35 Radio Observatories Link to Break Record

Ever wondered what the largest telescope on the Earth is? Well, this coming Wednesday and Thursday of this week, the largest telescope ever assembled here will take observations for a whole day. How big is the telescope? About the size of the whole Earth! 35 radio telescopes on 7 continents will link together for one whole day in an effort to observe distant quasars as part of an initiative to improve the reference frame that scientists use to measure positions in the sky.

Radio telescopes in Asia, Australia, Europe, North America, South America, Antarctica, and in the Pacific will all be linked together to measure the same 243 quasars over a 24-hour period. Quasars are galaxies that have a supermassive black hole at the center, which has strong emissions in the radio spectrum. The quasars being monitored are so far away from the Earth that they appear to be motionless in the sky. This makes them a perfect candidate for setting up a grid in the sky to use as a frame of reference, against which the positions of other objects can be determined.

This monitoring session comes out of a meeting of the International Astronomical Union in August, during which it was decided to start using a set of 295 quasars as a celestial reference frame starting January 1st, 2010. This is not a new reference frame to be used by astronomers – the current one was adopted in 1998 –  but an important update to the existing reference frame, the International Celestial Reference Frame.

The session, called the Very Large Astrometry Session is coordinated by the International VLBI Service for Geodesy and Astrometry. Several of the participating observatories will have live webcams running during the event (check for the observatory in your language!), and a public outreach page on the event,  hosted by the Bordeaux Observatory, can be found here. The public outreach page will post images as they are taken during the session, with information about observation coordinates.

Radio telescopes like the Very Long Base Array in the United States already link together observatories that are far apart to take observations. This technique is called very long baseline radio interferometry (VLBI), and allows for the use of smaller telescopes that are distant from one another to be linked together and have the same angular resolution as if they were one larger telescope. Doing these observations all in one go will reduce some of the errors that occur when disparate observatories take images at different times.

The previous record for radio observatories linked together to create a larger telescope for one monitoring session is 23. That means that this observing session will beat that record by a whopping 12 additional observatories. Even with this unprecedented amount of observatories monitoring the quasars, there will be a few gaps in the sky, mostly in the Southern hemisphere. Only 243 of the total 295 quasars in the reference frame will be observed this week, though that will break another record for the amount of objects observed in one session using this method. The image below depicts the locations of the participating observatories.A map of the observatories participating in the Very Large Astrometry Session. Check your local listings for live webcam images! Image Credit:IYA09

By taking data on the 243 selected quasars, astronomers will be able to more accurately pinpoint objects in the sky in all wavelengths, and gather more precise data. For instance, many objects of scientific interest are monitored by separate telescopes operating in the visible, radio, x-ray and infrared wavelengths. Having a more accurate frame of reference to tell these different telescopes where to point in the sky will improve the ability of the different telescopes to gather information from the same place in space.

Source: NRAO, IVS

Second Exoplanet with Retrograde Orbit Discovered

The exoplanet HAT-P-7b has been observed to have a very curious orbit. It either has a highly tilted orbit – passing almost over the poles of its parent star, HAT-P-7 –  or a retrograde orbit; that is, orbiting in the opposite direction of its parent star. Two teams of researchers, both using the Subaru Telescope in Japan, have published papers on the bizarre properties of this planet, the second exoplanet ever observed to have a retrograde orbit.

In our Solar System, the planets calmly rotate in the same direction as that of their parent star, in our case the Sun. This is called a prograde orbit, and the Earth has the most inclined orbit with regard to the equator of the Sun, of 7.15 degrees. The planet HAT-P-7b, however, has an orbit that is the opposite of the rotation of its parent star but in the same plane as the equator (effectively a 180 degree incline). This is called a retrograde orbit. It may also be the case that it is inclined to at least 86 degrees of the equator of its Sun, so as to have almost a polar orbit. The researchers have yet to determine the true rotation of the star HAT-P-7, and thus which scenario is true for the exoplanet.

“There is a large range of uncertainty because we have not measured the true angle between the orbit and the stellar equator. Instead we can only measure the angle that we see from our perspective on Earth,” said Winn in a MIT press release.

HAT-P-7b is about 1.4 times as wide and 1.8 times as massive as Jupiter, and lies approximately 1,000 light years from the Earth.

A Japanese collaboration led by Norio Narita of the National Astronomical Observatory of Japan, and a team led by MIT assistant professor of physics Joshua Winn both published papers detailing their studies of HAT-P-7b. These studies were published in the Publications of Astronomical Society of Japan Letters October 25, 2009 and the Astrophysical Journal Letters for October 1, 2009, respectively. The paper by the Japanese team is available for your perusal on Arxiv here.

Both research teams used the Subaru Telescope’s High Dispersion Spectrograph instrument to observe the star HAT-P-7. The spectrograph allowed the researchers to monitor the redshift or blueshift of light as the planet orbited the star. In planets with a prograde orbit, their transit in front of the star blocks the blue shifting of the light from the star first, then blocks the redshift of the light, making the star appear to move more that it actually is.

In the case of HAT-P-7b the effect was reversed – that is, the redshifted light appeared bluer, then the blueshifted light appeared redder, making it apparent that the orbit of the planet was not in the same direction of that of HAT-P-7. This effect is called the Rossiter-McLaughlin effect, illustrated below.

The Rossiter McLaughlin effect makes a star appear to have a greater radial velocity than it actually does because of a transiting planet. Image Credit: Nicholas Shanks, WikiMedia Commons
The Rossiter McLaughlin effect makes a star appear to have a greater radial velocity than it actually does because of a transiting planet. Image Credit: Nicholas Shanks, WikiMedia Commons

The odd orbit of HAT-P-7b could have been caused by a number of different factors, and theorists that model the formation of exoplanetary systems will not have to “go back to the drawing boards”. The general consensus is that planets form out of a large disk of material orbiting the star, and thus all orbit in the same direction as the disk out of which they formed.

Multiple planets could have formed in an unstable configuration around the star, and their proximity to each other could have caused a rather chaotic series of gravitational billiards to boot HAT-P-7b into its current orbit. Another explanation is the presence of a third object in the system, such as another massive planet or companion star, that is tilting the orbit of HAT-P-7b due to what’s known as the Kozai effect.

The announcement of the retrograde orbit of HAT-P-7b came only one day after the announcement on August 12th, 2009 that the planet WASP-17b orbits opposite its parent star. HAT-P-7b is also one of the first exoplanets to be studied by the Kepler mission, which studied the planet’s orbit over 10 days. Kepler will take further images of the star during its mission, and by observing the rotation of spots on the surface of the star, nail down the orbital direction, after which we’ll know whether HAT-P-7b is orbiting “backwards” or around the poles of the star.

Source: Subaru Telescope, MIT

Dawn Takes up Residence in Asteroid Belt

The Dawn spacecraft – which is on a course to study the asteroid Vesta and dwarf planet Ceres – has taken up permanent residence in the asteroid belt as of November 13th. Dawn is officially the first human-made object to become a part of the asteroid belt, which is sandwiched between the orbits of Mars and Jupiter.Dawn didn’t move in without checking the place out first, though; this is the second visit for the craft, which remained there for 40 days in June of 2008. The lower boundary of the asteroids belt is defined as the furthest Mars gets away from the Sun during its orbit – 249,230,000 kilometers, or 154,864,000 miles.

Dawn, which was launched in September 2007, is on an eight-year, 4.9-billion kilometer (3-billion mile) journey to study the asteroid Vesta and the dwarf planet Ceres. By studying these members of the asteroid belt, NASA scientists hope to learn more about the formation of our Solar System. Because Vesta and Ceres are some of the largest members of the ring of asteroids between Mars and Jupiter, they are the most intact from when they were formed, and should act as a ‘time capsule’ to preserve information about what the early Solar System was like.

Dawn got a gravity assist from Mars in February of 2009, which propelled it past the planet and into the asteroid belt.

The spacecraft is expected to visit Vesta in August of 2011. Vesta is believed to be the source of most of the asteroid-origin meteorites that fall to ground here on Earth, and further study of the asteroid should confirm this.

In May of 2012, Dawn will make its way to Ceres, which lies further out in the asteroid belt. It will arrive there in July of 2015, where it will spend the remainder of its mission studying the icy dwarf planet, which may even have a tenuous atmosphere.

If you want to keep tabs on Dawn in its new home, the mission web site has a tool updated hourly, found here, which allows you to see where Dawn is right now. The tool includes simulated views of the Earth, Mars, Sun and Vesta from the vantage point of the spacecraft.

Source: JPL

NASA to Fund Primate Radiation Research

Monkeys have made contributions to spaceflight before, and NASA plans to start using them again to test the effects of radiation exposure on their performance of various tasks. With renewed efforts to send humans to the Moon and Mars – which exposes them to radiation from the Sun and galactic cosmic rays – NASA wants a better idea of exactly what the effects of this radiation will be on the cognitive performance of astronauts. A research proposal on the effects of radiation in primates is just one of twelve studies that NASA has chosen to fund through its Human Research Program grants for space radiobiology research.

The study, proposed by Jack Bergman, who is an Associate Professor of Psychobiology at Harvard Medical School’s McLean Hospital in Belmont, Massachusetts, will test how the exposure to radiation of 18-28 rhesus monkeys will effect their performance at trained tasks. They will be subjected to a single dose of radiation that is equivalent to what an astronaut would encounter on a three-year mission to Mars. After the exposure, the monkeys will be monitored as to how they perform tasks which they have been trained to do on a computer touch screen.

“The beauty of this is that we can assess at different time points after exposure, so not only do we get a sense of rather immediate effects, but then we can look again at longer time points. That kind of information just hasn’t been available,” Bergman told Discovery News.

The aim of such research is to see exactly how radiation exposure will alter the performance of astronauts on a long-term mission to Mars. Radiation exposure has been shown in mice and rats to effect their overall cognitive performance, but little is known as to what effects will occur in humans at such radiation levels. This is why the study will be done on primates, which are much closer in biological makeup to humans.

The monkeys will not be killed after the experiment ends, and will remain at the McLean hospital for care during the remainder of their lives.

NASA has enlisted rhesus monkeys before, in the 1940s into the 1960s, to study the effects of launch and re-entry into space. A number of rhesus and squirrel monkeys were launched into space, and many did not survive the re-entry. These experiments paved the way for human spaceflight, and gave NASA information as to what was needed to protect the astronauts from the inherent danger of going into space.

The decision by NASA to fund this experiment has of course raised concerns about the ethical nature of such experiments. The Physicians Committee for Responsible Medicine sent an appeal to NASA administrator Charles Bolden, charging that the experiments are in violation of the Sundowner Report, guidelines set by NASA regarding the ethical treatment of animals used in research.

When the experiments are to begin is still unclear, as the research proposal is still pending approval by the Brookhaven National Laboratory in Upton, New York, where the actual irradiation research will take place.

Source: Discovery News, New Scientist

Designing a Better Astronaut Glove

If you can build a better mousetrap, then you can certainly build a better glove for astronauts! Making a glove that both protects the hands of the astronauts in the harsh environment of space or on the Moon, and allowing them the dexterity to manipulate tools is a tough challenge for NASA. That’s why they are holding the second Astronaut Glove Challenge on November 19th, with a $400,000 prize for the best glove.

The layers of protection that an astronaut glove needs to have to shield against micrometeorites in space and insulate the hand of the wearer make for one rigid glove. The gloves are also pressurized, which makes them more rigid and further detracts from the mobility of an astronaut. NASA has held one previous competition to see who could build a better glove, in 2007, and the winner was Peter Homer, a former aerospace engineer. He took home the $200,000 prize last time, and is expected to return this year to compete against at least one other team. To read more about his story and see a video of his glove in operation, visit NASA’s page about him. Homer was also featured on Wired Magazine’s “Geek Dad” series, and a video interview is available here.

The last competition involved performing a series of tasks inside of a box that is under vacuum to measure how fatiguing to the fingers the glove was. The inside bladder of the glove was subjected to a burst test, in which it was pressurized to the point at which it bursts. The amount of force required to bend each finger of the glove was also measured.

These same rules will apply in this year’s competition, but the added challenge will be to perform all of these tests inside of an improved thermal micrometeorite garment, the outside layer of the glove that protects the astronaut’s hand from damage. This is basically a complete glove that is ready for operation in space.

NASA has been holding several challenges with some hefty prizes to incite development in space-related technology. The Centennial Challenge program most recently gave away prizes for the Power Beaming Challenge and the Lunar Lander Challenge. The prize will be provided by NASA, but the competition is managed by Volanz Aerospace Inc. of Owings, Md. and sponsored by Secor Strategies, LLC of Titusville, Fla.

Good luck to all the competitors, and may the best glove win!

Source: NASA, Astronaut Glove Challenge

Vatican Holds Conference on Extraterrestrial Life

Though it may seem an unlikely location to happen upon a conference on astrobiology, the Vatican recently held a “study week” of over 30 astronomers, biologists, geologists and religious leaders to discuss the question of the existence of extraterrestrials. This follows the statement made last year by the Pope’s chief astronomer, Father Gabriel Funes, that the existence of extraterrestrials does not preclude a belief in God, and that it’s a question to be explored by the Catholic Church. The event, put on by the Pontifical Academy of Sciences, took place at the Casina Pio IV on the Vatican grounds from November 6-11.

The conference was meant to focus on the scientific perspective on the subject of the existence of extraterrestrial life, and pulled in perspectives from atheist scientists and Catholic leaders alike. It was split into eight different segments, starting with a topics about life here on Earth such as the origins of life, the Earth’s habitability through time, and the environment and genomes. Then the detection of life elsewhere, search strategies for extrasolar planets, the formation and properties of extrasolar planets was discussed, culminating in the last segment, intelligence elsewhere and ‘shadow life’ – life with a biochemistry completely different than that found on Earth.

Speakers at the event included notable physicist Paul Davies and Jill C. Tarter, the Director of the Center for SETI Research. Numerous astrobiologists and astronomers researching extrasolar planets also were in attendance to give lectures. The whole series of speech abstracts and a list of participants is available in a brochure on the Vatican site, here.

The event was held to mark the International Year of Astronomy, and the participants hope to collect the lectures into a book. Father Gabriel Funes, the chief astronomer of the Vatican, said in an interview to the Vatican paper, Osservatore Romano last year:

“Just like there is an abundance of creatures on earth, there could also be other beings, even intelligent ones, that were created by God. That doesn’t contradict our faith, because we cannot put boundaries to God’s creative freedom. As saint Francis would say, when we consider the earthly creatures to be our “brothers and sisters”, why couldn’t we also talk about a “extraterrestrial brother”? He would still be part of creation.”

Even with the discovery of over 400 exoplanets, the question of extraterrestrial life still remains to be answered in our own Solar System. It is a pertinent question for the religious and non-religious alike. Though it wasn’t answered at this most recent conference, the existence of life outside what we know here on Earth has an equal impact on the findings of science as it does the meaning of religion. This event certainly brought the two under the same roof for what were surely some interesting and fruitful conversations.

Source: Physorg, Pontifical Academy of Sciences

NASA Satellites Monitor Tropical Storm Ida

The GOES-12 satellite is monitoring the status of tropical storm Ida to help in predicting its path. Image Credit: GOES Project Science

NASA has been keeping an eye on tropical storm Ida off the Gulf Coast, which was downgraded from a hurricane earlier today. Its satellites have been helping meteorologists to measure the rainfall and windspeeds of the storm. Ida is predicted by the National Hurricane Center in Miami, Florida to make landfall near Pensacola, Florida on Tuesday morning (Nov. 10th), after which it is expected to drop in intensity and head East.

NASA has been using three different satellites to monitor the tropical storm. The Tropical Rainfall Measuring Mission (TRMM) satellite flew over the storm earlier today, just before it was downgraded from hurricane status. At that time, the data from TRMM showed scattered convective thunderstorms producing moderate to heavy rainfall of about 50mm (2 inches) per hour. The windspeeds were measured at 70 knots (80.5 mph), but have since dropped.

The Quick Scatterometer satellite (QuikScat) used microwaves to observe Ida’s winds. The satellite data showed the speed of the rotating winds in the storm near the ocean surface to be 50-55 knots (57-63 mph) at 7a.m. Eastern Time. The tropical force winds extend out up to 200 miles from the center of Ida.

The third satellite NASA is using is the Geostationary Operational Environmental Satellite, GOES-12. From the imaging taken with GOES-12, the GOES Project at NASA’s Goddard Space Flight Center in Greenbelt, Md. was able to make a movie of the storm’s movement from November 7th-9th. The movie and many other images of the storm, updated hourly, are available on the GOES Project Science website.

Though Ida is not a hurricane, it still poses a significant threat to those living in the region where it will make landfall. The National Hurricane Center noted that “Large and destructive waves will accompany a storm surge of 3 to 5 feet near the point of landfall.” Local advisories are in effect on the ground for residents of the Gulf coast from the Florida panhandle to New Orleans and Baton Rouge, Louisiana. These areas and more northern areas into eastern Tennessee Valley and southern Appalachians can expect 3 to 5 inches of rainfall, with isolated totals of 8 inches.

If you live in these areas, please take care to follow any official advisories on the storm, available on the National Hurricane Center website.

Source: Eurekalert

Stuck Spirit Rover Moves!

The Spirit Rover, which has had its wheels stuck for 145 Martian sols, has finally moved! Though she’s far from being extricated from her current position, this is the first time that she’s budged in quite a while. The Mars rover driving team is working on ways to get Sprit out, and this recent move was just them getting Spirit’s wheels in alignment for an upcoming procedure to free her from the sand trap she’s stuck in. But it’s a start!

As Emily reported over at the Planetary Society Blog, this is the “First drive sequence in 145 sols”, according to the rover driver Scott Maxwell on Twitter. The team is getting ready to start extricating Spirit.

The rover team has been working diligently on ways to get Spirit free from the sand that the rover has been stuck in since April. Given that the rover has been having memory problems – the most recent was October 30th – this will be an extraordinary challenge.

Here are some more animations of Spirit’s most recent move:

This is from Spirit's forward hazcam, from sols 2078 and 2079. You can see the buried wheel in the bottom left portion of the image. Credit: NASA / JPL / animation by Damien Bouic
This is from Spirit's forward hazcam, from sols 2078 and 2079. You can see the buried wheel in the bottom left portion of the image. Credit: NASA / JPL / animation by Damien Bouic
Spirit's right rear hazcam from sols 2072 to 2078. Image Credit: NASA / JPL / animation by fredk
Spirit's right rear hazcam from sols 2072 to 2078. Image Credit: NASA / JPL / animation by fredk

NASA will be giving out further details of their plan at a press conference this Thursday, November 12th , so be sure and check back here for more specific information on the escape plan for Spirit!

Source: Planetary Society Blog

LaserMotive Takes Prize During Space Elevator Games

The 2009 Space Elevator Games ran from November 4-6, and there is a winner! LaserMotive from Seattle took home the Level 1 prize of $900,000. Three teams competed for the $1.1 million and $900,000 prizes in this year’s event: LaserMotive from Seattle, the Kansas City Space Pirates, and the University of Saskatchewan Space Design Team (USST).

As we covered last week, on the very first day of the event LaserMotive successfully climbed the 1km (.6mile) ribbon “racetrack” at NASA’s Dryden Flight Research Center at Edwards Air Force Base near Mojave, California. LaserMotive is the first team that has qualified for a prize in the 5 years the games have run. They made a successful climb of the 1km ribbon at 4m/s (13ft/s), far beyond the 2m/s requirement for the Level 1 prize. LaserMotive made 4 runs of above 2m/s (6.6ft/s), an impressive showing considering that this is the first time a team has made the 1km mark, let alone qualify for one of the prizes! Their top time of 3-minutes 47-seconds was on Thursday.

The Kansas City Space Pirates made several climbs, none of which reached the top of the cable. Though their lasing system is the most powerful, they had trouble tracking the climber throughout the competition and were unable to get it up past about the halfway point.

USST didn’t have much luck this time around. Their climber had a number of issues, and during many of their climbing windows it was completely grounded.

The Level 2 prize of $1.1 million still remains unclaimed. This will go to the team that can climb 1km at 5m/s (16.5 ft/s) or more at the next Power Beaming Challenge. LaserMotive made an unsuccessful attempt to lighten their climber and get it to the 5m/s mark on the last day of the games. Maybe next year?

The Space Elevator Games/Power Beaming Challenge are part of NASA’s Centennial Challenges program, which provides monetary incentives for private companies to develop technologies in space-related fields. Just last week, the program handed out $1.5 million for the The Northrop Grumman Lunar Lander X-Prize challenge. The Space Elevator Games are run by the Spaceward Foundation.

Check back with us here at Universe Today next year to see if anyone nabs the big prize!

Source: NASA, Space Elevator Games

Physicist Vitaly Ginzburg Dies at age 93

Vitaly Ginzburg, a Russian physicist and Nobel laureate, died yesterday of cardiac arrest. He was 93 years old. Ginzburg shared the 2003 Nobel Prize in physics for his work on superconductors, but contributed to many other fields of study, including quantum theory, astrophysics, radio-astronomy and diffusion of cosmic radiation in the Earth’s atmosphere. In addition, he is known for his contributions to the development of the Russian hydrogen bomb in the 1950s, for which he received the Stalin Prize.

Ginzburg was born in 1916, before the Bolshevik Revolution, to a Jewish family in Moscow. He lived through the hardships of his childhood to enter Moscow State University in 1933, where he took up the study of physics, he wrote in his autobiography for the 2003 Nobel Prize.

Ginzburg went on to work on the hydrogen bomb during the 1950s, for which he credits his escape from Stalinist purges and anti-Semitism of the period. He became a member of the Soviet Academy of Sciences in 1953. Ginzburg later bcame editor of a leading scientific magazine on theoretical physics, Uspekhi Fizicheskikh Nauk and the head of the P.N. Lebedev Physical Institute, Moscow, Russia.

Ginzburg shared the 2003 Nobel Prize in physics with Alexei A. Abrikosov and Anthony J. Leggett for their work in the field of superconductivity, the ability of materials to conduct electricity with little or no resistance. Ginzburg also authored a book on the subject, titled On Superconductivity and Superfluidity.

His position on his role of the development of the H-bomb for Stalinist Russia is best left in his own words. Ginzburg said just last week in an interview with Physics World :

We thought at the time that we were working to prevent a monopoly on the atomic bomb – Hitler’s monopoly if he got the bomb before Stalin. The thought of what would happen if Stalin had a monopoly on atomic weapons somehow never entered my head. Scary thought. Stalin would seek to subjugate the entire world. I admit this may betray stupidity, but this stupidity was, back then, a common way of thinking in the Soviet Union.

Ginzburg will be buried Wednesday in the Novodevichye Cemetery in Moscow. To read more about Ginzburg and his long life and incredible list of achievements, see this video interview on the Nobel Prize site, and read his autobiography.

Source: AP, Nobel Prize site, Physics World