Want to Name an Exoplanet? Uwingu Has a Plan

Screenshot from the Uwingu exoplanet naming website.

Astronomers have now discovered nearly 1,000 planets orbiting other stars, and right now these exoplanets all have boring, license-plate-like names, such as HD85512 and GJ 436 instead of endearing, “real” planet names that might offer hints of what that world could be like. And recall the recent extrapolation of how many habitable planets might be in the Milky Way? A team using the ESO’s HARP’s spectrograph determined there might be upwards of 160 billion worlds out there for us to find, and perhaps eventually name. How might we come up with that many names?

Uwingu, a startup company that is hoping to use innovative ways to fund space and astronomy research, has an idea of how to do that. Their first commercial project is to challenge people to create a ‘baby book of planet names’ for all these planets, as suggestions for future names for other worlds.

“The many, many planets discovered across the galaxy in past 20 years are a tribute to our natural human desire to explore beyond the horizon,” said noted planet hunter Dr. Geoff Marcy of the University of California at Berkeley, who is also an advisor for Uwingu. “Now people all over the world can participate in these discoveries in a new way, giving identities and even personality to billions of planets in our galaxy for the first time.”

How does this raise money for space science? Submitting suggestions for names cost $.99 each, and Uwingu will use proceeds from this project and future ones to create funds for grants that space researchers, space educators, and project teams can apply to use.

Uwingu’s first project is technically now in “beta testing,” and in a press release, the organization said the public can participate immediately, helping to generate a new source of funds for space exploration, research, and education.

But it doesn’t end with just suggestions. People can vote on the top names (each vote also costs $.99), and as Uwingu CEO and founder Alan Stern told Universe Today, they are hoping the voting goes viral among the social media savvy.

“This is a way for people everywhere to connect with space,” he said. “You can suggest a name and tell all your friends to vote, and the top names will be the first to be used. If you nominate the name of someone famous, hopefully they’ll get in on the excitement and ask their fans to vote, too.”

The Uwingu team suggests nominating planet names for your favorite town, state, or country, your favorite sports team, music artist, or hero, your favorite author or book, your school, your company, for your loved ones and friends, or even for yourself.

The names won’t be officially approved by the International Astronomical Union, but Stern said they will be are similar to the names given to features on Mars by the mission science teams (such as the “Jake Matijevic” rock recently analyzed by the Curiosity rover) that everyone ends up using. This also solves the problem of how to come up with names, a task that the IAU has yet to discuss.

Initial reactions to the planet naming project – and to Uwingu itself — have been mixed. During their Indigogo fundraising, the Uwingu team didn’t disclose what types of things they would be selling or doing to raise funds, which was a concern to some in the space and astronomy community who normally support almost any space-related initiative. In a previous interview with UT, Stern said being secretive was a way to generate interest and likened it to how Apple announces a new product.

While there seems to be excitement about the opportunity to suggest names for exoplanets (as of this writing 74 names had been nominated, with numerous votes for each name), some early reactions have been that this might be similar to the ‘name a star’ registries that are unofficial and quite expensive.

IAU’s stance on naming exoplanets has been that since it appears there are going to be so many of them, naming them will be difficult. However, in an email reply, the former president of the IAU Planetary Systems Science body, Karen Meech said that at the IAU meeting in Beijing this summer there was discussion about the need to set up a group to look into the issue of exoplanet names.

And Meech did confirm that since the IAU is the only scientifically recognized arbiter of astronomical names, any contests for names from the public will not be officially recognized by the scientific community.

But if the problem is in the amount of names that will be required, that’s where Uwingu’s crowd sourcing idea seems to fit the need.

And for those who are critical of Uwingu’s methods, Uwingu is so far the only group or organization to step forward with innovative, out-of-the-box ways to try and solve what seems to be a continuous, perennial problem: how to fund creative space and astronomy projects and move beyond the old tried and not always true methods of relying on government grants and subsidies or angel donors.

Uwingu is at least trying something different, and it will be interesting to see how this plays out. Stern said earlier that Uwingu’s projects would appeal to the general public, not just the space and astronomy community, to provide a bigger marketplace for their projects. He indicated Uwingu will be coming out with another project in a few months.

We humans love to name things: we name our cars, spacecraft and rocks, craters and hills on other planets. NASA has had contests to name missions, rovers, and modules on the ISS, all of which has generated excitement among the public. Science and science fiction fans have expressed disappointment at the names given to exoplanets so far (they certainly aren’t as intriguing as names we’ve come to love like Tatooine, Pandora, Vulcan or Hoth.) Uwingu is using that innate need/love of naming things to try and move space science and astronomy into a new era.

The Milky Way’s Black Hole Shoots Out Brightest Flare Ever

This false-color image shows the central region of our Milky Way Galaxy as seen by Chandra. The bright, point-like source at the center of the image was produced by a huge X-ray flare that occurred in the vicinity of the supermassive black hole at the center of our galaxy.
Image: NASA/MIT/F. Baganoff et al.

For some unknown reason, the black hole at the center of the Milky Way galaxy shoots out an X-ray flare about once a day. These flares last a few hours with the brightness ranging from a few times to nearly one hundred times that of the black hole’s regular output. But back in February 2012, astronomers using the Chandra X-Ray Observatory detected the brightest flare ever observed from the central black hole, also known as Sagittarius A*. The flare, recorded 26,000 light years away, was 150 times brighter than the black hole’s normal luminosity.

What causes these outbursts? Scientists aren’t sure. But Sagittarius A* doesn’t seem to be slowing down, even though as black holes age they should show a decrease in activity.

Mysterious X-ray flares caught by Chandra may be asteroids falling into the Milky Way's giant black hole. Credit: X-ray: NASA/CXC/MIT/F. Baganoff et al.; Illustrations: NASA/CXC/M.Weiss

Earlier this year, a group of researchers said that the outbursts may come from asteroids or even wandering planets that come too close to the black hole and they get consumed. Basically, the black hole is eating asteroids and then belching out X-ray gas.

Astronomers involved in this new observation seem to concur with that line of thinking.

“Suddenly, for whatever reason, Sagittarius A* is eating a lot more,” said Michael Nowak, a research scientist at MIT Kavli and co-author of a new paper in the Astrophysical Journal. “One theory is that every so often, an asteroid gets close to the black hole, the black hole stretches and rips it to pieces, and eats the material and turns it into radiation, so you see these big flares.”

Astronomers detect black holes by the light energy given off as they swallow nearby matter. The centers of newborn galaxies and quasars can appear extremely bright, giving off massive amounts of energy as they devour their surroundings. As black holes age, they tend to slow down, consuming less and appearing fainter in the sky.

“Everyone has this picture of black holes as vacuum sweepers, that they suck up absolutely everything,” says Frederick K. Baganoff, another co-author from MIT. “But in this really low-accretion-rate state, they’re really finicky eaters, and for some reason they actually blow away most of the energy.”

While such events like this big blast appear to be relatively rare, Nowak suspects that flare-ups may occur more frequently than scientists expect. The team has reserved more than a month of time on the Chandra Observatory to study Sagittarius A* in hopes of identifying more flares, and possibly what’s causing them.

“These bright flares give information on the flaring process that isn’t available with the weaker ones, such as how they fluctuate in time during the flare, how the spectrum changes, and how fast they rise and fall,” said Mark Morris from UCLA. “The greatest importance of this bright flare may be that it builds up the statistics on the characteristics of strong flares that can eventually be used to [identify] the cause of such flares.”

Even more intriguing to Baganoff is why the black hole emits so little energy. In 2003, he ran the very first observations with the then-new Chandra Observatory, and calculated that, given the amount of gas in its surroundings, Sagittarius A* should be about a million times brighter than it is — a finding that suggested the black hole throws away most of the matter it would otherwise consume.

The physics underlying such a phenomenon remain a puzzle that Baganoff and others hope to tease out with future observations.

“We’re really studying the great escape, because most of the gas escapes, and that’s not what we expect,” Baganoff says. “So we’re piecing out the history of the activity of the center of our galaxy.”

Paper: Chandra/HETGS Observations of the Brightest Flare seen from Sgr A*

See a movie of the flare here.

Source: MIT

Carnival of Space #274

This week’s Carnival of Space is hosted by our pal Ray Sanders at his Dear Astronomer website.

Click here to read Carnival of Space #274

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Podcast: Orbit

When an object is orbiting the Earth, it’s really falling. The trick, described in the Hitchhiker’s Guide to the Galaxy, is how to throw yourself at the ground and miss. There are several different kinds of orbits, and they are good for different reasons. From suborbital jumps to geostationary orbit, time to learn everything there is to know about going around and around and around.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

“Orbit” on the Astronomy Cast website, with shownotes and transcript.

And the podcast is also available as a video, as Fraser and Pamela now record Astronomy Cast as part of a Google+ Hangout:

Spectacular 360-Degree 3-D Panorama from Apollo 16

Dealing with those who think the Apollo Moon landings never happened can be frustrating. Most of us just throw up our hands in exasperation, but Italian amateur astronomer Roberto Beltramini came up with a better idea: create a full 360-degree 3-D panorama of images from Apollo 16 to show “the true depth of the views taken by astronauts Apollo,” he said. “What better proof? This was the motivation that prompted me to start, but the spectacle and the interest in new ways of seeing the [Moon’s] wilderness, made me go farther.”

This panorama has now been put into a “Zoomify” making it fully interactive and lots of fun to explore. Grab your 3-D glasses, and you can find a rock and zoom in, follow the astronauts’ footprints and see one of the astronauts tinkering with the Lunar Rover. Click here and enjoy!

Beltramini’s initial plan was to create just a few 3-D anaglyghs, but once he got started, he just kept going. But of course, the Apollo 16 images taken by astronauts John Young and Charlie Duke as they walked, bounded and drove the lunar rover on the Moon’s surface were not originally taken with the intent to be made into 3-D view, making Beltramini’s job fairly difficult.

“The difficulty of making anaglyph, due to the shots not performed specifically for the purpose, may have dampened the attempts of other enthusiasts,” he writes on the website for amateur astronomy group in Viareggio, in the Tuscany region of Italy (Gruppo Astronomico Viareggio.) “To overcome this obstacle, I had to work adapting the pairs of pictures with graphics programs, cropping, resizing, by cleaning scratches and stains present because of the scans on the original story. Other marks are very annoying problem, that is, the black crosses placed at regular intervals in photographs taken during the Apollo missions that I had to delete one by one to avoid that interfere with 3D viewing.”

But over time he figured out how to make it work, “thanks to the phenomenon of rotation around a nodal point during the panning of the Apollo missions is possible, if there is plenty of overlap of the images, create a 3D 360 degree panorama,” he told Universe Today.

Apollo 16 was the fourth mission to land on the moon and launched on July 26, 1971, and the astronauts returned to Earth on August 7. Find out more about Apollo 16 here.

Hurricanes, Transporters and Grand Openings: Busy Week for Retired Space Shuttles

Atlantis is seen in the Vehicle Assembly Building Highbay 4 for the last time before she was rolled to her final home at the Kennedy Space Center Visitor’s Center. Credit: John O’Connor/nasatech.net

Last week was a busy one for the retired space shuttles, and here’s a gallery of images of what’s been happening lately: Atlantis was the last shuttle ever to be in the Vehicle Assembly Building, and was transported over to the Kennedy Space Center Visitor’s Complex this weekend where it will be put on permanent display. Last week the California Science center’s Samuel Oschin Space Shuttle Endeavour Display Pavilion officially opened, And unfortunately, shuttle Enterprise suffered some damage during Hurricane Sandy.

Enterprise damaged during Hurricane Sandy. Credit: AP

Enterprise, which is now at the Intrepid Sea, Air and Space Museum in New York City sustained minor damage to its tail (a.k.a vertical stabilizer), after the fabric pavilion that protected the shuttle was torn by winds. A top piece of the tail came off, said a museum spokesperson. Enterprise will be repaired at the earliest opportunity, the Intrepid museum said, and also the rest of the museum remains closed because of storm damage.

“Enterprise remains safely in place and partially covered by the fabric of the damaged pavilion, which was left in place as a protective measure,” said museum director Susan Marenoff-Zausner.

Enterprise never flew in space but was used for atmospheric drop tests. It was formerly at the Smithsonian Air & Space Museum in Washington D.C., was switched out for shuttle Discovery — the only shuttle to not have any action last week, except for the thousands of visitors that regularly visit her.

Space shuttle Atlantis is transported along Kennedy Parkway at NASA’s Kennedy Space Center in Florida on its 10-mile journey to the Kennedy Visitor Complex where it will be put on public display. Credit: NASA/Tony Gray

Space shuttle workers at NASA’s Kennedy Space Center in Florida, watch as the space shuttle Atlantis is transported to the Kennedy Visitor Complex. Credit: NASA/Tony Gray

Flag waving children welcome space shuttle Atlantis as it approaches Space Florida’s Exploration Park. Credit: NASA/ Tony Gray

If you’d like to see some awesome high-resolution full panoramas of Atlantis in the VAB, check out this page at the nasatech.net website.

Guest walk around space shuttle Endeavour after the grand opening ceremony for the California Science center’s Samuel Oschin Space Shuttle Endeavour Display Pavilion, Tuesday, Oct. 30, 2012, in Los Angeles. Credit: NASA/Bill Ingalls

Endeavour’s Grand Opening Ceremony. Credit: NASA/Bill Ingalls

SpaceX’s 10-Story Re-useable Grasshopper Rocket Takes a Bigger Hop

SpaceX is developing the “Grasshopper” reusable vertical takeoff, vertical landing rocket. Back in September, the 32-meter- (106-ft-) tall Grasshopper made a tiny hop – barely lifting off the pad just to test-fire its engines. But now the Grasshopper has made a second, bigger hop. Over the weekend, Elon Musk quietly tweeted a link to a video, saying, “First flight of 10 story tall Grasshopper rocket using closed loop thrust vector & throttle control.” Update: SpaceX later confirmed that the Grasshopper rose “17.7 feet (5.4 meters), hovered, and touched back down safely on the pad at SpaceX’s rocket development facility in McGregor, Texas.”

SpaceX hasn’t talked much about this rocket, but reportedly the goal with Grasshopper is to eventually create a reusable first stage for its Falcon 9 rocket, which would be able to land safely instead of falling back into the ocean and not being usable again.

Artist’s rendering of SpaceX Falcon 9 rocket landing itself. Credit: SpaceX

Here’s some info about the Grasshopper from a draft environmental impact assessment put out by the FAA in 2011:

The Grasshopper RLV consists of a Falcon 9 Stage 1 tank, a Merlin-1D engine, four steel landing legs, and a steel support structure. Carbon overwrapped pressure vessels (COPVs), which are filled with either nitrogen or helium, are attached to the support structure. The Merlin-1D engine has a maximum thrust of 122,000 pounds. The overall height of the Grasshopper RLV is 106 feet, and the tank height is 85 feet.

The propellants used in the Grasshopper RLV include a highly refined kerosene fuel, called RP-1, and liquid oxygen (LOX) as the oxidizer.

The reports goes on to say that the Grasshopper test program is to have three phases of test launches, at SpaceX’s facility in McGregor, Texas. Phases 1 and 2 would consist of very low test fires with the rocket rising to not more than 73 meters (240 feet) during Phase 1 and 204 meters (670 feet), which is below controlled-airspace. Both Phase 1 and 2 flights would last up to 45 seconds.

Phase 3 tests have the goal of increasingly higher altitudes with higher ascent speeds and descent speeds. The altitude test sequence likely would be 366 meters (1,200 feet); 762 meters (2,500 feet); 1,524 meters (5,000 feet); 2,286 meters (7,500 feet); and 3,505 meters (11,500) feet. The maximum test duration would be approximately 160 seconds. If all goes well, the Grasshopper would land back on the launch pad.

Here’s Grasshopper’s first little test hop in September, which SpaceX said went 2 meters (6 feet):

Look for more details on this exciting reusable rocket as SpaceX continues its tests of the Grasshopper.

Sources: Twitter, Parabolic Arc

Rare Supernova Pair are Most Distant Ever

High-resolution simulation of a galaxy hosting a super-luminous supernova and its chaotic environment in the early Universe. Credit: Adrian Malec and Marie Martig (Swinburne University)

Some of the earliest stars were massive and short-lived, destined to end their lives in huge explosions. Astronomers have detected some of the earliest and most distant of these exploding stars, called ‘super-luminous’ supernovae — stellar explosions 10–100 times brighter than other supernova types. The duo sets a record for the most distant supernova yet detected, and offers clues about the very early Universe.

“The light of these supernovae contains detailed information about the infancy of the Universe, at a time when some of the first stars are still condensing out of the hydrogen and helium formed by the Big Bang,” said Dr. Jeffrey Cooke, an astrophysicist from Swinburne University of Technology in Australia, whose team made the discovery.

The team used a combination of data from the Canada-France-Hawaii Telescope and the Keck 1 Telescope, both located in Hawaii.

“The type of supernovae we’ve found are extremely rare,” Cooke said. “In fact, only one has been discovered prior to our work. This particular type of supernova results from the death of a very massive star (about 100 – 250 times the mass of our Sun) and explodes in a completely different way compared to other supernovae. Discovering and studying these events provides us with observational examples to better understand them and the chemicals they eject into the Universe when they die.”

Super-luminous supernovae were discovered only a few years ago, and are rare in the nearby Universe. Their origins are not well understood, but a small subset of them are thought to occur when extremely massive stars, 150 to 250 times more massive than our Sun, undergo a nuclear explosion triggered by the conversion of photons into electron-positron pairs. This process is completely different compared to all other types of supernovae. Such events are expected to have occurred more frequently in the early Universe, when massive stars were more common.

This, and the extreme brightness of these events, encouraged Cooke and colleagues to search for super-luminous supernovae at redshifts, z, greater than 2, when the Universe was less than one-quarter of its present age.

“We used LRIS (Low Resolution Imaging Spectrometer) on Keck I to get the deep spectroscopy to confirm the host redshifts and to search for late-time emission from the supernovae,” Cooke said. “The initial detections were found in the CFHT Legacy Survey Deep fields. The light from the supernovae arrived here on Earth 4 to 6 years ago. To confirm their distances, we need to get a spectrum of their host galaxies which are very faint because of their extreme distance. The large aperture of Keck and the high sensitivity of LRIS made this possible. In addition, some supernovae have bright enough emission features that persist for years after they explode. The deep Keck spectroscopy is able to detect these lines as a further means of confirmation and study.”

Cooke and co-workers searched through a large volume of the Universe at z greater than or equal to 2, and found two super-luminous supernovae, at redshifts of 2.05 and 3.90 — breaking the previous supernova redshift record of 2.36, and implying a production rate of super-luminous supernovae at these redshifts at least 10 times higher than in the nearby Universe. Although the spectra of these two objects make it unlikely that their progenitors were among the first generation of stars, the present results suggest that detection of those stars may not be far from our grasp.

Detecting the first stars allows us much greater understanding of the first stars in the Universe, Cooke said.

“Shortly after the Big Bang, there was only hydrogen and helium in the Universe,” he said. “All the other elements that we see around us today, such as carbon, oxygen, iron, and silicon, were manufactured in the cores of stars or during supernova explosions. The first stars to form after the Big Bang laid the framework for the long process of enriching the Universe that eventually produced the diverse set of galaxies, stars, and planets we see around us today. Our discoveries probe an early time in the Universe that overlaps with the time we expect to see the first stars.”

Sources: Keck Observatory, Nature

The Curiosity Rover’s Ultimate Self-Portrait

The Curiosity rover self portrait. Credit: NASA/JPL-Caltech/Malin Space Science Systems

OK, we thought the low-resolution self-portrait from yesterday was great… but here’s the real goods: a monster, high-resolution awesome mosaic of 55 images taken by the Mars Hand Lens Imager (MAHLI), showing the rover at its spot in Gale Crater — called Rocknest — with the base of Gale Crater’s 5-kilometer- (3-mile-) high mountain, Aeolis Mons or Mount Sharp, rising in the background. The images were taken on Sol 84 (Oct. 31, 2012), and sent to Earth today. In the foreground, four scoop scars can be seen in the regolith in front of the rover. As we mentioned about the previous MAHLI mosaic, the arm was moved for each of the 55 images, so the arm and the camera doesn’t show up, just like any photographer behind the camera (or their arms) isn’t visible in a photograph.

You can get access to the full resolution version at this link. It’s amazing.

But that’s not all…

NASA says that self-portraits like this one document the state of the rover and allow mission engineers to track changes over time, such as dust accumulation and wheel wear. Due to its location on the end of the robotic arm, only MAHLI (among the rover’s 17 cameras) is able to image some parts of the craft, including the port-side wheels.

Emily Lakdawalla at the Planetary Blog talks about the projection issue, where the wheel closest to the front looks big and distorted. That’s a factor of the camera angle and Emily mentions a discussion of this is taking place by the image wizards over at Unmanned Spaceflight , if you want to see the various ways to deal with this issue.

Emily also points out how the rover photographed itself photographing itself — due to the reflective surfaces on the turret, so check out her analysis.

You can always see the raw images coming in from Curiosity at this NASA website.

But the other cool thing is that another whole set of images was taken from a slightly different angle, which means only one thing: 3-D! Here’s Stu Atkinson’s first quick attempt:

There will surely be some refinements of the 3-D version, but enjoy this one for now!

Timelapse of Hurricane Sandy, Satellite Views October 23-31, 2012

Here’s a complete animation of Hurricane Sandy from October 23-31, as seen by GOES-13, a geosynchronous satellite that is in orbit nearly 36,000 km (23,000 miles) above Earth. This huge storm was costly in terms of death and destruction. The death toll currently stands at 160 (88 in the U.S., 54 in Haiti, 11 in Cuba), with damage estimates ranging from $10 – $55 billion.

Below is a timelapse animation which shows the full hemisphere view from GOES-13, showing the development of Hurricane Sandy as it begins over Central America and begins its path up through the Caribbean and the east coast of the U.S.

The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite acquired this image of the storm around 3:13 a.m. Eastern Daylight Time (7:13 Universal Time) on October 31. Credit: NASA/NOAA

This image from the Suomi NPP satellite shows remnants of Hurricane Sandy as it moved inland in the early morning hours of October 31, 2012. As the center of the system passed Pennsylvania, its maximum sustained winds were 40 miles (64 kilometers) per hour. This image is from the “day-night band” on VIIRS, which detects light wavelengths from green to near-infrared. The Moon lit the tops of the clouds.

Sandy’s clouds stretched from Hudson Bay to Chicago and Washington. Clusters of lights gave away the locations of some cities throughout the region; but along the East Coast, clouds mostly obscured the lights, many of which were blacked out due to the storm. On October 31, the Wall Street Journal reported that several million customers in multiple states were without electricity.

You can see more satellite images of Sandy’s traverse at the NASA Earth Observatory website.