Debris from DART could Hit Earth and Mars Within a Decade

The asteroid Dimorphos was captured by NASA’s DART mission just two seconds before the spacecraft struck its surface on Sept. 26, 2022. Observations of the asteroid before and after impact suggest it is a loosely packed “rubble pile” object. Credit: NASA/JHUAPL

On Sept. 26th, 2022, NASA’s Double Asteroids Redirect Test (DART) collided with Dimorphos, the small moonlet orbiting the larger asteroid Didymos. In so doing, the mission successfully demonstrated a proposed strategy for deflecting potentially hazardous asteroids (PHAs) – the kinetic impact method. By October 2026, the ESA’s Hera mission will rendezvous with the double-asteroid system and perform a detailed post-impact survey of Dimorphos to ensure that this method of planetary defense can be repeated in the future.

However, while the kinetic method could successfully deflect asteroids so they don’t threaten Earth, it could also create debris that might reach Earth and other celestial bodies. In a recent study, an international team of scientists explored how this impact test also presents an opportunity to observe how this debris could someday reach Earth and Mars as meteors. After conducting a series of dynamic simulations, they concluded that the asteroid ejecta could reach Mars and the Earth-Moon system within a decade.

Continue reading “Debris from DART could Hit Earth and Mars Within a Decade”

New Study Shows Mars Could be Terraformed Using Resources that are Already There

Artist's impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard
Artist's impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard

The idea of terraforming Mars, making its atmosphere and environment more Earth-like for human settlement, goes back decades. During that time, many proposed methods have been considered and put aside as “too expensive” or requiring technology well in advance of what we have today. Nevertheless, the idea has persisted and is often considered a part of long-term plans for establishing a human presence on Mars. Given the many plans to establish human outposts on the Moon and then use that infrastructure to send missions to Mars, opportunities for terraforming may be closer than we think.

Unfortunately, any plans for terraforming Mars suffer from unresolved hurdles, not the least of which are the expense, distance, and the need for technologies that don’t currently exist. Triggering a greenhouse effect and warming the surface of Mars would take massive amounts of greenhouse gases, which would be very difficult and expensive to transport. However, a team of engineers and geophysicists led by the University of Chicago proposed a new method for terraforming Mars with nanoparticles. This method would take advantage of resources already present on the Martian surface and, according to their feasibility study, would be enough to start the terraforming process.

Continue reading “New Study Shows Mars Could be Terraformed Using Resources that are Already There”

NASA’s Says Goodbye to its Asteroid-Hunting NEOWISE Mission

NEOWISE
NEOWISE on the hunt. Credit: NASA/JPL

NASA’s Wide-field Infrared Survey Explorer (WISE), launched in 2009, spent the next fourteen and half years studying the Universe in infrared wavelengths. During that time, it discovered thousands of minor planets, star clusters, and the first Brown Dwarf and Earth-Trojan asteroid. By 2013, the mission was reactivated by NASA as the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE), which was tasked with searching for Potentially Hazardous Asteroids (PHAs). For ten years, the NEOWISE mission faithfully cataloged comets and asteroids that could pose a threat to Earth someday.

Unfortunately, NASA announced on July 1st that it would be decommissioning this planetary defense mission, which is expected to burn up in our atmosphere later this year. On Thursday, August 8th, the mission was decommissioned after the final command was sent from NASA’s Jet Propulsion Laboratory in Southern California and related to the spacecraft by the Tracking and Data Relay Satellite (TDRS) system. However, the scientific data NEOWISE collected during its ten years of operation will continue to inspire new discoveries!

Continue reading “NASA’s Says Goodbye to its Asteroid-Hunting NEOWISE Mission”

New Study Examines the Links Between Science Fiction and Astronomy

Dr. Kip Thorne made it clear that black is not the primary hue of Black Holes. His guidance offered to Nolan raised science fiction to a new level. Credit: Paramount Pictures/Warner Bros.

“Today’s science fiction is tomorrow’s science fact.” This quote, attributed to Isaac Asimov, captures science’s intricate relationship with science fiction. And it is hardly a one-way relationship. Whereas science fiction is constantly evolving to reflect new scientific discoveries and theories, science itself has a long history of drawing inspiration from the works of visionary authors, filmmakers, and popular culture. And in some cases, where scientists themselves were the visionaries (like Asimov himself), you had an instance of both!

The relationship between the two was the subject of a recent study by Samuel Boissier, a researcher with the Centre National de la Recherche Scientifique (CNRS) and the director of research at the Laboratoire d’astrophysique de Marseille (LAM). In an age when misinformation, “deepfakes,” and deliberate attempts to obscure scientific truths are at an all-time high, examining the interconnection between science, art, and science fiction is very important. According to Boissier, doing so offers people in the scientific community a way to engage with the public in a way that is relatable and accessible.

Continue reading “New Study Examines the Links Between Science Fiction and Astronomy”

Scientists Develop a Novel Method for Detecting Supermassive Black Holes: Use Smaller Black Holes!

A simulation of two merging black holes. Credit: Simulating eXtreme Spacetimes (SXS) Project

In 1974, astronomers Bruce Balick and Robert L. Brown discovered a powerful radio source at the center of the Milky Way galaxy. The source, Sagittarius A*, was subsequently revealed to be a supermassive black hole (SMBH) with a mass of over 4 million Suns. Since then, astronomers have determined that SMBHs reside at the center of all galaxies with highly active central regions known as active galactic nuclei (AGNs) or “quasars.” Despite all we’ve learned, the origin of these massive black holes remains one of the biggest mysteries in astronomy.

The most popular theories are that they may have formed when the Universe was still very young or have grown over time by consuming the matter around them (accretion) and through mergers with other black holes. In recent years, research has shown that when mergers between such massive objects occur, Gravitational Waves (GWs) are released. In a recent study, an international team of astrophysicists proposed a novel method for detecting pairs of SMBHs: analyzing gravitational waves generated by binaries of nearby small stellar black holes.

Continue reading “Scientists Develop a Novel Method for Detecting Supermassive Black Holes: Use Smaller Black Holes!”

New Study Suggests that Our Galaxy is Crowded or Empty. Both are Equally Terrifying!

Gaia's all-sky view of our Milky Way Galaxy and neighbouring galaxies, based on measurements of nearly 1.7 billion stars. The map shows the total brightness and colour of stars observed by the ESA satellite in each portion of the sky between July 2014 and May 2016. Brighter regions indicate denser concentrations of especially bright stars, while darker regions correspond to patches of the sky where fewer bright stars are observed. The colour representation is obtained by combining the total amount of light with the amount of blue and red light recorded by Gaia in each patch of the sky. The bright horizontal structure that dominates the image is the Galactic plane, the flattened disc that hosts most of the stars in our home Galaxy. In the middle of the image, the Galactic centre appears vivid and teeming with stars. More information on: http://sci.esa.int/gaia/60169-gaia-s-sky-in-colour/

Is there intelligent life in the Universe? And if so, just how common is it? Or perhaps the question should be, what are the odds that those engaged in the Search for Extraterrestrial Intelligence (SETI) will encounter it someday? For decades, scientists have hotly debated this topic, and no shortage of ink has been spilled on the subject. From the many papers and studies that have been written on the subject, two main camps have emerged: those who believe life is common in our galaxy (aka. SETI Optimists) and those who maintain that extraterrestrial intelligence is either rare or non-existent (SETI Pessimists).

In a recent paper, David Kipping (Prof. “Cool Worlds” himself) and Geraint Lewis examined this debate more closely and offered a fresh take based on a form of probability analysis known as Jayne’s Experiment. By applying this method to astrobiology and the Drake Equation, they concluded that the existence of intelligent life in our galaxy may be an “all or nothing” proposition. To quote the late and great scientist and science fiction author Arthur C. Clarke: “Two possibilities exist: either we are alone in the Universe, or we are not. Both are equally terrifying.”

hn

Elliptical Orbits Could be Essential to the Habitability of Rocky Planets

Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)
This is Kepler 186f, an exoplanet in the habitable zone around a red dwarf. We've found many planets in their stars' habitable zones where they could potentially have surface water. But it's a fairly crude understanding of true habitability. Image Credit: NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)

A seismic shift occurred in astronomy during the Scientific Revolution, beginning with 16th-century polymath Copernicus and his proposal that the Earth revolved around the Sun. By the 17th century, famed engineer and astronomer Galileo Galilei refined Copernicus’ heliocentric model using observations made with telescopes he built himself. However, it was not until Kepler’s observations that the planets followed elliptical orbits around the Sun (rather than circular orbits) that astronomical models matched observations of the heavens completely.

As it turns out, this very quirk of orbital mechanics may be essential to the emergence of life on planets like Earth. That was the hypothesis put forth in a recent study by a team of astronomers led by the University of Leeds. According to their work, orbital eccentricity (how much a planet’s orbit deviates from a circle) can influence a planet’s climate response, which could have a profound effect on its potential habitability. These findings could be significant for exoplanet researchers as they continue to search for Earth-like planets that could support life.

Continue reading “Elliptical Orbits Could be Essential to the Habitability of Rocky Planets”

Habitable Planet’s Orbiting Red Dwarf Suns Could at Risk from Far-Ultraviolet Radiation

Artist's depiction of red-dwarf-flare. Image credit: Casey Reed/NASA

The question of whether or not red dwarf stars can support habitable planets has been subject to debate for decades. With the explosion in exoplanet discoveries in the past two decades, the debate has become all the more significant. For starters, M-type (red dwarf) stars are the most common in the Universe, accounting for 75% of the stars in our galaxy. Additionally, exoplanet surveys indicate that red dwarfs are particularly good at forming Earth-like rocky planets that orbit within their circumsolar habitable zones (CHZs).

Unfortunately, a considerable body of research has shown that planets orbiting red dwarf suns would be subject to lots of flare activity – including some so powerful they’re known as “superflares.” In a recent study led by the University of Hawai’i, a team of astrophysicists revealed that red dwarf stars can produce stellar flares with significantly more far-ultraviolet radiation than previously expected. Their findings could have drastic implications for exoplanet studies and the search for extraterrestrial life on nearby rocky planets.

Continue reading “Habitable Planet’s Orbiting Red Dwarf Suns Could at Risk from Far-Ultraviolet Radiation”

China's Lunar Samples Contain Graphene Flakes

Artist’s impression of the graphenes (C24) and fullerenes found in a Planetary Nebula. The detection of graphenes and fullerenes around old stars as common as our Sun suggests that these molecules and other allotropic forms of carbon may be widespread in space. Credits: IAC; original image of the Helix Nebula (NASA, NOAO, ESA, the Hubble Helix Nebula Team, M. Meixner, STScI, & T.A. Rector, NRAO.)

In 2004, scientists at the University of Manchester first isolated and investigated graphene, the supermaterial composed of single-layer carbon atoms arranged in a hexagonal honeycomb lattice. Since then, it has become a wonder, with properties that make it extremely useful in numerous applications. Among scientists, it is generally believed that about 1.9% of carbon in the interstellar medium (ISM) exists in the form of graphene, with its shape and structure determined by the process of its formation.

As it happens, there could be lots of this supermaterial on the surface of the Moon. In a recent study, researchers from the Chinese Academy of Science (CAS) revealed naturally formed graphene arranged in a special thin-layered structure on the Moon. These findings could have drastic implications for our understanding of how the Moon formed and lead to new methods for the manufacture of graphene, with applications ranging from electronics, power storage, construction, and supermaterials. They could also prove useful for future missions that will create permanent infrastructure on the lunar surface.

Continue reading “China's Lunar Samples Contain Graphene Flakes”

A New Study Shows How our Sun Could Permantly Capture Rogue Planets!

This illustration shows a rogue planet traveling through space. Credit: NASA/JPL-Caltech/R. Hurt (Caltech-IPAC)

Interest in interstellar objects (ISOs) was ignited in 2017 when ‘Oumuamua flew through our Solar System and made a flyby of Earth. Roughly two years later, another ISO passed through our Solar System – the interstellar comet 2I/Borisov. These encounters confirmed that ISOs are not only very common, but pass through our Solar System regularly – something that astronomers have suspected for a long time. Even more intriguing is that some of these objects are captured and can still be found orbiting our Sun.

In a recent study, a team of researchers described a region in the Solar System where objects can be permanently captured from interstellar space. Their analysis determined that once objects are captured by our Sun’s gravitational pull and fall into this region—which could include comets, asteroids, and even rogue planets—they will remain in orbit around the Sun and not collide with it. These findings could have drastic implications for ISO studies and proposed missions to rendezvous with some of these objects in the near future.

Continue reading “A New Study Shows How our Sun Could Permantly Capture Rogue Planets!”