Robots in Space

When it comes to exploring the hostile environment of space, robots have done a lot (if not most) of the exploring. The only other planet besides Earth that humans have set foot on is the Moon. Robotic explorers, however, have set down on the Moon, Mars, Venus, Titan and Jupiter, as well as a few comets and asteroids. Robotic missions can travel further and faster, and can return more scientific data than missions that include humans. There is much debate on whether the future of space exploration should rely solely on robots, or whether humans should have a role.

As contentious as this issue is, there is no doubt that robots have and will continue to contribute to our understanding of the Universe. Here’s a short list of past, current, and future robotic missions that have done or will do much in the way of exploration of our cosmos.Schematic of the Viking 1 Lander. Image Credit: The Mars Society

  • The most famous robots in space have to be the series of orbiters, rovers and landers that have been sent to Mars. The first orbiter was Mariner 4, which flew past Mars on July 14, 1965 and took the first close up photos of another planet. The first landers were the Viking landers. Viking 1 landed July 20, 1976, and Viking 2 on September 3, 1976. Both landers were accompanied by orbiters that took photos and scientific data from above the planet. The landers included instruments to detect for life on the surface of Mars, but the data they returned is somewhat ambiguous, and the question of whether there is life on Mars still requires an answer. Currently, Spirit and Opportunity are roving away on the Martian surface, well past their expected mission lifetime, and the Phoenix lander returned a wealth of information about our neighbor. For more about the entire series of Mars missions, go to NASA’s Mars Exploration Program website. Of course, NASA isn’t the only space organization represented at Mars – the European Space Agency currently has Mars Express orbiting the planet, and has the first webcam of another planet available!
  • Mars isn’t the only place to go in the Solar System, though. Both the U.S. and the Russians sent numerous missions to Mariner 1 and 2 made their way to Venus. Mariner 2 was the first successful Venus Flyby. Image Credit: JPLVenus, with a lot of successes and failures. For a complete list of the many missions to Venus visit the Planetary Society. The most notable firsts are: Mariner 2 was the first successful Venus flyby on December 14, 1962, and the Russian lander Venera 7 was the first human-made vehicle to successfully land on another planet and transmit data back to Earth on December 14, 1962.
  • Sputnik 1, of course, was  the first robot in space, and was launched October 4th, 1957 by the USSR.
  • The Voyager missions are notable for the milestone of having a robot leave the Solar System. Voyager 1 and 2 were launched in 1977 are still making their way out of the Solar System, and have entered the heliopause, where the solar wind starts to drop off, and the interstellar wind picks up. To keep up with their status, visit the weekly status page.
  • Dextre, a robotic arm developed by the Canadian Space Association, is a very cool robot aboard the International Space Station. Dexter allows for delicate manipulation of objects outside the station, reducing the number of space walks and increasing the ability of the ISS crew to maintain and upgrade the station.
  • There are many, many future robotic missions in the works and still in the “dreaming” stage. For example, submarines may one day explore Europa, landers may crawl on the Moon, and spacecraft will orbit comets.

This is by no means an exhaustive list of the enormous number of robotic space missions. To learn a lot, lot more check out the Astronomy Cast episode on Robots in Space, the ESA robotics page, NASA missions page, and the Planetary Society missions page.

Asteroid Explosion over Indonesia

This has taken awhile to filter into the Western press, but an asteroid exploded over the town of Bone,Indonesia on October 8th at around 11am local time. Initially, locals called the police to report that a plane had crashed, or that an earthquake shook the ground, as reported in the Jakarta Globe. The Jakarta Post quoted Thomas Djamaluddin, head of the Lapan Center for Climate and Atmosphere Science Implementation as saying that the explosion was due to a meteorite or bit of space junk that had entered the Earth’s atmosphere. As it turns out after further analysis, the explosion was due to an asteroid about 5-10 meters (15-30 feet) in diameter exploding in the air between 15 and 20 km (nine to 12 miles) above sea level. Nobody was injured as a result of the explosion, but it evidently caused quite a scare with the local population!

In a press release from the Near Earth Object (NEO) program, the explosion was detected by many International Monitoring System (IMS) infrasound stations, five of them 10,000 km (6200 miles) away, and one 18,000 km (11,100 miles) from the blast.  These stations monitor seismic waves, infrasound (low frequency soundwaves), hydroacoustic, and radionuclide emissions as part of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). They are well equipped to monitor explosions of nuclear weapons, but also detect other events such as meteorite impacts and asteroid explosions, tsunamis and earthquakes.

When analyzed, the amount and intensity of low frequency sound waves created by the explosion allowed researchers Elizabeth Silber and Peter Brown of the Meteor Infrasound Group at the Univ. of Western Ontario to determine that the explosion caused by the asteroid was on the scale of 30 – 50 kilotons of TNT. To give you an idea of how powerful of an explosion this is, the bombs dropped over Hiroshima and Nagasaki in World War II exploded with the force of 20 kilotons of TNT.

The fireball – also called a bolide – created a dusty tail upon entering the atmosphere of the Earth. It is estimated that the asteroid was traveling around 72,000 km/hour (45,000 miles/hour) when it hit the atmosphere. As an asteroid enters the thick Earth atmosphere, it slows down abruptly and heats up due to the process of ablation. If this asteroid were made of metal instead of rock, it would likely have impacted the ground causing a lot of damage. Fortunately for the residents of Bone and the surrounding area, the rock broke up in a large fireball instead. There haven’t been any reports of pieces that have touched down as of yet.

Asteroids of this size are predicted to impact the Earth about every 2-12 years, and the last one of this magnitude was a bolide over the Marshall Islands on February 1, 1994. That impactor was estimated to be between 4.4 and 13.5 meters. A full analysis of that event is available on the SAO/NASA Astrophysics Data System.

Of course, events like this always raise the question of why the object wasn’t detected before it even entered the atmosphere. The NEO program has cataloged over 600 objects in the size of 10 meters, but there are many, many more out there. The cost of a monitoring and cataloging all of the Near Earth Objects would be in the hundreds of millions of dollars, but more events like this may spur the political will and capital to further efforts at protecting human lives from the potential damage of meteorite impacts.

Source: Night Sky, Spaceweather.com, JPL Press Release

Bacteria Could Survive in Martian Soil

Certain strains of bacteria, including Bacilus Pumilus, may be able to survive on the Martian surface. Image credit: NASA

Multiple missions have been sent to Mars with the hopes of testing the surface of the planet for life – or the conditions that could create life – on the Red Planet. The question of whether life in the form of bacteria (or something even more exotic!) exists on Mars is hotly debated, and still requires a resolute yes or no. Experiments done right here on Earth that simulate the conditions on Mars and their effects on terrestrial bacteria show that it is entirely possible for certain strains of bacteria to weather the harsh environment of Mars.

A team led by Giuseppe Galletta of the Department of Astronomy at the University of Padova simulated the conditions present on Mars, and then introduced several strains of bacteria into the simulator to record their survival rate. The simulator – named LISA (Laboratorio Italiano Simulazione Ambienti) – reproduced surface conditions on Mars, with temperatures ranging from +23 to -80 degrees Celsius (73 to -112 Fahrenheit), a 95% CO2 atmosphere at low pressures of 6 to 9 millibars, and very strong ultraviolet radiation. The results – some of the strains of bacteria were shown to survive up to 28 hours under these conditions, an amazing feat given that there is nowhere on the surface of the Earth where the temperatures get this low or the ultraviolet radiation is as strong as on Mars.

Two of the strains of bacteria tested – Bacillus pumilus and Bacillus Nealsonii – are both commonly used in laboratory tests of extreme environmental factors and their effects on bacteria because of their ability to produce endospores when stressed. Endospores are internal structures of the bacteria that encapsulate the DNA and part of the cytoplasm in a thick wall, to prevent the DNA from being damaged.

Galletta’s team found that the vegetative cells of the bacteria died after only a few minutes, due to the low water content and high UV radiation. The endospores, however, were able to survive between 4 and 28 hours, even when exposed directly to the UV light. The researchers simulated the dusty surface of Mars by blowing volcanic ash or dust of red iron oxide on the samples. When covered with the dust, the samples showed an even higher percentage of survival, meaning that it’s possible for a hardy bacterial strain to survive underneath the surface of the soil for very long periods of time. The deeper underneath the soil an organism is, the more hospitable the conditions become; water content increases, and the UV radiation is absorbed from the soil above.

Given these findings, and all of the rich data that came in last year from the Phoenix lander – especially the discovery of perchlorates –  continuing the search for life on Mars still seems a plausible endeavor.

Though this surely isn’t a confirmation of life on Mars, it shows that even life that isn’t adapted to the conditions of the planet could potentially hold out against the extreme nature of the environment there, and bodes well for the possibility of Martian bacterial life forms. The LISA simulations also indicate the importance of avoiding cross-contamination of bacteria from Earth to Mars on any scientific missions that travel to the planet. In other words, when we finally are able to definitively test for life on our neighboring planet, we don’t want to find out that our Earth bacteria have killed off all the native lifeforms!

Sources: Arxiv papers here and here.

Who Invented the Telescope

Galileo Galilei's telescope with his handwritten note specifying the magnifying power of the lens, at an exhibition at The Franklin Institute in Philadelphia. Credit: AP Photo/Matt Rourke

The history of the telescope dates back to the early 1600s. Galileo Galilei is commonly credited for inventing the telescope, but this is not accurate. Galileo was the first to use a telescope for the purpose of astronomy in 1609 (400 years ago in 2009, which is currently being celebrated as the International Year of Astronomy). Hans Lipperhey, a German spectacle maker, is generally credited as the inventor of the telescope, as his patent application is dated the earliest, on the 25th of September 1608.

Lipperhey combined curved lenses to magnify objects by up to 3 times, and eventually crafted sets of binocular telescopes for the Government of the Netherlands.

There exists some confusion as to who actually came up with the idea first. Lipperhey’s patent application is the earliest on record, so this is usually used to settle the debate, although another spectacle-maker, Jacob Metius of Alkmaar, a city in the northern part of the Netherlands, filed for a patent for the same device a few weeks after Lipperhey. Another spectacle-maker, Sacharias Janssen, also claimed to have invented the telescope decades after the initial claims by Lipperhey and Metius.

Regardless of the inventor, most of the earliest versions of the telescope used a curved lens made of polished glass at the end of a tube to magnify objects to a factor of 3x. To learn more about how a telescope lens works, read our article on the telescope lens in the Guide to Space.

Galileo heard news of the telescope, and constructed his own version of it without ever seeing one. Instead of the initial 3 power magnification, he crafted a series of lenses that in combination allowed him to magnify things by 8, 20 and eventually 30 times. You can obtain a version of Galileo’s original telescope today, at the Galileoscope web site.

The lens telescope is still in use today in smaller telescopes, but many larger and more powerful telescopes use a reflective mirror and eyepiece combination that was initially invented by Isaac Newton. Called a “Newtonian” telescope after its inventor, these types of telescopes have a polished mirror at the end of a tube, which reflects the image into an eyepiece at the top of the tube. More information about Newtonian telescopes can be found in our Guide to Space article here.

Here’s a few more links on the history of the telescope:

Who was the First Monkey to go into Space?

Albert II in preparation for his historic flight. Image Credit: NASA

There are many brave astronauts that have participated – and even given their lives – in the quest to put human beings into space. But before those astronauts had a chance to take flight, there was a long line of other creatures that paved the way for human spaceflight. The first living beings were fruit flies, which were sent up along with some seeds of corn in 1947 to test the effects of radiation on DNA. The container of flies flew aboard a V2 rocket to a height of 106 miles (171 km), and the capsule was recovered with the flies alive and well.

The first monkey to be sent successfully into space was Albert II, a male rhesus monkey, who made it to a height of 83 miles (134 km) on June 14, 1949. Albert II was carried aboard a V2 rocket as well, though his fate was not as lucky as that of the fruit flies: a problem with the parachute on the recovery capsule sadly led Albert II to his death from the force of the impact upon landing.

Albert II was preceded by Albert, whose capsule only made it to a height of 39 miles (63km) on June 11, 1948. Albert did not last long, and possibly suffocated even before his capsule left the ground. Space officially begins at 100 km above the surface of the Earth, and this height is called the Karman Line. After Albert II made it into space, a number of other monkeys, named Albert III, IV, and V all flew aboard rockets, though none survived the flight, either dying on impact or during the flight.

All of the monkeys were anesthetized during their missions, and implants and sensors – as well as cameras on later missions – allowed scientists to study the effects of weightlessness and radiation at high altitudes on living creatures. Without the sacrifice of these animals, there would have been much loss of human life during the space program.

The first monkeys to survive the flight into space were two monkeys named Able and Miss Baker. They flew to a height of 360 miles (580 km) on May 28, 1959 aboard a Jupiter rocket. Their capsule landed 1700 miles (2736 km) downrange from the Eastern Space Missile Center at Cape Canaveral, Florida, and they were successfully recovered. To read more about this historic event, check out our story commemorating the 50th anniversary of the flight.

For more information on the history of animals in space, NASA has a brief synopsis here, and a much more detailed version here.

Source: NASA

Black Hole on Earth

Magnetic field around a black hole. Image credit: NASA

[/caption]

As you are likely aware, there are numerous ways in which the Universe could kill us all, destroying the Earth and whatever signs of human life, or life in general, existed on our planet. Gamma Ray Bursts, Coronal Mass Ejections, or just the odd asteroid or comet slamming into the Earth would easily take out most of the life on our planet. But, what about black holes? Do we have to worry about them, too? Could a black hole wipe out all life on Earth, sucking us all into oblivion? It’s possible, but not very likely. And by not very likely, it’s calculated that the odds of being killed by a black hole are about one in one trillion.

First, a black hole has to get to the Earth. There are two ways of this happening. The first is that we create one ourselves, the second that a black hole wandering the galaxy happens upon our little Solar System, and meanders in towards the Sun. We’ll start with the first scenario: creating our own destruction.

How could we make our own black hole? Well, theoretically, when you slam protons together with enough force, there is the potential for the creation of a small, short-lived black hole. Particle colliders like the Large Hadron Collider in Geneva, Switzerland, which is scheduled to start operating again in November 2009, could potentially create miniscule black holes through the collisions of protons. There were many headlines from the mainstream media about the potential of the LHC to create runaway black holes that would find their way to the center of the Earth and devour it from the inside, causing, “total destruction.” Sounds scary, doesn’t it? Even more, two people were suing to stop the LHC because of the potential hazard they thought it posed.

However, the LHC is in no way going to destroy the Earth. This is because any black holes created by the LHC will almost instantly evaporate, due to what’s called Bekenstein-Hawking radiation, which theorizes that black holes do indeed radiate energy, and therefore have a limited lifespan. A black hole with the mass of, say, a few protons, would evaporate in trillionths of a second. And even if it were to stick around, it wouldn’t be able to do much damage: it would likely pass through matter as if it didn’t exist. If you want to know whether the LHC has destroyed the Earth, go here.

Of course, there are other ways of creating black holes than the LHC, namely cosmic rays that slam into our atmosphere on a regular basis. If these are creating mini-black holes all of the time, none of them seem to be swallowing the Earth whole…yet. Other scientific experiments also aim at studying the properties of black holes right here on Earth, but the danger from these experiments is very, very minimal.

Now that we know black holes created here on Earth aren’t likely to kill us all, what about a black hole from the depths of space wandering into our neighborhood? Black holes generally come in two sizes: supermassive and stellar. Supermassive black holes reside in the hearts of galaxies, and one of these is not likely to come barrelling our way. Stellar black holes form from a dying star that, in the end, gives up its fight against gravity and implodes. The smallest black hole that can form from this process is about 12 miles across. The closest black hole to our solar system is Cygnus X-1, which is about 6,000 light years away, much too far to pose a threat by muscling it’s way into our vicinity (although there are other ways that it could potentially harm us if it were closer, like blasting us with a jet of X-rays, but that’s a whole other story). The creation process for a black hole of this variety – a supernova – could potentially sling the black hole across the galaxy, if the supernova happened in a binary pair and the explosion was asymmetric.

If a stellar black hole were to plow through the Solar System, it would be pretty ugly. The object would likely be accompanied by an accretion disk of heated, radioactive matter that would announce the presence of the black hole by frying our atmosphere with gamma and X-rays. Add to that the tidal forces of the black hole disrupting the Sun and other planets, and you have a huge mess on your hands, to say the least. It’s possible that a number of planets, and even the Sun, could be flung out of the Solar System, depending on the mass, velocity, and approach of the black hole. Yikes.

Artist's rendering of a black hole. Image Credit: NASA
Artist's rendering of a black hole. Image Credit: NASA

There lies one last possiblity for black holes to wreak their havoc on the Earth: Primordial Black Holes. These are miniature black holes theorized to have been created in the intense energies of the Big Bang (which the LHC plans to mimic on a MUCH smaller scale). Many of them most likely evaporated billions of years ago, but a black hole that started out with the mass of a mountain (10 billion tons) could potentially still be lurking around the galaxy. A hole of this size would shine at a temperature of billions of degrees from Bekenstein-Hawking radiation, and it’s likely we would see it coming due to observatories like NASA’s Swift.

From a few yards a way, the black hole’s gravity would be barely noticeable, so this kind of black hole wouldn’t have an effect on the gravity of the Solar System. At less than an inch, though, the gravity would be intense. It would suck up air as it passed through the atmosphere of the Earth, and start to make a small accretion disk. To such a tiny black hole, the Earth seems close to a vacuum, so it would probably pass right through, leaving a wake of radiation in its path and nothing more.

A black hole of this variety with a mass of the Earth, however, would be roughly the size of a peanut, and would be able to potentially swing the Moon straight into the Earth, depending, of course, on the trajectory and speed of the black hole. Yikes, again. Not only that, if it were to impact the Earth, the devastation would be total: as it entered the atmosphere, it would suck up a lot of gas and form a radioactive accretion disk. As it got closer, people and objects on the surface would be sucked up into it. Once it impacted the surface, it would start swallowing up the Earth, and probably eat its way all the way through. In this scenario, the Earth would end up being nothing more than a wispy disk of debris around the remaining black hole.

Black holes are scary and cool, and none of the scenarios depicted here are even remotely likely to happen, even if they’re fun to think about. If you want to learn more about black holes,  Hubblesite has an excellent encyclopedia, as does Stardate.org. You can also check out the rest of our section on black holes in the Guide to Space, or listen to the multiple Astronomy Cast episodes on the subject, like Episodes 18, or the questions show on Black, Black Holes. Much of the information on the likelihood and aftereffects of a black hole collision with the Earth in this article is taken from chapter 5 in Phil Plait‘s “Death from the Skies!

Sources: Discover Magazine, NASA

What is a Black Hole?

Artists concept of a black hole.

[/caption]

Black holes are scary, and some of the most intriguing and mysterious objects in the Universe. This is probably why they are the subject of so many science fiction stories, astronomy articles, and research papers. But what is a black hole? Black holes are essentially objects in space that are so extremely massive and dense that nothing can escape their gravitational pull, including light (which is why they are called black holes). This leads to some interesting scenarios regarding the physics in the immediate area surrounding a black hole.

The theory of general relativity postulates that anything with mass curves the fabric of spacetime, and this curvature is what we know as gravity. The most popular (and highly descriptive) example to illustrate how this works is that of a rubber sheet. Imaging that you have a large sheet of stretchy rubber that is stretched out reasonably taught. This sheet is a 2-dimensional representation of the fabric of space (which has three dimensions, but for simplicity and ease of illustration we’ll use two). If you place a small marble on the sheet, it will make a small indentation in the rubber. Imagine that the marble is a planet, and if you have one of those cool glass striped marbles, it may even look much like Jupiter. Rolling a small pebble (which creates its own, very small indentation) by the marble, you may notice the pebble veers toward the indentation of the marble. Essentially, the marble is pulling the small pebble towards it because of its gravity.

Now, if you place a bowling ball on the sheet, which is much more massive, it makes a much larger indentation that would likely trap the pebble as it rolled by. The bowling ball would represent very well something like a star in this example. A black hole is all the mass of a star, but in a very tiny space, enough to indent the rubber sheet enough so that nothing you roll by the indentation of the black hole within a certain distance – no matter how fast you make it go – can escape. The area around a black hole from which nothing can escape is called the event horizon, and how big this area is depends on the size of the black hole itself.

A stellar black hole forms when a star that has a core above about 3 solar masses gets near the end of its life, and the fusion processes inside the star are no longer pushing out sufficiently against the inward pull of gravity, causing the star to implode. Once the matter inside the star is compressed to below a certain radius – named the Schwarzschild Radius after the mathematican who formulated it – a black hole is formed.

Structure of a black hole. Image Credit: NCSA
Structure of a black hole. Image Credit: NCSA

Supermassive black holes are those that form at the center of galaxies, and they may range in the billions of solar masses. For example, the supermassive black hole at the center of the Milky Way has a mass of about 40,000 Suns, and the matter that surrounds it – called the ‘accretion disk’ – is a whopping 4 billion Suns. How do supermassive black holes form? Here’s an excellent, detailed article on supermassive black holes that goes over some of the competing theories about their formation.

Black holes come in different sizes depending on their mass. For example, if the Sun were to become a black hole (it won’t, though, because it’s core is far too small) the radius of the black hole would be about 3km (1.86 miles). If, through some weird set of circumstances, the Earth were compacted into a space smaller than its Scwarzschild Radius, the black hole would be roughly the size of a peanut.

At the center of a black hole lies what is called a singularity, where the mass of the black hole is compressed to a volume of zero, and the ability for general relativity to describe what is happening here breaks down.

How do we know black holes exist, if they don’t emit any light? Evidence for stellar black holes comes from observing their interactions in binary systems, and supermassive black holes can be observed using X-ray telescopes, as well as through the gravity they exert on the stars in a galaxy.

To learn more about black holes, there are quite a few resources on the web. For starters, Hubblesite has an excellent encyclopedia, as does Stardate.org. You can also check out the rest of our section on black holes in the Guide to Space, or listen to the multiple Astronomy Cast episodes on the subject, like Episodes 18, or the questions show on Black, Black Holes.

Sources: NASA: Blackholes, NASA: Stars, Hyperphysics

Planet-Forming Disk Discovered Orbiting Binary System

An artist's conception of the V4046 Sagittarii binary star system, which is home to a molecular gas cloud that may contain planets. Credit: David A. Aguilar (CfA)

[/caption]

Science fiction is lousy with examples of planets that orbit a system of two suns. Tatooine, in the Star Wars saga, is endowed with a pair of suns to light up the sky, as is the planet Magrathea in The Hitchhiker’s Guide to the Galaxy. It would indeed be quite a spectacle to wake up to more than one Sun every day for us who have only one. This sight may entirely be possible to view around the young binary star system V4046 Sagittarii, as new images from the Smithsonian’s Submillimeter Array (SMA) have confirmed the existence of a molecular cloud – which could harbor, or later produce planets –  orbiting the twin stars. This is the first time that evidence of planetary formation around a binary system of stars has been uncovered.

“We believe that V4046 Sagittarii provides one of the clearest examples yet discovered of a Keplerian, planet-forming disk orbiting a young star system,” said David Wilner of the Harvard-Smithsonian Center for Astrophysics in a press release issued today at the American Astronomical Society (AAS) meeting in Pasadena, Calif.

The disk has traces of carbon monoxide and hydrogen cyanide, gases that are telltale signs of planetary formation. It also lies between 30 -300 Astronomical Units from the central binary star system, a distance at which it is likely that our own giant planets Jupiter and Saturn formed, as well as the Kuiper belt objects. The two stars that make up the V4046 Sagittarii binary system are both approximately the mass of the Sun, and separated by a distance of 5 solar diameters.

Joel Kastner of the Rochester (NY) Institute of Technology, the lead scientist on the study, said in the press release“It’s a case of seeing is believing….We had the first evidence for this rotating disk in radio telescope observations of V4046 Sagittarii that we made last summer. But at that point, all we had were molecular spectra, and there are different ways to interpret the spectra. Once we saw the image data from the SMA, there was no doubt that we have a rotating disk here.”

Could this be the view of a sunset from a planet orbiting V4046 Sagittarii?
Could this be the view of a sunset from a planet orbiting V4046 Sagittarii?

The team of astronomers from the Harvard Smithsonian Center for Astrophysics and the Rochester Institute of Technology used the 30-meter radio telescope operated by the Institut de Radio Astronomie Millimetrique (IRAM) to pin down the the composition of the cloud, then used images from the Submillimeter Array to further confirm the finding. Both telescopes are sensitive to light in the submillimeter spectrum, which emanates from cold interstellar material such as gas and dust.

This new finding bodes well for the possibility that many other binary star systems harbor planets, and gives astronomers a new place to search for planets outside of our own solar system. Even better, V4046 Sagittarii is only 240 light-years away from our solar system, meaning that there’s a good chance that astronomers can image any planets that have already formed in the disk.

Source: AAS, Harvard-Smithsonian Center for Astrophysics

50th Anniversary of Historic Space Monkey Flight

Able in her capsule. Image Credit:NASA

[/caption]

The image to the left is not a primate astronaut from “Planet of the Apes.” It is, in fact, a real space monkey. Today marks the 50th anniversary of the first flight into space of a living being that survived the expedition. On May 28th, 1959, one rhesus monkey, named Able, and one squirrel monkey named Miss Baker became the first “astronauts” to survive a return flight into space.

Though they were not the first animals launched into space, Able and Baker helped pave the way for human spaceflight by showing that animals can indeed survive the rigorous launch and return of a spacecraft. Their vital signs were monitored during the mission, giving scientists a better understanding of what stresses spaceflight puts on a living body.

Launched aboard a Jupiter AM-18 rocket, Able and Baker flew to a height of 360 miles and traveled 1700 miles from their launch site at the Eastern Space Missile Center at Cape Canaveral, Florida. Their capsule landed in the ocean, and was retrieved by a U.S. Navy vessel commanded by Joseph Guion.

Guion told NASA, “As soon as I picked it up out of the water, it was flying all over the place. The ship was rolling and the nose cone swung back and forth. And I was just hoping that nobody would get hurt…We still didn’t know if the monkeys were alive ‘cause we didn’t have the telemetry. And so one technician ran up to the back end of it and plugged in and he says, ‘They’re alive!’ So everybody went ‘Yay!’ And that’s when I could finally say, ‘Ah!’ Relax.”

The entire flight lasted about 15 minutes, and during nine minutes of that the two tiny astronauts experienced weightlessness. After the recovery of their capsule, the monkeys were allowed to relax in an air-conditioned room aboard the vessel, then escorted to Washington, D.C. for a press conference.

To see a video of Able and Miss Baker getting ready for flight, check out this video on Youtube: Able and Baker blast off, from Universal News 1959.

Able died, unfortunately, a few short days after the flight. She needed an operation to remove an infected medical electrode, and had an adverse reaction to the anesthetic. Miss Baker, however, survived another 25 years, living at the U.S. Space and Rocket Center in Huntsville, Ala. During the rest of her life, she would receive over 100 letters a day from children who read about her adventures in textbooks and wanted to say ‘Hello’.

Miss Baker’s contribution was far from forgotten at the time of her death, and at her funeral in 1984 the attendance was well over 300 people. She still has a grave marker (pictured below) in front of the Alabama Rocket Center memorializing her part in the history of spaceflight.

Miss Baker's memorial. Image Credit:DCmemorials.com
Miss Baker's memorial. Image Credit:DCmemorials.com

Able and Baker were preceded by a long line of unsuccessful attempts by the U.S. to launch primates into space. The first attempt was Albert, who flew to 39 miles (63km) on June 11, 1948 aboard a V2 rocket, but died of suffocation during the flight. Albert II actually made it into space (above 62 miles/100km) on June 14th, 1949, but died upon the impact of his re-entry flight.

Primates were far from the first living things sent intentionally into space. That distinction belongs to a member of a different part of the animal kingdom: fruit flies. Fruit flies were sent into space, along with a sample of corn seeds, in 1947 to test the effects of radiation at high altitude.

So, to celebrate this historic event in spaceflight, it may be fitting to eat a banana for breakfast (or lunch, or dinner, or all three).

Source: NPR, NASA

How Did the Milky Way Form?

Computer simulation showing the development and evolution of the disk of a galaxy such as the Milky Way. Credit: Rok Roškar

The Milky Way has been around a long, long time. The age of our galaxy is approximately 13.6 billion years, give or take 800 million years. But how did the galaxy get here? What did baby photos of the Milky Way look like?

First off, there weren’t always stars in the Universe, and the Milky Way hasn’t been around forever. After the big bang happened, and the Universe cooled for a bit, all there was was gas uniformly spread throughout. Small irregularities allowed the gas to coalesce into larger and larger enough clumps, heating up and eventually starting the  nuclear fusion that powers stars. The stars started to gravitationally attract each other into larger groups. The oldest of these groups of stars are called globular clusters, and some of these clusters in the Milky Way galaxy date back to the very, very early Universe.

Not all of the stars in the Milky Way date back to the primordial Universe, though. The Milky Way produces more than 7 stars per year, but it acquired much of its mass in another fashion. The Milky Way is often referred to as a “cannibal” galaxy, because during formation it swallowed up smaller galaxies. Astronomers think that this is how many larger galaxies have come to be the size they are today.

In fact, the Milky Way is currently gobbling up another galaxy, (and a stellar cluster) at this very moment. Called the Canis Major Dwarf Galaxy, the remnant stars are 45,000 light years from the galactic center, and a mere 25,000 light years from our Sun.

Older stars in the Milky Way are to be found distributed spherically in the galactic halo, meaning that it’s likely the galaxy had a spherical shape to start out. Younger stars in the galaxy are located in the disk, evidence that as it started to get heavier, the mutual orbit of material started the galaxy spinning, which resulted in the spiral one sees in representations of the Milky Way.

To get you started on how the formation of our galaxy looked, here’s an animated simulation of what a galaxy much like the Milky Way looks like as it goes from the gas cloud at the beginning of the Universe to a beautiful barred spiral, a few billion years condensed into a couple of short minutes. And to get a handle on the formation of a spiral arms in a galaxy, check out this spiral galaxy simulator.

For more on the formation of the Milky Way and other galaxies, listen to Astronomy Cast, Episode 25: The Story of Galaxy Evolution, and Episode 99: The Milky Way.

References:
http://www.nasa.gov/centers/goddard/news/topstory/2006/milkyway_seven.html
http://www.eso.org/public/news/eso0425/