Moon Impact Probe Hits Paydirt (or pay-regolith…)

close up pictures of the moon's surface taken by Moon Impact Probe (MIP) on November 14, 2008

[/caption]
The lunar impactor from the Chandrayaan-1 mission today successfully made it to the surface of the moon, impacting inside the Shackleton crater on the moon’s south pole. Above is an image transmitted back by the 34 kg box-shaped MIP (Moon Impact Probe) before it slammed into the moon. Incoming!!! The MIP carried three instruments, and data was successfully transmitted from the 25-minute descent of the probe after it was ejected from the orbiting Chandrayaan-1. The impact, however caused a cessation of the instruments’ transmissions, but not before providing useful descent data. The ISRO has already released a couple of images.

close up pictures of the moon's surface taken by Moon Impact Probe (MIP) on November 14, 2008
close up pictures of the moon's surface taken by Moon Impact Probe (MIP) on November 14, 2008

The instruments included a video imaging system, a radar altimeter and a mass spectrometer. The video imaging system took pictures of the moon’s surface as MIP approached and the radar altimeter measured the rate of descent. These two instruments will help subsequent lunar missions for the ISRO, aiding in future soft landing missions to the moon. The mass spectrometer studied the extremely thin lunar atmosphere.

The MIP.  Credit: ISRO
The MIP. Credit: ISRO

Here’s a recap of the probe’s mission today from the ISRO:

“MIP’s 25 minute journey to the lunar surface began with its separation from Chandrayaan-1 spacecraft at 20:06 hrs (8:06 pm) IST. This was followed by a series of automatic operations that began with the firing of its spin up rockets after achieving a safe distance of separation from Chandrayaan-1. Later, the probe slowed down with the firing of its retro rocket and started its rapid descent towards the moon’s surface. Information from the instruments was radioed to Chandrayaan-1 by MIP. The spacecraft recorded this in its onboard memory for later readout. Finally, the probe had a hard landing on the lunar surface that terminated its functioning.”

Chandrayaan-1 is now in its science orbit. During the spiraling flight to the moon, two payloads were turned on – the Terrain Mapping Camera (TMC) and Radiation Dose Monitor (RADOM). The eight other instruments on board will be activated in the coming days.

Source: ISRO

New NASA, New Administrator Under Obama?

NASA logo

NASA appears to be in the position of being a priority for our new president, somewhat of a rarity. So what can NASA expect under the Obama administration? NASA administrator Mike Griffin met with employees at the Kennedy Space Center on Thursday where workers asked if he would continue as administrator under the new president. “If the next president asks me to continue I would be happy to do it,” said Griffin, “But, I doubt that will happen.” However, if asked to stay, he would only if the Obama White House didn’t interfere with the direction NASA is going (presumably he meant the Constellation program and returning to the moon), and didn’t try to force any personnel on him. He also spoke out against extending the shuttle or using EELV rockets to transport humans to space instead of NASA’s current Ares I rocket design.“If somebody wanted me to stay on but said, ‘No, we need to go over here,’ well,” he said with a shrug, “do it with somebody else.” What else can NASA expect with the new presidential administration?

“While NASA usually does not factor as a near-term decision for incoming Administrations, this year the General Accounting Office highlighted Shuttle retirement as one of its top 13 urgent issues across the government,” NASA Deputy Administrator Shana Dale wrote in her blog after last week’s election. Dale said NASA has been developing a large set of reference material for the new presidential team to review.

Artists concept of the Ares Rocket.  Credit: NASA
Artists concept of the Ares Rocket. Credit: NASA

Officials close to Obama’s transition team have said the new president is likely to review Constellation, the replacement for the shuttle that suffers from technical and financial problems that could delay its first scheduled mission in 2015.

Some have speculated Constellation could be terminated and replaced by more space shuttle flights and a different rocket design.

U.S. Sen. Bill Nelson, one of Obama’s closest advisers on space, wants to keep Griffin as administrator, and lobbied the Obama team to keep Griffin, at least, for the time being.

Current NASA Administrator, Michael Griffin. Credit: NASA
Current NASA Administrator, Michael Griffin. Credit: NASA

Some congressional and industry sources have cited several potential replacements, from former astronaut Sally Ride to Lori Garver, a former top NASA administrator who heads Obama’s NASA transition team.

Dr. Scott Pace, Director of the Space Policy Institute told Universe Today that putting NASA through a big reorganization could be counterproductive. “Given that NASA has reached a point of stability internally and organizationally, I would hate to see a year or two wasted by yet another re-organizational exercise,” he said. “The new president should give NASA their priorities, tell them what budget they’re going to get and move on from there. NASA has a lot on its plate right now, simply with the transition from the shuttle to whatever comes next. They need to stay focused over the next couple of years on completing their flights safely. So they should focus on that and not reorganization.”

Sources: Orlando Sentinel, Huntsville Times, Shana Dale’s blog,

New Insights on Magnetars

Artists impression of a magnetar. Credits: © 2008 Sky & Telescope: Gregg Dinderman

[/caption]

Neutron stars are leftovers of massive stars (10-50 times as massive as our Sun) that have collapsed under their own weight. Most are only about 20 km in diameter, but they are so compact that a teaspoon of neutron star stuff would weigh about one hundred million tons. Two other physical properties characterize a neutron star: their fast rotation and strong magnetic field. Magnetars form a class of neutron stars with ultra-strong magnetic fields, approximately a thousand times stronger than that of ordinary neutron stars, making them the strongest known magnets in the cosmos. But astronomers have been unsure exactly why magnetars shine in X-rays. Data from ESA’s XMM-Newton and Integral orbiting observatories are being used to test, for the first time, the X-ray properties of magnetars.

So far, about 15 magnetars have been found. Five of them are known as soft gamma repeaters, or SGRs, because they sporadically release large, short bursts (lasting about 0.1 s) of low energy (soft) gamma rays and hard X-rays. The rest, about 10, are associated with anomalous X-ray pulsars, or AXPs. Although SGRs and AXPs were first thought to be different objects, we now know that they share many properties and that their activity is sustained by their strong magnetic fields.

Magnetars are different from ‘ordinary’ neutron stars because their internal magnetic field is thought to be strong enough to twist the stellar crust. Like in a circuit fed by a gigantic battery, this twist produces currents in the form of electron clouds which flow around the star. These currents interact with the radiation coming from the stellar surface, producing the X-rays.

An artist's impression of XMM-Newton.   Credits: ESA (Image by C. Carreau)
An artist's impression of XMM-Newton. Credits: ESA (Image by C. Carreau)

Until now, scientists could not test their predictions, because it is not possible to produce such ultra-strong magnetic fields in laboratories on Earth.

To understand this phenomenon, a team led by Dr Nanda Rea from the University of Amsterdam used XMM-Newton and Integral data to search for these dense electron clouds around all known magnetars, for the first time.

Rea’s team found evidence that large electron currents do actually exist, and were able to measure the electron density which is a thousand times stronger than in a ‘normal’ pulsar. They have also measured the typical velocity at which the electron currents flow. With it, scientists have now established a link between an observed phenomenon and an actual physical process, an important clue in the puzzle of understanding these celestial objects.

The team is now working hard to develop and test more detailed models on the same line, to fully understand the behavior of matter under the influence of such strong magnetic fields.

Source: ESA

Rescued Moon Photos Restored to Unprecedented Detail

Restored Earthrise. Credit: MoonViews.com

[/caption]

Earlier this week we had a story about old data from the Apollo missions that could potentially be lost if an “antique” computer from the 1960’s can’t be renovated. But now comes good news about more old data which has actually been restored and enhanced to an exceedingly high quality. Some of the first ever close-up images of the lunar landscape have been given new life, rivaling the images being taken by today’s high definition cameras. NASA and some private space business leaders spent a quarter million dollars rescuing the historic photos from early NASA lunar robotic probes and restoring them in an abandoned McDonald’s. The first refurbished image was released Thursday, a 42-year old classic image of the moon with Earth rising in the background.

In 1966 and 1967, NASA sent five Lunar Orbiter missions to photograph the surface of the moon to prepare for the Apollo missions to land humans on the lunar surface. Data were recorded on large magnetic tapes and transferred to photographic film for scientific analysis. When these images were first retrieved from lunar orbit, only a portion of their true resolution was available because of the limited technology available. A special machine was needed to just to view the images.

Initially, the moon pictures were the hit of the 1960s. The photo released Thursday was the first of Earth from a great distance, until it was outdone by Apollo 8 astronauts, the first to orbit the moon. And a 1966 close-up of the moon was hailed by some media as the “picture of the century.”

After the Apollo missions, with all the images taken by the astronauts, the Lunar Orbiter images were essentially forgotten. The tapes with the images were put in storage. The specialized machines were offered free to anyone who would haul them away.

Nancy Evans, co-founder of the NASA Planetary Data System (PDS) took a couple machines in order to make sure the data taken by the Lunar Orbiters wasn’t lost. For a time in the 1980’s Evans worked on digitizing the images, but when funding dried up, the drives sat in a barn in Sun Valley, CA for the next several decades.

In 2007, Nancy Evans tried to find someone to take the drives. Dennis Wingo, a private space entrepreneur heard about this and contacted Keith Cowing from NASA Watch. Wingo and Cowing subsequently obtained the drives and tapes. They took over a shuttered McDonald’s at NASA’s Ames Research Center in Moffett Field, Calif., and patched together one working machine to read the tapes, used in combination with today’s software.

Future images will be made publically available when they are fully processed and calibrated. The intent of this project is to facilitate, wherever possible, the broadest dissemination and public use of these images.

“This is an incredible image,” said Wingo. “In terms of raw resolution, there has been no mission that has flown since or even today that is as good.”

With one photo down, there are 1,983 more to go, if the machine holds up, Wingo said.

These photos will have some use, said Cowing. When NASA launches its the Lunar Reconnaissance Orbiter in the spring, the space agency can compare detailed high-resolution images from 1966 to 2009 and see what changes occurred in 43 years, he said.

“What this gives you is literally before and after photos,” Cowing said. “This is like a time machine.”

For more information see NASA’s Lunar Orbiter Image Recovery Project and MoonViews.com. Here are some Apollo 13 pictures.

Sources: NASA Watch, AP, NASA

Hubble Takes First Visible Light Image of Extrasolar Planet

Fomalhaut and orbiting planet. Credit: NASA, ESA and P. Kalas (University of California, Berkeley, USA)

[/caption]
Persistence has paid off for astronomer Paul Kalas. After eight years and taking repeated photographs with the Hubble Space Telescope of a nearby star, he finally has what he and many astronomers have been striving for: the first visible-light snapshot of a planet outside our solar system. This coincides with the announcement of the first time astronomers have taken pictures of another multi-planet solar system, using the Gemini and Keck Telescopes. Kalas has been studying the star Fomalhaut, located about 25 light years from Earth, for several years. He knew the planet was there, because its perturbations were evident in the ring of gas and dust surrounding the star. The planet is probably close to the mass of Jupiter, and it orbits Fomalhaut at a distance about four times that between Neptune and the sun. Formally known as Fomalhaut b, the planet could have a ring system about the dimension of Jupiter’s early rings, before the dust and debris coalesced into the four Galilean moons. Learn more in the video below…

The planet’s existence was suspected in 2005, when images Kalas took with the Hubble Space Telescope’s Advanced Camera for Surveys showed a sharply defined inner edge to the dust belt around Fomalhaut, in the southern constellation Piscus Austrinus. The sharp edge and off-center belt suggested to Kalas that a planet in an elliptical orbit around the star was shaping the inner edge of the belt, much like Saturn’s moons groom the edges of its rings.

“The gravity of Fomalhaut b is the key reason that the vast dust belt surrounding Fomalhaut is cleanly sculpted into a ring and offset from the star,” Kalas said. “We predicted this in 2005, and now we have the direct proof.”

Check out this video from ESA about the discovery:

“It will be hard to argue that a Jupiter-mass object orbiting an A star like Fomalhaut is anything other than a planet,” said coauthor James R. Graham, professor of astronomy at UC Berkeley. “That doesn’t mean it’s exactly what we expected when we went hunting for planets in this system.”

“Every planet has a chaotic zone, which is basically a swath of space that encloses the planet’s orbit and from which the planet ejects all particles,” said Eugene Chiang, a UC Berkeley associate professor of astronomy and of earth and planetary science, and first author of the ApJ paper. “This zone increases with the mass of the planet, so, given the size of the chaotic zone around Fomalhaut b, we can estimate that its likely mass is in the vicinity of one Jupiter mass.”

Fomalhaut annotated.  Credit: Credit: NASA, ESA, and Z. Levay (STScI)
Fomalhaut annotated. Credit: Credit: NASA, ESA, and Z. Levay (STScI)

Kalas now has two photographs of the planet, taken in 2004 and 2006, which show that its movement over a 21-month period exactly fits what would be expected from a planet orbiting Fomalhaut every 872 years at a distance of 119 astronomical units, or 11 billion miles. One astronomical unit (AU) is the average distance between the Earth and the sun, or 93 million miles.

“I nearly had a heart attack at the end of May when I confirmed that Fomalhaut b orbits its parent star,” Kalas said. “It’s a profound and overwhelming experience to lay eyes on a planet never before seen.”

Sources: EurekAlert, ESA’s Space Telescope site

First Image of Another Multi-Planet Solar System

Image shows two of the three confirmed planets indicated as "b" and "c" on the image above. "b" is the ~7 Jupiter-mass planet orbiting at about 70 AU, "c" is the ~10 Jupiter-mass planet orbiting the star at about 40 AU. Credit: Gemini Observatory

Here’s what we’ve all been waiting for: for the first time, astronomers have taken pictures of a multi-planet solar system, much like ours, orbiting another star. This coincides with announcement of the first visible light image of an extrasolar planet taken by the Hubble Space Telescope. This new solar system orbits a dusty young star named HR8799, which is 140 light years away and about 1.5 times the size of our sun. Three planets, roughly 10, 10 and 7 times the mass of Jupiter, orbit the star. The size of the planets decreases with distance from the parent star, much like the giant planets do in our system. And there may be more planets out there, but scientists say they just haven’t seen them yet.

“We’ve been trying to image planets for eight years with no luck and now we have pictures of three planets at once,” said Bruce Macintosh, an astrophysicist from Lawrence Livermore National Laboratory.

Using high-contrast, near-infrared adaptive optics observations with the Keck and Gemini telescopes, the team of researchers were able to see three orbiting planetary companions to HR8799.

Astronomers have known for a decade through indirect techniques that the sun was not the only star with orbiting planets.

“But we finally have an actual image of an entire system,” Macintosh said. “This is a milestone in the search and characterization of planetary systems around stars.”

Three exoplanets orbiting a young star 140 light years away are captured using Keck Observatory near-infrared adaptive optics. The planets are labeled and the two outer ones have arrows showing the size of their motion over a 4 year period.
Three exoplanets orbiting a young star 140 light years away are captured using Keck Observatory near-infrared adaptive optics. The planets are labeled and the two outer ones have arrows showing the size of their motion over a 4 year period.

The planets are 24, 37 and 67 times the Earth-sun separation from the host star. The furthest planet in the new system orbits just inside a disk of dusty debris, similar to that produced by the comets of the Kuiper belt of our solar system (just beyond the orbit of Neptune at 30 times Earth-sun distance).

“HR8799’s dust disk stands out as one of the most massive in orbit around any star within 300 light years of Earth” said UCLA’s Ben Zuckerman.

Binocular finder chart for the star HR 8799 in Pegasus.    Credit: "Gemini Observatory Illustration by Stephen James O'Meara"
Binocular finder chart for the star HR 8799 in Pegasus. Credit: “Gemini Observatory Illustration by Stephen James O’Meara”

The host star is known as a bright, blue A-type star. These types of stars are usually ignored in ground and space-based direct imaging surveys since they offer a less favorable contrast between a bright star and a faint planet. But they do have an advantage over our sun: Early in their life, they can retain heavy disks of planet-making material and therefore form more massive planets at wider separations that are easier to detect. In the recent study, the star also is young – less than 100 million years old – which means its planets are still glowing with heat from their formation.

“Seeing these planets directly – separating their light from the star – lets us study them as individuals, and use spectroscopy to study their properties, like temperature or composition,” Macintosh said.

During the past 10 years, various planet detection techniques have been used to find more than 200 exoplanets. But these methods all have limitations. Most infer the existence of a planet through its
influence on the star that it orbits, but don’t actually tell scientists anything about the planet other than its mass and orbit. Second, the techniques are all limited to small to moderate planet-star separation, usually less than about 5 astronomical units.

The planets themselves each appear very interesting.

“Detailed comparison with theoretical model atmospheres confirms that all three planets possess complex atmospheres with dusty clouds partially trapping and re-radiating the escaping heat” said Lowell Observatory astronomer Travis Barman.

Source: Gemini Observatory

Cassini Finds New Mysterious Infrared Aurora

An infrared camera aboard NASA’s Cassini spacecraft has discovered a unique aurora lighting up Saturn’s polar cap. The mysterious new aurora is unlike any other known in our solar system. “We’ve never seen an aurora like this elsewhere,” said Tom Stallard, an RCUK Academic Fellow working with Cassini data at the University of Leicester. Stallard is lead author of a paper released today (13th
November) in the journal Nature. “It’s not just a ring of aurorae like those we’ve seen at Jupiter or Earth. This one covers an enormous area across the pole. Our current ideas on what forms Saturn’s aurorae predict that this region should be empty, so finding such a bright one here is a fantastic surprise.”

Aurorae are caused when charged particles stream along the magnetic field of a planet and into its atmosphere. On Earth these charged particles come from the solar wind – a stream of particles that
emanates from the Sun.

Jupiter’s main auroral ring, caused by interactions internal to Jupiter’s magnetic environment, is constant in size. Saturn’s main aurora, which is caused by the solar wind, changes size dramatically as the wind varies. The newly observed aurora at Saturn, however, doesn’t fit into either category.

“Saturn’s unique auroral features are telling us there is something special and unforeseen about this planet’s magnetosphere and the way it interacts with the solar wind and the planet’s atmosphere,” said
Nick Achilleos, Cassini scientist on the Cassini magnetometer team at the University College London. “Trying to explain its origin will no doubt lead us to physics which uniquely operates in the environment of Saturn.”

Saturn's aurora in Ultraviolet from Hubble.Credits: J.T. Trauger (Jet Propulsion Laboratory) and NASA.
Saturn's aurora in Ultraviolet from Hubble.Credits: J.T. Trauger (Jet Propulsion Laboratory) and NASA.

The new infrared aurora appears in a region hidden from NASA’s Hubble Space Telescope, which has provided views of Saturn’s ultraviolet aurora. Cassini observed it when the spacecraft flew near Saturn’s polar region. In infrared light, the aurora sometimes fills the region from around 82 degrees north all the way over the pole. This new aurora is also constantly changing, even disappearing within a 45 minute-period.

Source: NASA

Less Than 20 Years Until First Contact?

Allen Telescope Array. Credit: ATA

[/caption]
The Allen Telescope Array (ATA) has come online with its initial configuration of 42 antennas. The project, led by the SETI Institute, is a non-governmental project funded by Microsoft co-founder Paul Allen in which eventually 350 small radio antennas will scan the sky for signs of extraterrestrial intelligence. To test the system, the ATA sucessfully picked up the New Horizons probe on its way to Pluto. Senior SETI scientist Seth Shostak said at an event in San Francisco Tuesday night that the array could become strong enough by 2025 to look deep enough into space to find extraterrestrial signals. “We’ll find E.T. within two dozen years,” he said.

That’s, of course, assuming the distance we can look into space will be increased with new instruments yet to be built, and that the projected computing power under Moore’s Law actually happens.

Shostak estimated that if the assumptions about computing power and the strength of forthcoming research instruments are correct, we should be able to search as far out as 500 light years into space by 2025, a distance he predicted would be enough–based on scientist Frank Drake’s estimate of there being 10,000 civilizations in our galaxy alone capable of creating radio transmitters–to find evidence of intelligent life that is broadcasting its existence.

Only time will tell.

For the New Horizons observation, made Sept. 10, operators of the ATA used a synthesized beam formed with 11 of the array’s 6.1-meter (20 foot) antennas – a method called “beamforming” that electronically combines the antennas into a single virtual telescope. The 8.4-GHz spacecraft carrier signal was then fed into the SETI Prelude detection system.

“We’re happy to be the ATA’s new friend in the sky, helping SETI to verify the operations of their electronics,” says New Horizons Principal Investigator Alan Stern. “It’s also nice to know that someone else is checking in on us during our long voyage to Pluto and beyond.”

And what does New Horizons look like to the Allen Telescope Array? This plot shows 678 hertz (Hz) of spectrum collected over 98 seconds. The New Horizons signal can be easily seen as a bright diagonal line, drifting at rate of -0.6 > Hz/second.

What New Horizons looks like to The ATA.  Credit: SETI Institute
What New Horizons looks like to The ATA. Credit: SETI Institute

Sources: CNET, New Horizons

This Week’s “Where In The Universe” Challenge

Here’s this week’s “Where In The Universe” challenge. Take a look and see if you can name where in the Universe this image is from. Give yourself extra points if you can name the spacecraft responsible for the image. The new way we’re doing this challenge is that we’ll provide the image today, but won’t reveal the answer until tomorrow. This gives you a chance to mull over the image and provide your answer/guess in the comment section — if you dare! Check back tomorrow on this same post to see how you did. Good luck!

UPDATE (11/3): The answer has now been posted below. If you haven’t made your guess yet, no peeking before you do!!

Nice job on this one, everyone. Yes, its the sun. This image was taken back in July of 2002 of an active region of the sun. The image was produced by the Swedish 1-meter Solar Telescope on the island of La Palma, Spain. (I apologize, obviously that’s not a “spacecraft” and I should not have used the word “spacecraft” in the above paragraph — habits are hard to break.) These aren’t just little bumps on the sun. The structures in the dark sunspots in the upper central area of the image show distinct elevation above the dark “floor” of the sunspot. The height of the structures has been estimated by astronomers to be between 200 and 450 km, and the smallest resolvable features in the image are about 70 km in size! Wow!

I actually saw this image first on the Boston Globe’s The Big Picture, but here’s the original press release and info on this great image of the sun.

Europa Submarine Prototype Gets Another Test

ENDURANCE submarine. Credit: John Rummel, NASA

[/caption]
A submersible probe that could possibly be used on Jupiter’s icy moon, Europa is taking the next step to test its capabilities. The Environmentally Non-Disturbing Under-ice Robotic Antarctic Explorer, also known as ENDURANCE, will swim untethered under ice, and collect data to create three-dimensional maps of underwater environments. The probe also will take samples of microbial life. Earlier this year, it operated successfully in a 25 meter frozen lake in Wisconsin, USA. Now it will plunge under a permanently ice covered lake in Antarctica that is 40 meters deep. ENDURANCE isn’t like the Mars Rovers or other remote-operated probes. Once deployed, it’s on its own to systematically explore, take water samples, and find its way back. “It will have to think on its own,” said Peter Doran, an Earth scientist at the University of Illinois in Chicago.

In the February 2008 test, ENDURANCE successfully found its way around the bottom of the lake and back to the hole that drilled in the ice to get the probe in and out of the lake. It also demonstrated that its electronics functioned perfectly well in cold water.

At Lake Bonney in Antarctica, ENDURANCE will not only map the lake and explore its biology, but also take a close look at the base of a feature called Blood Falls, where reddish, iron-containing salts spill out of the face of a glacier at the lake’s upper end.

If all goes well the next test would have the probe or an improved version descend through 3.5 km of ice to one of the world’s largest, deepest and most mysterious lakes, Lake Vostok, also in Antarctica.
But even that pales in comparison to what a probe might encounter at Europa. Scientists believe that Europa’s ocean could be up to 100 kilometers deep, under 6 kilometers of ice.

Hot water drills will bore a hole for ENDURANCE to enter the water in Antarctica. If all goes well, the probe will be tested again in 2009.

But many hurdles remain before an underwater vehicle could possibly head to Europa. Presently, Endurance is too massive to send on interplanetary travel. Engineers will also have to come up with a way to drill through Europa’s icy crust and lower the sub safely through the ice.

But many scientists feel that an orbiting spacecraft would be the best way to study Europa, before sending an underwater probe. The Jet Propulsion Laboratory is currently working on a concept called the Europa Explorer which would deliver a low orbit spacecraft to determine the presence (or absence) of a liquid water ocean under Europa’s ice surface. It would also map the surface and subsurface for future exploration.

Source: COSMOS