Comm Glitch Resolved; New Raw Images from Phoenix

The UHF radio on the Mars Reconnaissance Orbiter that had gone into standby mode yesterday was successfully restarted. The orbiter was then able to receive information from the Phoenix Mars Lander late Tuesday evening and relay the transmission to Earth, which included images and other data collected by Phoenix during the mission’s second day after landing on Mars. The radio system used by the orbiter to communicate with the lander experienced an undetermined “transient event” early Tuesday and shut itself off. This prevented sending Phoenix any new commands from Earth on Tuesday. Instead, the lander carried out a backup set of activity commands that had been sent Monday, which included taking additional pictures of itself and the landing site. Above is one of the raw, unprocessed image the lander took of itself.


We’ve gotten used to the panoramic images of Mars from the Mars Exploration Rovers, and we can expect more of the same from Phoenix. Above is the beginnings of a panoramic view of the lander and its surroundings. The Surface Stereo Imager is in the process of taking multiple images, which the imaging team will process and piece together to form a a large color panorama.

And how do these raw, black and white images become colorful photos and panoramas? At left is a calibration target on Phoenix. It has grayscale and color dots. Before launch, the calibration targets are imaged and measured very accurately, so that the imaging team back on Earth knows what the colors and different shades of grey are.

Once on Mars, a picture is taken of the target. The picture will be processed through the software they use, and if it comes out looking the same as the pictures taken of the target before launch, the imaging team knows they have processed the picture correctly. They then use the same technique to process the images of Mars surface, and produce images that are as close as possible to the “real” colors on Mars.

Here’s one more raw image, the beginnings the panorama of the entire spacecraft, of the SSI camera looking down on the spacecraft itself.

Image Source: Phoenix Gallery

Communication Glitch for Phoenix, MRO

The UHF communications radio on board the Mars Reconnaissance Orbiter has switched to standby and was unable to relay instructions to the Phoenix lander for its activities for sol 2, which included unstowing its robotic arm. The problem arose at 0608 PDT on Tuesday. MRO did receive the sol 2 sequence from Earth – meaning the communications link between Earth and MRO continues to operate normally. But subsequently MRO reported that there had been a “problem with the handshake between MRO and Phoenix,” said Fuk Li, manager of NASA’s Mars Exploration Program. A ‘handshake’ is the set of signals the radios on the two spacecraft send each other to establish a data-communications link.

“All this is is a one-day hiccup in being able to move the arm around, so it’s no big deal,” said Ed Sedivy, Phoenix program manager at Lockheed Martin Space Systems.

The next opportunity to send commands to Phoenix will occur on Wednesday morning, when Mars Odyssey, the other spacecraft used to communicate with Phoenix, passes over the landing site. At that time, the commands that failed to reach the lander today will be transmitted. We’ll keep you posted.

Also, we’ll take this opportunity to share a couple of other tidbits about Phoenix. The image above was taken on sol 1, and shows Phoenix’s backshell off in the distance.


On board Phoenix is a weather station, contributed by the Canadian Space Agency and University of Aarhus in Denmark. The weather station was activated in the first hour after landing on Mars. Measurements are being recorded continuously. Skies were clear and sunny on Sol 1 on Mars. The temperature varied between minus 112 degrees Fahrenheit in the early morning and minus 22 degrees Fahrenheit in the afternoon. The average pressure was 8.55 millibars, which is less than a 1/100th of the sea level pressure on Earth.

This image shows the spacecraft’s robotic arm in its stowed configuration, with the a biobarrier, a shiny, protective film, that covers the arm on landing day, or Sol (Martian day) 0, and then the biobarrier was removed during lander’s first full day on Mars, Sol 1.

The “elbow” of the arm can be seen at the top center of the picture, and the biobarrier is the shiny film seen to the left of the arm.

The biobarrier is an extra precaution to protect Mars from contamination with any bacteria from Earth. While the whole spacecraft was decontaminated through cleaning, filters and heat, the robotic arm was given additional protection because it is the only spacecraft part that will directly touch the ice below the surface of Mars. After Phoenix landed, springs were used to pop back the barrier, giving it room to deploy.

These images were taken on May 25, 2008 and May 26, 2008 by the spacecraft’s Surface Stereo Imager.

News Sources: Astrobiology Magazine, JPL Phoenix News

Why the Phoenix Landing Site is Perfect

Permafrost on Mars (top) compared to Earth (bottom). Image credit: NASA Earth Observatory

Phoenix’s landing site may look flat and uninteresting. But actually, the site is perfect, and is exactly what the Phoenix science team was hoping for. You see, Phoenix is actually more interested in what is below the surface. From one of the first images sent back by Phoenix, a view of Mars’ surface at this site reveals a landscape familiar to polar scientists on Earth: a pattern of interlocking polygon shapes that form in permafrost that freezes and thaws seasonally. These polygon patterns were seen in orbital pictures taken by the Mars Reconnaissance Orbiter, as well as other spacecraft, and these polygon shapes are part of the evidence that Mars’ polar regions harbor large quantities of frozen water.

This pair of images above shows the similarities between the surface of Mars where Phoenix landed (top) and permafrost on northeastern Spitsbergen, Svalbard (bottom) an archipelago in the Arctic Ocean north of mainland Europe, about midway between Norway and the North Pole. The polygon patterns in the permafrost form when the upper parts of the ground thaw and refreeze from season to season. The ground contracts in the winter cold, creating small spaces that fill with melted water in the summer. When winter returns and the water freezes, it acts like a wedge, enlarging the cracks.


The Phoenix landing site with polygon shapes visible from orbit via MRO.

The only difference in these photos is the Earth image shows water on the surface, and on Mars, water couldn’t pool on the surface because the low atmospheric pressure would cause any water that might bubble to the surface to sublimate. But the thaw/freeze process could presumably occur beneath Mars’ surface with far less water.

And why is this so interesting? On Earth, permafrost, glaciers, and other frozen environments can preserve organic molecules, bacteria, and fungi for hundreds of thousands, even millions, of years. The Phoenix spacecraft has scientific instruments that will dig into the frozen ground of the Martian Arctic, vaporize the soil sample, and analyze the chemistry of the vapors. Scientists hope to learn whether ice just below the surface ever thaws and whether some chemical ingredients of life are preserved in the icy soil.

That’s why Phoenix’s landing site is perfect.

Original News Source: NASA Earth Observatory

Another HiRISE Stunner: The Full Descent Image

I hope you’re not tired of seeing HiRISE images of Phoenix, but this one shows the grandeur of Mars compared to the tininess of our spacecraft. Remember the close-up image of Phoenix descending to Mars’ surface with its parachute? Well, the HiRISE folks were holding back on us. Above is the jaw-dropping full image, with the inset being the close-up of Phoenix! What an amazing vista, and our little Phoenix is just a tiny pixel or two in the entire image. That the imaging team found Phoenix in this photo is incredible. And no, Phoenix is not heading into the crater, as it appears. The lander is actually about 20 kilometers (about 12 miles) in front of the crater. This is just so amazing.

Tell me when you’ve had enough of these images, but I’m saying, “Keep ’em coming!”

I love HiRISE even more.

BTW, the crater is informally called “Heimdall,” and is about 10 km (6 miles) wide.

Original Source: JPL Phoenix News

HiRISE Does It Again; Captures Phoenix On Mars’ Surface

The HiRISE Camera Imaging Team for the Mars Reconnaissance Orbiter keeps outdoing themselves. First, they imaged Mars’ surface in such fine detail to help choose a safe yet interesting landing site for Phoenix. Then they beat the odds and actually captured Phoenix during its descent to Mars surface, which is completely incredible. And now, in very short order they’ve located and imaged Phoenix and all its accoutrements sitting on Mars north polar region. The parachute (lower left) is easy to identify because it is especially bright and the backshell is still attached to the parachute cords. The double dark marking at right is consistent with disturbance of the ground from impact and bouncing of the heat shield, which fell from a height of about 10 kilometers. The last object (upper left) is the Phoenix Lander whose two solar panels on either side of the lander are clearly visible.

To give you a sense of scale of what you’re seeing, the solar panels are about 5.5 meters (about 18 feet) across, and about 22 pixels in this image. The parachute and lander are about 300 meters, roughly 1,000 feet, apart. All seen and imaged by MRO from orbit. Amazing.

I love HiRISE.

In other Phoenix news, the commands to activate the robotic arm will be sent Wednesday morning via communications with, appropriately enough, MRO.

See below for close-ups and the entire image without the inserts.

All these images were acquired about 22 hours after Phoenix landed at about 3:00PM local time on the surface. The rest of the HiRISE observation shows a cloud free day for Phoenix Lander operations.

Close up of the Phoenix lander.

Parachute and backshell.

Source: HiRISE

The Wizard Takes Off Without Dorothy: Skydiver’s Balloon Leaves Him Behind

We can only imagine the disappointment skydiver Michel Fournier must have felt watching his helium balloon take off without him, a la Dorothy in the “Wizard of Oz.” Today, Fournier was going to attempt a record setting skydiving leap from 130,000 feet (40,000 meters), about three times higher than commercial airplanes fly. But the helium balloon he was going to use to soar to the stratosphere detached from the capsule that would have carried him heavenward. Reportedly, the balloon cost at least $200,000 USD and Fournier, 64, was said to have already exhausted his finances. The former paratrooper had planned to make the attempt Monday, but had to postpone his plans because of weather conditions. What a bummer.

The balloon was inflated on the ground at the airport in North Battleford, Saskatchewan. The balloon detached and drifted away into the sky without the capsule.

Fournier appeared disappointed as he left the capsule and walked to the hanger.

Attempts in 2002 and 2003 ended when wind gusts shredded his balloon before it even became airborne.

Fournier’s jump would have broken the record for the fastest and longest free fall, the highest parachute jump and the highest balloon flight. He also hoped to bring back data that will help astronauts and others survive in the highest of altitudes.

An army of technicians, data crunchers, balloon and weather specialists arrived recently in North Battleford, a city of 14,000 near the Saskatchewan-Alberta line, for the attempt.

Fournier had planned to make the jump in his native France, but the government denied him permission because it believed the project was too dangerous. He then came to North Battleford, an agricultural and transportation hub northwest of Saskatoon.

Original News Source: PhysOrg

Solar Blast Seen in Unprecedented Detail (Video)

Periodically our sun blasts streams of hot, ionized gas into the solar system. These eruptions, called coronal mass ejections or CMEs pose a potential threat to astronauts or satellites if aimed at Earth. On April 9, the Sun erupted with a CME, and because the eruption was located on the edge or limb of the sun, it was observed in unprecedented detail by a fleet of spacecraft, revealing new features that are predicted by computer models but are otherwise difficult to see, even for specialized sun-watching spacecraft. From these observations, astronomers have been able to create an animation of this spectacular event.

When a CME occurs, usually spacecraft watching the event need to protect themselves from the bright X-ray solar flare associate with a CME. However, since the April 9 CME occurred on the edge or limb of the Sun as viewed from Earth, the solar flare was hidden from view, which allowed spacecraft to take longer exposures and uncover fainter structures than usual.

“Observations like this are very rare,” said Smithsonian astronomer Ed DeLuca.

Using the Smithsonian-developed X-ray Telescope (XRT) aboard the Japanese Hinode sun-watching satellite, astronomers saw a spiral (helical) magnetic structure unwind as it left the Sun during the CME. Such unwinding can release energy as the magnetic field goes from a more twisted to a less twisted configuration, thereby helping to power the eruption.

Hours later, XRT revealed an inflow of material toward a feature that appears as a bright line—actually an object known as a current sheet seen edge-on. A current sheet is a thin, electrified sheet of gas where oppositely directed magnetic field lines annihilate one another in a process known as magnetic reconnection. The extended observations from XRT show that magnetic fields flow in toward the current sheet for many hours after the eruption, progressing first toward the sheet and then down to the sun’s surface.

The astronomers were able to create an animation of the event.

They also determined that the temperature of the current sheet is between 5 and 18 million degrees Fahrenheit, which matches previous measurements higher up in the corona by the Ultraviolet Coronagraph Spectrometer on the SOHO spacecraft.

Astronomers study these explosions in hope of being able to predict them and provide “space weather” forecasts.

Original News Source: Harvard Smithsonian Center for Astrophysics

Astronomers Image Dying Supergiant Star

Image: NASA, Spitzer Satellite, SAGE Team

For the first time, a team of astronomers has taken a close-up image of an individual dying supergiant star, WHO G64, in a neighboring galaxy, the Large Magellanic Cloud, about 160,000 light years distant. Researchers have been trying for decades to look closely at how aging stars lose a considerable amount of their mass before they go supernova. But this is difficult because of the great distances. However, by combining two 8.2m telescopes in Chile as an interferometer, they achieved the resolving power of a 60-m telescope. With this super-sharp view, they discovered that the dying supergiant star is developing a thick dust torus around it. They estimated that the star had an initial mass of about 25 times the mass of our sun. But now, the star is shedding material so rapidly that it has already lost 10 – 40% of its initial mass and is speeding toward its final fate as a supernova.

When a star becomes older, it ejects a huge amount of material and gets embedded in a thick envelope, in which a variety of molecules and dust form. Even with the world’s largest optical telescopes with 8 – 10m diameters, it is still difficult to take a close-up shot of aging stars closest to Earth, let alone those outside our own galaxy, the Milky Way.

Using two or more telescopes combined as an “interferometer” provides a way to achieve much higher resolving power than an individual telescope alone. The ESO’s Very Large Telescope Interferometer (VLTI) in Chile is one of the largest interferometers, combining two or three 8.2m telescopes. A team of researchers at Max Planck Institute for Radio Astronomy (MPIfR) and the European Southern Observatory (ESO) these instruments at mid-infrared wavelengths, which is ideal for observing the thermal radiation from the dust envelope heated by the star.

“For the first time we could take a close-up view of an individual star outside our Galaxy, and this is an important first step to understand how dying stars in other galaxies differ from their counterparts in our Milky Way”, says Keiichi Ohnaka at the MPIfR. “We discovered that the dying supergiant star WOH G64 is surrounded by a thick dust torus which sort of looks like a thick bagel by comparing it with detailed theoretical modeling.” The diameter of the supergiant star is as large as the orbit of Saturn in the solar system. The dimensions of the whole torus are considerably larger: the inner edge of the torus is at 120 AU (“Astronomical Units”, corresponding to the distance of the Earth from the sun), the total size of the torus reaches almost one light year.

In the next few thousand or ten thousand years, WHO G64 will explode as a supernova. Judging from its mass of WOH G64, it will become visible to the unaided eye in the southern hemisphere. The supernova explosion will blow away most of the mass of WOH G64, which will then be recycled as the building blocks for stars of the next generation.

Original News Source: Max Plank Institute

More On Phoenix: MRO Captures Descent and Videos

The Mars Reconnaissance Orbiter did some first class reconnaissance by snapping an image of Phoenix during its descent with a parachute. This is the first time that a spacecraft has imaged the final descent of another spacecraft onto a planetary body. The incredible HiRISE Camera was pointed towards the area of Phoenix’s descent, and from a distance of about 760 kilometers (472 miles) above the surface of the Red Planet, it captured Phoenix with its parachute descending through the Martian atmosphere. The image reveals an apparent 10-meter-wide (30-foot-wide) parachute fully inflated. Absolutely amazing.

Also, JPL has a couple of new videos of interest for Phoenix. If you want to re-live the drama of the landing, here a great video showing the events in mission control along with the artist’s conception video of the events taking place on Mars. It’s great fun.

Also, here’s another video that describes the scientific endeavors that Phoenix will be undertaking.

More about the MRO image capturing the descent:
The image faintly detects the chords attaching the backshell and parachute. The surroundings look dark, but correspond to the fully illuminated Martian surface, which is much darker than the parachute and backshell.

Phoenix released its parachute at an altitude of about 12.6 kilometers (7.8 miles) and a velocity of 1.7 times the speed of sound.

The HiRISE acquired this image on May 25, 2008, at 7:36 p.m. Eastern Time. It is a highly oblique view of the Martian surface, 26 degrees above the horizon, or 64 degrees from the normal straight-down imaging of Mars Reconnaissance Orbiter. The image has a scale of 0.76 meters per pixel.

One-Way Mission to Mars: US Soldiers Will Go

Sergeant First Class William H. Ruth III contemplates his current duty in a barren landscape in Afghanistan, and says he’s willing to lead a human mission to Mars.

An article published on Universe Today back in March of this year detailing former NASA engineer Jim McLane’s idea for on a one-way, one-person mission to Mars generated a lot of interest. The many comments on the subject posted here on UT and numerous other websites such as ABC News ranged from full support to complete disbelief of the idea. McLane’s concept has literally gone around the world, and a journalist from Spain, Javier Yanes who writes for the newspaper Publico shared with me his correspondence with a US soldier stationed in Afghanistan, who says that battle-hardened soldiers would be the perfect choice to send on a mission of no return to a new world. SFC William H. Ruth III says he and the men in the 101st Airborne Division are ready and willing to go.

SFC Ruth wrote, “While reading Jim McLane and Nancy Atkinson’s thoughts on Space Colonization, I started to realize that we ALL have lost our way. We have become so consumed by petty differences and dislikes of others that we all have forgotten our pre destiny of something better.”

And what is the ‘something better’ that Ruth envisions? Military personnel from different countries joining together to make “the ultimate sacrifice” of forging the way to establish an outpost on another world, like Mars.

“Here is an ‘out of the box’ idea,” Ruth writes. “Let the heroes of all our countries, for once, risk the ultimate sacrifice for something greater than one man’s idea. Maybe once let these men and woman that rise every morning and say ‘today I will stand for something and say ‘evil will not prevail, not on my watch.’ For once let them volunteer for us all, you never know, mankind, the human race. It might just catch on if we let it.”

Ruth continues, “Will we falter at a hint of death or danger? Or will we do now what so many in all of the world’s history has done before us. NASA of all thinking societies should understand this. Would there even be an America or NASA if a man named Columbus had not pursued a dangerous and possibly deadly voyage to a new world? He certainly had to consider whether or not he would ever return home to see all those he loved so dearly. But what of those aboard his ships, those that left Spain knowing that they would never return. Those few that willingly risked all for the chance at a new world and a new future, could they have possibly known what effects they would have had on the future due to their sacrifices? Now can we have enough vision to see our destiny, can we, for a moment, see past our petty differences of race and religion to see peace, prosperity and possibly a new world.”

3rd Platoon at Fire Base Ter-Wa, April 2008. SFC Ruth is first on the left.

Ruth says 15 years in the military has prepared him for such a mission. “So I am no fool and I am no stranger to what some might call high risks,” he says. “Hundreds of thousands of fighting men and woman from around this world have walked, rode, swam and even jumped into what some would call a high risk situation. Some even considered suicide missions, ones with low probability of success. And why, what did they risk all for? Each and every one of us, even those throughout this earth that has made that choice, risk all for what we believed would make our world better.”

Ruth first began pondering such a mission after reading a quote by Stephen Hawking on Space.com: “The discovery of the New World made a profound difference on the old,” Hawking said. “Spreading out into space will have an even greater effect. It will completely change the future of the human race, and maybe determine whether we have any future at all.”

Ruth sent an email to Space.com’s Anthony Duignan-Cabrera, which was posted on the LiveScience blog: “Here is an idea: Send battle-hardened, strong-minded soldiers and marines on the long trips into space. We are conditioned to live with the bare minimal (of) life’s necessities and are trained to be prepared for the worst conditions that any environment could throw at us. Hell, me and my men will go, set up a colony somewhere and await colonists to arrive.”

Javier Yanes read Ruth’s proposition and contacted him, sending him the link to the Universe Today article with McLane’s idea.

Ruth responded by sending Yanes a written statement called “A Soldier’s Perspective;,” Yanes wrote an article about Ruth in Publico, and shared Ruth’s proposal and pictures with me.

Ruth doesn’t agree with McLane’s idea of a one-person mission to Mars, but supports the one-way idea.

“I fully agree with NASA and others that it is completely dangerous and potentially deadly for anyone who sets out on this voyage,” he wrote. “But since when has that ever stopped anyone? A one way trip is the way to go about this, it is a proven fact of human history that when the human species is thrown into a no alternative situation, that they will prevail and survive.

The military would never send someone out alone, and Ruth thinks a multiple ship mission is the way to proceed, with three to four smaller vessels, with four to six crew members each.

Ruth admits that other might see sending soldiers into space as more like an invasion or occupation than exploration. “To those who share this concern, consider this for a moment and ask yourself, who else?” Ruth asked. “Who else has the mentality to volunteer to face certain danger and possibly death, thousands of miles away from their homes? I could think of a few hundred thousand that do it everyday across this planet.”

Ruth says that getting the worlds militarys involved with something other than making war with each other could change humanity’s future for the better.

“I wonder who will be the first to extend the hand of complete partnership, representing the whole human species?” Ruth asks. “Could this be the answer that so many have searched for? Could this one thing unite humanity in a new era of global cooperation and a new planetary respect for human life, unlike we know it today? My answer is ask me again when I’ve reached the new world!”