or possibly ecologically-friendly bio fuels? Why, then we would be able to worry far less about smog, respiratory illnesses, and the effects that high concentrations of these gases have on the planet.

This is the basis of Carbon Capture, a relatively new concept where carbon dioxide is captured at point sources – such as factories, natural-gas plants, fuel plants, major cities, or any other place where large concentrations of CO² are known to be found. This CO² can then be stored for future use, converted into biofuels, or simply put back into the Earth so that it doesn’t enter the atmosphere.

Description:

Like many other recent developments, carbon capture is part of a new set of procedures that are collectively known as geoengineering. The purpose of these procedures are to alter the climate to counteract the effects of global warming, generally by targeting one of the chief greenhouse gases. The technology has existed for some time, but it has only been in recent years that it has been proposed as a means of combating climate change as well.

Schematic showing both terrestrial and geological sequestration of carbon dioxide emissions from a coal-fired plant. Credit: web.ornl.gov
Schematic showing both terrestrial and geological sequestration of carbon dioxide emissions from a coal-fired plant. Credit: web.ornl.gov

Currently, carbon capture is most often employed in plants that rely on fossil fuel burning to generate electricity. This process is performed in one of three basic ways – post-combustion, pre-combustion and oxy-fuel combustion. Post-combustion involves removing CO2 after the fossil fuel is burned and is converted into a flue gas, which consists of CO2, water vapor, sulfur dioxides and nitrogen oxide.

When the gases travel through a smokestack or chimney, CO² is captured by a “filter” which actually consists of solvents that are used to absorb CO2 and water vapor. This technique is effective in that such filters can be retrofitted to older plants, avoiding the need for a costly power plant overhaul.

Benefits and Challenges:

The results of these processes have so far been encouraging – which boast the possibility of up to 90 % of CO² being removed from emissions (depending on the type of plant and the method used). However, there are concerns that some of these processes add to the overall cost and energy consumption of power plants.

According to 2005 report by the Intergovernmental Panel on Climate Change (IPCC), the additional costs range from 24 to 40% for coal power plants, 11 to 22% for natural gas plants, and 14 to 25% for coal-based gasification combined cycle systems. The additional power consumption also creates more in the way of emissions.

Vehicle emissions are one of the main sources of carbon dioxide today. Credit: ucsusa.org

In addition, while CC operations are capable of drastically reducing CO², they can add other pollutants to the air. The amounts of kind of pollutants depend on the technology, and range from ammonia and nitrogen oxides (NO and NO²) to sulfur oxides and disulfur oxides (SO, SO², SO³, S²O, S²O³. etc.). However, researchers are developing new techniques which they hope will reduce both costs and consumption and not generate additional pollutants.

Examples:

A good example of the Carbon Capture process is the Petro Nova project, a coal-fired power plant in Texas. This plant began being upgraded by the US Dept. of Energy (DOE) in 2014 to accommodate the largest post-combustion carbon-capture operation in the world.

Consisting of filters that would capture the emissions, and infrastructure that would place it back in the Earth, the DOE estimates that this operation will be capable of capturing 1.4 million tons of CO2 that previously would have been released into the air.

In the case of pre-combustion, CO² is trapped before the fossil fuel is even burned. Here, coal, oil or natural gas is heated in pure oxygen, resulting in a mix of carbon monoxide and hydrogen. This mix is then treated in a catalytic converter with steam, which then produces more hydrogen and carbon dioxide.

The US Department of Energy's (DoE) Petro Nova project, which will be the argest post-combustion carbon capture operation in the world. Credit: DOE
When complete, the US Department of Energy’s (DoE) Petro Nova will be the largest post-combustion carbon capture operation in the world. Credit: DOE

These gases are then fed into flasks where they are treated with amine (which binds with the CO² but not hydrogen); the mixture is then heated, causing the CO² to rise where it can be collected. In the final process (oxy-fuel combustion), fossil fuel is burned in oxygen, resulting in a gas mixture of steam and CO². The steam and carbon dioxide are separated by cooling and compressing the gas stream, and once separated, the CO² is removed.

Other efforts at carbon capture include building urban structures with special facilities to extract CO² from the air. Examples of this include the Torre de Especialidades in Mexico City – a hospital that is surrounded by a 2500 m² facade composed of Prosolve370e. Designed by Berlin-based firm Elegant Embellishments, this specially-shaped facade is able to channel air through its lattices and relies on chemical processes to filter out smog.

China’s Phoenix Towers – a planned-project for a series of towers in Wuhan, China (which will also be the world’s tallest) – is also expected to be equipped with a carbon capture operation. As part of the designers vision of creating a building that is both impressively tall and sustainable, these include special coatings on the outside of the structures that will draw CO² out of the local city air.

Then there’s the idea for “artificial trees“, which was put forward by Professor Klaus Lackner of the Department of Earth and Environmental Engineering at Columbia University. Consisting of plastic fronds that are coated with a resin that contains sodium carbonation – which when combined with carbon dioxide creates sodium bicarbonate (aka. baking soda) – these “trees” consume CO² in much the same way real trees do.

A cost-effective version of the same technology used to scrub CO² from air in submarines and space shuttles, the fronds are then cleaned using water which, when combined with the sodium bicarbonate, yields a solution that can easily be converted into biofuel.

In all cases, the process of Carbon Capture comes down to finding ways to remove harmful pollutants from the air to reduce humanity’s footprint. Storage and reuse also enter into the equation in the hopes of giving researchers more time to develop alternative energy sources.

We have written many interesting articles about carbon capture here at Universe Today. Here’s What is Carbon Dioxide?, What Causes Air Pollution?, What if we Burn Everything?, Global Warming Watch: How Carbon Dioxide Bleeds Across The Earth, and World Needs to Aim for Near-Zero Carbon Emissions.

For more information on how Carbon Capture works, be sure to check out this video from the Carbon Capture and Storage Organization:

If you’d like more info on Earth, check out NASA’s Solar System Exploration Guide on Earth. And here’s a link to NASA’s Earth Observatory.

We’ve also have Astronomy Cast episodes all about planet Earth and Climate Change. Listen here, Episode 51: Earth, Episode 308: Climate Change.

Sources:

What is a Flying Wing?

X-47B conducting a midair refueling run in the Atlantic Test Ranges. Credit: US Navy

The field of aviation has produced some interesting designs over the course of its century-long history. In addition to monoplanes, jet-aircraft, rocket-propelled planes, and high-altitude interceptors and spy craft, there is also the variety of airplanes that do away with such things as tails, sections and fuselages. These are what is known as Flying Wings, a type of fixed-wing aircraft that consists of a single wing.

While this concept has been investigated for almost as long as flying machines have existed, it is only within the past few decades that its true potential has been realized. And when it comes to the future of aerospace, it is one concept that is expected to see a great deal more in the way of research and development.

Description:

By definition, a flying wing is an aircraft which has no definite fuselage, with most of the crew, payload and equipment being housed inside the main wing structure. From the top, a flying wing looks like a chevron, with the wings constituting its outer edges and the front middle serving as the cockpit or pilot’s seat. They come in many varieties, ranging from the jet fighter/bomber to hand gliders and sailplanes.

A clean flying wing is theoretically the most aerodynamically efficient (lowest drag) design configuration for a fixed wing aircraft. It also offers high structural efficiency for a given wing depth, leading to light weight and high fuel efficiency.

A Junkers G 38, in service with Lufthansa. Credit: SDASM Archives
A Junkers G 38, in service with Lufthansa. Credit: SDASM Archives

History of Development:

Tailless craft have been around since the time of the Wright Brothers. But it was not until after World War I, thanks to extensive wartime developments with monoplanes, that a craft with no true fuselage became feasible. An early enthusiast was Hugo Junkers who patented the idea for a wing-only air transport in 1910.

Unfortunately, restrictions imposed by the Treaty of Versailles on German aviation meant that his vision wasn’t realized until 1931 with the Junker’s G38. This design, though revolutionary, still required a short fuselage and a tail section in order to be aerodynamically possible.

A restored Horten Ho 229 at Steven F. Udvar-Hazy Center. Credits: Cynrik de Decker
A restored Horten Ho 229 at Steven F. Udvar-Hazy Center. Credits: Cynrik de Decker

Flying wing designs were experimented with extensively in the 30’s and 40’s, especially in the US and Germany. In France, Britain and the US, many designs were produced, though most were gliders. However, there were exceptions, like the Northrop N1M, a prototype all-wing plane and the far more impressive Horten Ho 229, the first jet-powered flying wing that served as a fighter/bomber for the German air force in WWII.

This aircraft was part of a long series of experimental aircraft produced by Nazi Germany, and was also the first craft to incorporate technology that made it harder to detect on radar – aka. Stealth technology. However, whether this was intentional or an unintended consequence of its design remains the subject of speculation.

After WWII, this plane inspired several generations of experimental aircraft. The most notable of these are the YB-49 long-range bomber, the A-12 Avenger II, the B-2 Stealth Bomber (otherwise known as the Spirit), and a host of delta-winged aircraft, such as Canada’s own Avro-105, also known as the Avro Arrow.

Recent Developments:

More recent examples of aircraft that incorporate the flying wing design include the X-47B, a demonstration unmanned combat air vehicle (UCAV) currently in development by Northrop Grumman. Designed for carrier-based operations, the X-47B is a result of collaboration between the Defense Advanced Research Projects Agency (DARPA) and the US Navy’s Unmanned Combat Air System Demonstration (UCAS-D) program.

The X-47B first flew in 2011, and as of 2015, its two active demonstrators successfully performed a series of airstrip and carrier-based landings. Eventually, Northrop Grumman hopes to develop the prototype X-47B into a battlefield-ready aircraft known the Unmanned Carrier-Launched Airborne Surveillance and Strike (UCLASS) system, which is expected to enter service in the 2020s.

Another take on the concept comes in the form of the bidirectional flying wing. This type of design consists of a long-span, low speed wing and a short-span, high speed wing joined in a single airframe in the shape of an uneven cross. The proposed craft would take off and land with the low-speed wing across the airflow, then rotate a quarter-turn so that the high-speed wing faces the airflow for supersonic travel.

The design is claimed to feature low wave drag, high subsonic efficiency and little or no sonic boom. The low-speed wings have likely a thick, rounded airfoil able to contain the payload and a wide span for high efficiency, while the high-speed wing would have a thin, sharp-edged airfoil and a shorter span for low drag at supersonic speed.

In 2012, NASA announced that it was in the process of funding the development of such a concept, known as the Supersonic Bi-Directional Flying Wing (SBiDir-FW). This came in the form of the Office of the Chief Technologist awarding a grant of $100,000 to a research group at the University of Miami (led by Professor Gecheng Zha) who were already working on such a plane.

Since the Wright Brothers first took to the air in a plane made of canvas and wood over a century ago, aeronautical engineers have thought long and hard about how we can improve upon the science of flight. Every once in awhile, there are those who will attempt to “reinvent the wheel”, throwing out the old paradigm and producing something truly revolutionary.

We have written many articles about the Flying Wing for Universe Today. Here’s an article about the testing of the prototype blended wing aircraft, and here are some jet pictures.

If you’d like more information on NASA’s aircraft programs, check out NASA’s Dryden photo collection, and here’s a link to various NASA research aircraft.

We’ve also recorded many related episodes of Astronomy Cast. Listen here, Episode 100: Rockets.

Sources:

Who was the First Dog to go into Space?

Animals in Space
Laika before launch in 1957 (AP Photo/NASA)

Before man ever set foot on the moon or achieved the dream of breaking the Earth’s gravity and going into space, a dog did it first! Really, a dog? Well… yes, if the topic is the first animal to go into space, then it was a dog that beat man to the punch by about four years. The dog’s name was Laika, a member (after a fashion) of the Russian cosmonaut program. She was the first animal to go into space, to orbit the Earth, and, as an added – though dubious – honor, was also the first animal to die in space. Laika’s sacrifice paved the way for human spaceflight and also taught the Russians a few things about what would be needed in order for a human to survive a spaceflight.

Part of the Sputnik program, Laika’s was launched with the Sputnik 2 craft, the second spacecraft launched into Earth orbit. The satellite contained two cabins, one for its “crew”, the other for its various scientific instruments, which included radio transmitters, a telemetry system, temperature controls for the cabin, a programming unit, and two photometers for measuring solar radiation (ultraviolent and x-ray emissions) and cosmic rays. Like Sputnik 1, the satellite’s launch vehicle the R-7 Semyorka rocket, a ballistic missile that was responsible for placing the satellite into the upper atmosphere.

The mission began on November 3rd, 1957 and lasted 162 days before the orbit finally decayed and it fell back to Earth. No provisions were made for getting Laika safely back to Earth so it was expected ahead of time that she would die after ten days. However, it is now known that Laika died within a matter of hours after deployment from the R-7. At the time, the Soviet Union said she died painlessly while in orbit. More recent evidence however, suggests that she died as a result of overheating and panic. This was due to a series of technical problems which resulted from a botched deployment. The first was the damage that was done to the thermal system during separation, the second was some of the satellite’s thermal insulation being torn loose. As a result of these two mishaps, temperatures in the cabin reached over 40º C.

In spite of her untimely death, Laika’s flight astonished the world and outraged many animal rights activists. Her accomplishment was honored by many countries through a series of commemorative stamps. The mission itself also taught the Russians a great deal about the behavior of a living organism in space and brought back data about Earth’s outer radiation belt, which would be the subject of interests for future missions.

We have written many articles about Laika for Universe Today. Here’s an article about the first animal in space, and here’s an article about Russia sending monkeys to Mars.

If you’d like more info on Laika, check out NASA’s Imagine the Universe Article about Laika, and here’s a link to The First Dog in Space Article.

We’ve also recorded an entire episode of Astronomy Cast all about the Space Capsules. Listen here, Episode 124: Space Capsules, Part 1 – Vostok, Mercury and Gemini.

Sources:
http://en.wikipedia.org/wiki/Laika
http://en.wikipedia.org/wiki/Soviet_space_dogs
http://news.bbc.co.uk/2/hi/sci/tech/2367681.stm
http://starchild.gsfc.nasa.gov/docs/StarChild/space_level2/laika.html
http://en.wikipedia.org/wiki/Sputnik_program
http://en.wikipedia.org/wiki/R-7_rocket
http://en.wikipedia.org/wiki/Sputnik_2
http://en.wikipedia.org/wiki/Van_Allen_radiation_belt

What is Carbon Dioxide?

Carbon cycle diagram.

CO2 is more than just the stuff that comes out of smokestacks, tailpipes, cigarettes and campfires. It is also a crucial element here on planet Earth, essential to life and its processes. It is used by plants to make sugars during photosynthesis. It is emitted by all animals, as well as some plants, fungi and microorganisms, during respiration. It is used by any organism that relies either directly or indirectly on plants for food; hence, it is a major component of the Carbon Cycle. It is also a major greenhouse gas, hence why it is so closely associated with Climate Change.

Joseph Black, a Scottish chemist and physician, was the first to identify carbon dioxide in the 1750s. He did so by heating calcium carbonate (limestone) with heat and acids, the result of which was the release of a gas that was denser than normal air and did not support flame or animal life. He also observed that it could be injected into calcium hydroxide (a liquid solution of lime) to produce Calcium Carbonate. Then, in 1772, another chemist named Joseph Priestley came up with of combining CO2 and water, thus inventing soda water. He was also intrinsic in coming up with the concept of the Carbon Cycle.

Since that time, our understanding of CO2 and its importance as both a greenhouse gas and an integral part of the Carbon Cycle has grown exponentially. For example, we’ve come to understand that atmospheric concentrations of CO2 fluctuate slightly with the change of the seasons, driven primarily by seasonal plant growth in the Northern Hemisphere. Concentrations of carbon dioxide fall during the northern spring and summer as plants consume the gas, and rise during the northern autumn and winter as plants go dormant, die and decay.

Traditionally, atmospheric CO2 levels were dependent on the respirations of animals, plants and microorganisms (as well as natural phenomena like volcanoes, geothermal processes, and forest fires). However, human activity has since come to be the major mitigating factor. The use of fossil fuels has been the major producer of CO2 since the Industrial Revolution. By relying increasingly on fossil fuels for transportation, heating, and manufacturing, we are threatening to offset the natural balance of CO2 in the atmosphere, water and soil, which in turn is having observable and escalating consequences for our environment. As is the process of deforestation which deprives the Earth of one it’s most important CO2 consumers and another important link in the Carbon Cycle.

As of April 2010, CO2 in the Earth’s atmosphere is at a concentration of 391 parts per million (ppm) by volume. For an illustrated breakdown of CO2 emissions per capita per country, click here.

We have written many articles about Carbon Dioxide for Universe Today. Here’s an article about the Carbon Cycle Diagram, and here’s an article about Greenhouse Effect.

If you’d like more info on Carbon Dioxide, check out NASA’s The Global Climate Change. And here’s a link to The Carbon Cycle.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.

Sources:
http://en.wikipedia.org/wiki/Carbon_dioxide
http://en.wikipedia.org/wiki/Carbon_cycle
http://www.eoearth.org/article/carbon_dioxide
http://cdiac.ornl.gov/
http://www.epa.gov/climatechange/emission/co2.html
http://www.lenntech.com/carbon-dioxide.htm
http://www.davidsuzuki.org/issues/climate-change/science/climate-change-basics/climate-change-101-1/

What is Boyle’s Law

Boyle's Law
Boyle's Law Credit: NASA's Glenn Research Center

It is interesting to think that at this very moment all of us, every living terrestrial organism, are living in a state of pressure. We normally don’t feel it the human body is primarily made up of liquid, and liquids are basically non compressible. At times, however, we do notice changes of pressure, primarily in our ears. This is often described as a “pop” and it occurs when our elevation changes, like when we fly or driving in the mountains. This is because our ears have an air space in them, and air, like all other gases, is compressible.

Robert Boyle was one of the first people to study this phenomena in 1662. He formalized his findings into what is now called Boyle’s law, which states that “If the temperature remains constant, the volume of a given mass of gas is inversely proportional to the absolute pressure” Essentially, what Boyle was saying is that an ideal gas will compress proportionately to the amount of pressure exerted on it. For example, if you have a 1 cubic meter balloon and double the pressure on it, it will be compressed to ½ a cubic meter. Increase the pressure by 4, and the volume will drop to 1/4 of its original size, and so on.

The law can also be stated in a slightly different manner, that the product of absolute pressure (p) and volume (V) is always constant (k); p x V = k, for short. While Boyle derived the law solely on experimental grounds, the law can also be derived theoretically based on the presumed existence of atoms and molecules and assumptions about motion and that all matter is made up of a large number of small particles (atoms or molecules) all of which are in constant, motion. These rapidly moving particles constantly collide with each other and with the walls of their container (also known as the kinetic theory).

Another example of Boyle’s law in action is in a syringe. In a syringe, the volume of a fixed amount of gas is increased by drawing the handle back, thereby lessening the pressure. The blood in a vein has higher pressure than the gas in the syringe, so it flows into the syringe, equalizing the pressure differential. Boyle’s law is one of three gas laws which describe the behavior of gases under varying temperatures, pressures and volumes. The other two laws are Gay-Lussac’s law and Graham’s law. Together, they form the ideal gas law.

For an animated demonstration of Boyle’s Law, click here.

We have written many articles about Boyle’s Law for Universe Today. Here’s an article about air density, and here’s an article about the Boltzmann Constant.

If you’d like more info on Boyle’s Law, check out NASA’s Boyle’s Law Page, and here’s a link to the Boyle’s Law Lesson.

We’ve also recorded an episode of Astronomy Cast. Listen here, Question Show: The Source of Atmospheres, The Vanishing Moon and A Glow After Sunset.

Sources:
http://en.wikipedia.org/wiki/Boyle%27s_law
http://en.wikipedia.org/wiki/Ideal_gas
http://www.chm.davidson.edu/vce/gaslaws/boyleslaw.html
http://home.flash.net/~table/gasses/boyle1.htm
http://www.wisegeek.com/what-is-boyles-law.htm
http://www.grc.nasa.gov/WWW/K-12/airplane/boyle.html

Atomic number

Fine Structure Constant

[/caption]

Ever wonder why the periodic table of elements is organized the way it is? Why, for example, does Hydrogen come first? And just what are these numbers that are used to sort them all? They are known as the element’s atomic number, and in the periodic table of elements, the atomic number of an element is the same as the number of protons contained within its nucleus. For example, Hydrogen atoms, which have one proton in their nucleuses, are given an atomic number of one. All carbon atoms contain six protons and therefore have an atomic number of 6. Oxygen atoms contain 8 protons and have an atomic number of 8, and so on. The atomic number of an element never changes, meaning that the number of protons in the nucleus of every atom in an element is always the same.

Arranging elements based on their atomic weight began with Ernest Rutherford in 1911. It was he who first suggested the model for an atom where the majority of its mass and positive charge was contained in a core. This central charge would be roughly equal to half of the atoms total atomic weight. Antonius van den Broek added to this by formerly suggesting that the central charge and number of electrons were equal. Two years later, Henry Moseley and Niels Bohr made further contributions that helped to confirm this. The Bohr model of the atom had the central charge contained in its core, with its electrons circulating it in orbit, much like how the planet in the solar system orbit the sun. Moseley was able to confirm these two hypotheses through experimentation, measuring the wavelengths of photon transitions of various elements while they were inside an x-ray tube. Working with elements from aluminum (which has an atomic number thirteen) to gold (seventy nine), he was able to show that the frequency of these transitions increased with each element studied.

In short, the higher the atomic number (aka. the higher the number of protons), the heavier the element is and the lower it appears on the periodic table. The atomic number of an element is conventionally represented by the symbol Z in physics and chemistry. This is presumably derived from the German word Atomzahl, which means atomic number in English. It is not to be confused with the mass number, which is represented by A. This corresponds to the combined mass of protons and neutrons in the element.

We have written many articles about the atomic number for Universe Today. Here’s an article about the atomic nucleus, and here’s an article about the Atom Models.

If you’d like more info on the Atomic Number, check out NASA’s Atoms and Light Energy Page, and here’s a link to NASA’s Atomic Numbers and Multiplying Factors Page.

We’ve also recorded an entire episode of Astronomy Cast all about the Atom. Listen here, Episode 164: Inside the Atom.

Sources:
NDT Resource Center
Jefferson Lab
Wise Geek
Wiki Answers

The Northern and Southern Lights – What is an Aurora?

An aurora seen over the South Pole, from the ISS. Credit: Doug Wheelock, NASA.

For many people around the world the ability to see the Aurora Borealis or Aurora Australis is a rare treat. Unless you live north of 60° latitude (or south of -60°), or who have made the trip to tip of Chile or the Arctic Circle at least once in their lives, these fantastic light shows are something you’ve likely only read about or seen a video of.

But on occasion, the “northern” and “southern lights” have reached beyond the Arctic and Antarctic Circles and dazzled people with their stunning luminescence. But what exactly are they? To put it simply, auroras are natural light displays that take place in the night sky, particularly in the Polar Regions, and which are the result of interaction in the ionosphere between the sun’s rays and Earth’s magnetic field.

Description:

Basically, solar wind is periodically launched by the sun which contains clouds of plasma, charged particles that include electrons and positive ions. When they reach the Earth, they interact with the Earth’s magnetic field, which excites oxygen and nitrogen in the Earth’s upper atmosphere. During this process, ionized nitrogen atoms regain an electron, and oxygen and nitrogen atoms return from an excited state to ground state.

High-speed particles from the Sun, mostly electrons, strike oxygen and nitrogen atoms in Earth's upper atmosphere. Credit: NASA
High-speed particles from the Sun, mostly electrons, strike oxygen and nitrogen atoms in Earth’s upper atmosphere. Credit: NASA

Excitation energy is lost by the emission of a photon of light, or by collision with another atom or molecule. Different gases produce different colors of light – light emissions coming from oxygen atoms as they interact with solar radiation appear green or brownish-red, while the interaction of nitrogen atoms cause light to be emitted that appears blue or red.

This dancing display of colors is what gives the Aurora its renowned beauty and sense of mystery. In northern latitudes, the effect is known as the Aurora Borealis, named after the Roman Goddess of the dawn (Aurora) and the Greek name for the north wind (Boreas). It was the French scientist Pierre Gassendi who gave them this name after first seeing them in 1621.

In the southern latitudes, it is known as Aurora Australis, Australis being the Latin word for “of the south”. Auroras seen near the magnetic pole may be high overhead, but from farther away, they illuminate the northern horizon as a greenish glow or sometimes a faint red. The auroras are usually best seen in the Arctic and Antarctic because that is the location of the poles of the Earth’s magnetic field.

The South Pole Telescope under the aurora australis (southern lights). Photo by Keith Vanderlinde
The South Pole Telescope under the aurora australis (southern lights). Credit: Keith Vanderlinde

Names and Cultural Significance:

The northern lights have had a number of names throughout history and a great deal of significance to a number of cultures. The Cree call this phenomenon the “Dance of the Spirits”, believing that the effect signaled the return of their ancestors.

To the Inuit, it was believed that the spirits were those of animals. Some even believed that as the auroras danced closer to those who were watching them, that they would be enveloped and taken away to the heavens. In Europe, in the Middle Ages, the auroras were commonly believed to be a sign from God.

According to the Norwegian chronicle Konungs Skuggsjá (ca. 1230 CE), the first encounter of the norðrljós (Old Norse for “northern light”) amongst the Norsemen came from Vikings returning from Greenland. The chronicler gives three possible explanations for this phenomena, which included the ocean being surrounded by vast fires, that the sun flares reached around the world to its night side, or that the glaciers could store energy so that they eventually glowed a fluorescent color.

Auroras on Other Planets:

However, Earth is not the only planet in the Solar System that experiences this phenomena. They have been spotted on other Solar planets, and are most visible closer to the poles due to the longer periods of darkness and the magnetic field.

Saturn Aurora
Image of Saturn’s aurora taken by the Huddle Space Telescope and seen in ultraviolet wavelengths. Credit: ESA/NASA/Hubble

For example. the Hubble Space Telescope has observed auroras on both Jupiter and Saturn – both of which have magnetic fields much stronger than Earth’s and extensive radiation belts. Uranus and Neptune have also been observed to have auroras which, same as Earth, appear to be powered by solar wind.

Auroras also have been observed on the surfaces of Io, Europa, and Ganymede using the Hubble Space Telescope, not to mention Venus and Mars. Because Venus has no planetary magnetic field, Venusian auroras appear as bright and diffuse patches of varying shape and intensity, sometimes distributed across the full planetary disc.

An aurora was also detected on Mars on August 14th, 2004, by the SPICAM instrument aboard Mars Express. This aurora was located at Terra Cimmeria, in the region of 177° East, 52° South, and was estimated to be quite sizable – 30 km across and 8 km high (18.5 miles across and 5 miles high).

Mars has magnetized rocks in its crust that create localized, patchy magnetic fields (left). In the illustration at right, we see how those fields extend into space above the rocks. At their tops, auroras can form. Credit: NASA
Mars has magnetized rocks in its crust that create localized, patchy magnetic fields (left). In the illustration at right, we see how those fields extend into space above the rocks. At their tops, auroras can form. Credit: NASA

Though Mars has little magnetosphere to speak of, scientists determined that the region of the emissions corresponded to an area where the strongest magnetic field is localized on the planet. This they concluded by analyzing a map of crustal magnetic anomalies compiled with data from Mars Global Surveyor.

More recently, an aurora was observed on Mars by the MAVEN mission, which captured images of the event on March 17th, 2015, just a day after an aurora was observed here on Earth. Nicknamed Mars’ “Christmas lights”, they were observed across the planet’s mid-northern latitudes and (owing to the lack of oxygen and nitrogen in Mars’ atmosphere) were likely a faint glow compared to Earth’s more vibrant display.

In short, it seems that auroras are destined to happen wherever solar winds and magnetic fields coincide. But somehow, knowing this does not make them any less impressive, or diminish the power they have to inspire wonder and amazement in all those that behold them.

We have written many articles about Aurorae here at Universe Today. Here’s What is the Aurora Borealis?, What is the Aurora Australis?, What Causes an Aurora?, Your Guide to When, Where, and How to see the Aurora Borealis, Northern and Southern Lights are Siblings, not Twins.

and See the Latest Jaw-Dropping Aurora Views from the ISS.

If you’d like more info on the aurora, check out Space Weather Center, and here’s a link to some amazing Aurora Borealis pictures taken from Alaska.

We’ve also recorded an episode of Astronomy Cast all about Aurora. Listen here, Episode 163: Auroras.

Sources:

What is the Bakken Formation?

The extent of the Bakken Formation, a subsurface formation within the Williston Basin. Credit:

There has certainly been a lot of talk over the past few decades about this thing known as the “energy crisis”. In essence, we’re being told that fossil fuels are running low, that we need to start thinking green and about alternative fuels and renewable resources.

However, there’s also been a lot of discussion about places like Alberta Tar Sands and other North American oil deposits, and how these might meet our energy needs for the foreseeable future. One such deposit is the Bakken Formation, a rock unit occupying about 520,000 km² (200773 square miles) of the Williston Basin, which sits beneath parts of Saskatchewan, Manitoba, Montana, and North Dakota.

On the geologic timescale, the rock formation is believed to date from the late Devonian to Early Mississippian age – from roughly 416 to 360 million years ago. It was discovered in 1953 by a geologist named J.W. Nordquist and named after Henry Bakken, owner of the Montana farm where Nordquist first drilled.

Schematic north-south cross section showing the Bakken and adjacent formations in 2013. Credit: USGS
Schematic north-south cross section showing the Bakken and adjacent formations in 2013. Credit: USGS

This rock formation consists of three members or strata: the lower shale, middle dolomite, and upper shale. Oil was first discovered there in 1951, but pumping it met with difficulties. This is due to the fact that the oil itself is principally found in the middle dolomite member – roughly 3.2 km (two miles) below the surface – where it is trapped in layers of non-porous shale, making the process both difficult and expensive.

While it was postulated as early as 1974 that the Bakken could contain vast amounts of petroleum, it wasn’t until Denver-based geologist Leigh Price did a field assessment for the U.S. Geological Survey (USGS) in 1995 that official estimates were made. Price estimated in 1999 that the Bakken Formation contained between 271 and 503 billion barrels of petroleum.

Impressive, yes? Well, keep in mind that the percentage of this oil that could actually be extracted is debatable. In 1994, estimates ranged from as low as 1% to Price’s estimate of 50%. A more recent report filed in 2008 by the USGS placed the amount at between 3.0 to 4.3 billion barrels (680,000,000 m3), with a mean of 3.65 billion.

Number of Bakken and Three Forks wells in the US as of 2013. Credit: energy.usgs.gov
Number of Bakken and Three Forks wells in the US as of 2013. Credit: energy.usgs.gov

By 2011, a senior manager at Continental Resources Inc. (CLR) raised that estimate to an overall at 24 billion barrels, claiming that the “Bakken play in the Williston basin could become the world’s largest discovery in the last 30–40 years”.

But reports issued by both the USGS and the state of North Dakota in April 2013 were more conservative, estimating that up to 7.4 billion barrels of oil could be recovered from the Bakken and Three Forks formations using current technology.

Still, this represents a significant increase from the estimates made back in 1995. Horizontal well and hydraulic fracturing technology have helped, adding about 70 million barrels of production in 7 years in Montana and North Dakota. By 2007, Saskatchewan was also experiencing a boom, producing five million barrels in that year, which was up 278,540 barrels in 2004.

Consistent with the US’ policy of achieving “energy independence”, analyst expect that an additional $16 billion will be spent to further develop the Bakken fields in 2015. The large increase in tight oil production is one of the reasons behind the price drop in late 2014, and keeping prices low is always politically popular.

North Dakota oil production. Credit: eia.gov
The North Dakota “oil boom”, represented by the state’s production per month and year. Credit: eia.gov

As more wells are brought online, production will continue to increase in places like North Dakota. While the rate of production per well appears to have peaked at 145 barrels a day since June of 2010, the number of wells has also doubled in the region between then and December of 2011.

The increase in oil and natural gas extraction has also had a profound increase on the economy of North Dakota. In addition to leading a reduction in unemployment, it has given the state a billion-dollar budget surplus and a GDP that is 29% above the national average. However, there has also been the resulting rise in pollution and the strain that industrialization and a population surge has put on the states’ water supply.

Will any of this solve the “energy crisis”? Hard to say. Because of the highly variable nature of shale reservoirs and shale drilling, and the fact that per-well rates seem to have peaked, it seems unlikely that total Bakken production will grow much further or affect the imports of foreign oil.

And given how the price of alternatives like solar, wind, geothermal and tidal energy are dropping all the time, one can expect that a fossil fuel-economy will become something of a fossil itself someday!

We have written many articles about the Bakken Formation for Universe Today. Here’s an article about Alternative Energy Sources, and here’s an article about harvesting solar power from space.

If you’d like more info on the Bakken Formation, check out the U.S. Geological Survey Homepage. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.

Sources:
http://en.wikipedia.org/wiki/Bakken_Formation – cite_note-usgs.gov-3
http://www.cbc.ca/money/story/2008/05/23/f-langton-bakken.html
http://www.theoildrum.com/node/3868
http://www.thestar.com/Business/article/414164

What is an Avalanche?

A powder snow avalanche in the Himalayas near Mount Everest. Credit: Wikipeida Commons/ Ilan Adler

Have you ever noticed how the snow packs on a car windshield after a heavy snowfall? While the temperature is cold, the snow sticks to the surface and doesn’t slide off. After temperatures warm up a little, however, the snow will slide down the front of the windshield, often in small slabs. This is an avalanche on a miniature scale.

On the other hand, a mountain avalanche in North America might release 229,365 cubic meters (300,000 cubic yards) of snow. That’s the equivalent of 20 football fields filled 10 feet deep with snow. However, such large avalanches are often naturally released. They are primarily composed of flowing snow but given their power, they are also capable of carrying rocks, trees, and other forms of debris with them.

In mountainous terrain avalanches are among the most serious objective hazards to life and property, with their destructive capability resulting from their potential to carry an enormous mass of snow rapidly over large distances.

Classification:

Avalanches are classified based on their form and structure, which are also known as “morphological characteristics”. Some of the characteristics include the type of snow involved, the nature of what caused the structural failure, the sliding surface, the propagation mechanism of the failure, the trigger of the avalanche, the slope angle, direction, and elevation.

Loose snow avalanches (far left) and slab avalanches (near center) near Mount Shuksan in the North Cascades mountains. Credit: wikipedia
Loose snow avalanches (far left) and slab avalanches (near center) near Mount Shuksan in the North Cascades mountains. Credit: Thermodynamic/Wikipedia Commons

All avalanches are rated by either their destructive potential or the mass they carry. While this varies depending on the geographical region – – all share certain common characteristics, ranging from small slides (or sluffs) that pose a low risk to massive slides that come that pose a significant risk.

An avalanche has three main parts: the starting zone, the avalanche track, and the runout zone. The starting zone is the most volatile area of a slope, where unstable snow can fracture from the surrounding snowcover and begin to slide. The avalanche track is the path or channel that an avalanche follows as it goes downhill. The runout zone is where the snow and debris finally come to a stop.

Causes:

Several factors may affect the likelihood of an avalanche, including weather, temperature, slope steepness, slope orientation (whether the slope is facing north or south), wind direction, terrain, vegetation, and general snowpack conditions. However, weather remains the most likely factor in triggering an avalanche.

During the day, as temperatures increase in a mountainous region, the likelihood of an avalanche increases. Regardless of the time of year, an avalanches will only occur when the stress on the snow exceeds the strength either within the snow itself or at the contact point where the snow pack meets the ground or the rock surface.

An avalanche east of Revelstoke in 2010 Credit: Canadian Avalanche Center
An avalanche east of the town of Revelstoke, BC, in 2010 Credit: Canadian Avalanche Center

Although avalanches can occur on any slope given the right conditions, in North America certain times of the year and certain locations are naturally more dangerous than others. Wintertime, particularly from December to April, is when most avalanches will occur with the highest number of fatalities occurs in January, February and March, when the snowfall amounts are highest in most mountain areas.

Deaths Caused by Avalanches:

In the United States, 514 avalanche fatalities have been reported in 15 states from 1950 to 1997. In the 2002–2003 season there were 54 recorded incidents in North America involving 151 people.

In Canada’s mountainous province of British Columbia, a total of 192 avalanche-related deaths were reported between January 1st, 1996 and March 17th, 2014 – an average of roughly ten deaths per year. During the winter of 2014, avalanche concerns also forced the closure of the Trans-Canada highway on a number of occasions.

Avalanches on Other Planets:

Not too surprisingly, Earth is not the only planet in the Solar System to experience avalanches. Wherever their is mountainous terrain and water ice, which is not uncommon, there is the likelihood that material will come loose and cause a cascading slide to take place.

On February 19th, 2008, NASA’s Mars Reconnaissance Orbiter captured the first ever image of active avalanches taking place the Red Planet. The avalanche occurred near the north pole, where water ice exists in abundance, and was captured by the MRO’s HiRISE (High Resolution Imaging Experiment) camera completely by accident.

Images taken by the MRO's HiRISE camera show at least four Martian avalanches, or debris falls, taking place near the north pole. Credit: NASA/JPL
Images taken by the MRO’s HiRISE camera show at least four Martian avalanches, or debris falls, taking place near the north pole. Credit: NASA/JPL

The images showed material – likely to include fine-grained ice dust and possibly large blocks – detaching from a towering cliff and cascading to the gentler slops below. The occurrence of the avalanches was spectacularly revealed by the accompanying clouds of fine material (visible in the photographs) that continue to settle out of the air.

The largest cloud (shown in the upper images) was about 180 meters (590 feet) across and extended about 190 meters (625 feet) from the base of the steep cliff. Shadows to the lower left of each cloud illustrate further that these are three dimensional features hanging in the air in front of the cliff face, and not markings on the ground.

The photo was unprecedented because it allowed NASA scientists to get a glimpse of a dramatic change on the Martian surface while it was happening. Despite seeing countless pictures that have detailed the planet’s geological features, most appear to have remained unchanged for several million years. It also showed that terrestrial events like avalanches are not confined to planet Earth.

We have written many articles about the avalanche for Universe Today. Here’s an article about the Mars avalanche predicted by geologists, and here’s an article about the volcanic tuff.

If you’d like more info on avalanche, check out NASA Science News: Avalanche on Mars. And here’s a link to the American Avalanche Association Homepage.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.

Sources:

How Many Earths Can Fit in Jupiter?

Jupiter compared to Earth. Image credit: NASA

Jupiter is known as the “King of the Planets”, and for good reason. For one, it is the largest planet in the Solar System, and is actually more massive than all the other planets combined. Fittingly, it is named after the king of the Roman pantheon, the latinized version of Zeus (the king of the Olympian gods).

Compare that to Earth, which is the largest of the terrestrial planets, but a tiny marble when compared to the Jovian giant. Because their disparity in size, people often wonder many times over Earth could be squeezed in Jupiter’s massive frame. As it turns out, you could it do many, many times over!

Size and Mass Comparison:

To break the whole size discrepancy down, Jupiter has a mean radius of 69,911 ± 6 km (60217.7 ± 3.7 mi). As already noted, this is roughly 2.5 times the mass of all the planets in the Solar System combined. Compared this to Earth’s mean radius of 6,371.0 km (3,958.8 mi), and you could say that Earth fits into Jupiter almost 11 times over (10.97 to be exact).

 Rough visual comparison of Jupiter, Earth, and the Great Red Spot. Approximate scale is 44 km/px. Credit:  NASA/Brian0918/ Wikipedia Commons
Rough visual comparison of Jupiter, Earth, and the Great Red Spot. Approximate scale is 44 km/px. Credit: NASA/Brian0918/ Wikipedia Commons

And as already noted, Jupiter is more massive than all the other planets in our Solar System – 2.5 times as massive, that is. In fact, Jupiter weighs in at a hefty 1.8986 × 1027 kg (~4.1857 x 1027 lbs), or 1898.6 billion trillion metric tons (2.092 billion trillion US tons).

Compare that to Earth, which has a mass of 5.97 × 1024 kg (13.1668 × 1024 lb) – 5.97 billion trillion metric tons, or  6.5834 billion trillion US tons. Doing the math, we then come to the conclusion that Jupiter is approximately 317.8 times as massive as Earth.

Volume Comparison:

However, figuring for radius is only useful is you are planning on stacking the Earths end to end across the middle of the gas giant. And comparing their masses doesn’t give you a sense of size, seeing as how the planets are widely different in terms of their density.

Jupiter/Earth comparison. Credit: NASA/SDO/Goddard/Tdadamemd
Jupiter/Earth comparison. Credit: NASA/SDO/Goddard/Tdadamemd

To know how many Earth’s could truly fit inside in three-dimensions, you have to consider total volume, which you can calculate using the simple formula of 4/3 x Pi x radius2.

Doing the math, we find that Jupiter has a volume of 1.43 x 1015 km³ (1,430 trillion cubic km; 343 trillion cubic mi) while Earth has a volume of 1.08 trillion km3 (259 million mi). Divide the one by the other, and you get a value of 1299, meaning you could fit almost 1300 Earth’s inside Jupiter.

In short, the king of the planets is much, much, MUCH bigger than the planet we call home. Someday, if we ever hope to live around Jupiter (i.e. colonize its moons), we will be able to appreciate just how big it is up close. Until then, these impressive figures will have to suffice!

We’ve written many articles about Jupiter for Universe Today. Here’s Ten Interesting Facts About Jupiter, Jupiter Compared to Earth, What is the Diameter of Jupiter?, and How Much Bigger is Jupiter than Earth?

If you’d like more information on Jupiter, check out Hubblesite’s News Releases about Jupiter, and here’s a link to NASA’s Solar System Exploration Guide to Jupiter.

We’ve also recorded an episode of Astronomy Cast just about Jupiter. Listen here, Episode 56: Jupiter.

Sources: