Probing Pluto’s Paltry Atmosphere Using A Solar Eclipse And Spacecraft

Artist's conception of the Pluto system from the surface of one of its moons. Credit: NASA, ESA and G. Bacon (STScI)

Pluto is so far away from us and so tiny that it’s hard to glean even basic facts about it. What is its tenuous atmosphere made of? And how to observe it during NASA’s New Horizons very brief flyby next July? A recent Johns Hopkins blog post explains how a careful maneuver post-Pluto will let investigators use the Sun to examine the dwarf planet’s true nature.

Investigators will use an instrument called Alice, an ultraviolet spectrometer, to look at the atmosphere around Pluto and its largest moon, Charon. Alice is capable of examining the gases in the atmosphere using a large “airglow” aperture (4 by 4 centimeters) and also using the Sun for observation with a smaller, 1-mm solar occultation channel.

“Once New Horizons flies past Pluto, the trajectory will conveniently (meaning, carefully planned for many years) fly the spacecraft through Pluto’s shadow, creating an effect just like a solar eclipse here on Earth,” wrote Joel Parker, New Horizons co-investigator, in a blog post.

New Horizons
New Horizons spacecraft. Image Credit: NASA

“So we can (and will) just turn the spacecraft around and stare at the Sun, using Alice as it goes behind Pluto to measure how the Sun’s ultraviolet light changes as that light passes through deeper and deeper parts of Pluto’s atmosphere. This technique lets us measure the composition of Pluto’s atmosphere as a function of altitude.”

And guess where the technique was used not too long ago? Titan! That’s a moon of Saturn full of hydrocarbons and what could be a precursor chemistry to life. The moon is completely socked in with this orange haze that is intriguing. Scientists are still trying to figure out what it is made of — and also, to use our understanding of it to apply to planets outside our solar system.

When a huge exoplanet passes in front of its star, and it’s close enough to Earth, scientists are starting to learn how to ferret out information about its chemistry. This shows them what temperature the atmosphere is like and what it is made of, although it should be emphasized scientists are only starting on this work.

A composite image of Titan's atmosphere, created using blue, green and red spectral filters to create an enhanced-color view.  Image Credit: NASA/JPL/Space Science Institute
A composite image of Titan’s atmosphere, created using blue, green and red spectral filters to create an enhanced-color view. Image Credit: NASA/JPL/Space Science Institute

The goal of performing these transit observations of Titan was to understand how haze on an exoplanet might blur the observations. From four passes with the Cassini spacecraft, the team (led by Tyler Robinson at NASA’s Ames Research Center) found that haze would make it difficult to get information from all but the upper atmosphere.

“An additional finding from the study is that Titan’s hazes more strongly affect shorter wavelengths, or bluer, colors of light,” NASA stated at the time. “Studies of exoplanet spectra have commonly assumed that hazes would affect all colors of light in similar ways. Studying sunsets through Titan’s hazes has revealed that this is not the case.”

The nature of Pluto will better come to light when New Horizons makes its pass by the planet in July 2015. Meanwhile, controllers are counting down the days until the spacecraft emerges from its last hibernation on Saturday (Dec. 6).

Source: Johns Hopkins Applied Physics Laboratory

New ‘Star Wars’ Trailer A Force Among Fans — And An Inspiration For Lego Parody

A still from the first Star Wars: Episode VII - The Force Awakens trailer, released in November 2014. Credit: Lucasfilm/Bad Robot/Walt Disney Pictures/MOVIECLIPS Trailers/YouTube (screenshot)

Just how fast can X-wings hope of Star Wars fans go? In the first day since the new Star Wars: Episode VII — The Force Awakens trailer was released, the YouTube channel racked up more than 19 million views, inspiring discussion about how good the new films could be. You can watch the trailer above.

Below (with minor spoilers) is a roundup of the coverage and a cute Lego-inspired parody from a fan.

Entertainment Weekly published seven things that Star Wars fans have learned from the trailer, including the fact that no outer space is featured (!), none of the old-time stars are present yet (why?) and how the new lightsaber actually has a Game of Thrones look.

Ars Technica declared the trailer “definitely looks like Star Wars” because it includes the familiar elements we have been accustomed to since 1977, ranging from stormtroopers to the Millennium Falcon. “One of the challenges … in reviving the Star Wars movie franchise is winning over hardcore fans and washing away the bad taste of the critically reviled prequel films, and there’s no better way to start doing that than by appealing to nostalgia,” the mini-review read.

The Verge cleverly finds a Lego-themed parody of the Star Wars trailer and appears to like the bricked lightsaber more than the one showed in the trailer. And yes, the famous bricks are important to the franchise due to the immensely popular Lego video game series based on Star Wars.

IGN covers what it considers “the major talking points” of the trailer, including the fact that we’re on Tatooine, John Boyega “looks a little anxious” for a stormtrooper, and questions about some of the junk lurking in the background of one of the shots.

Business Insider finds the ultimate Easter egg for Star Wars fans. No, we’re not going to spoil the surprise — you’re going to have to click through to see it.

The Telegraph collects a bunch of fake trailers for those who haven’t had enough of the real thing. You can see one of them below.

Star Wars Fanpedia fulfills our destiny for even MORE fan-made trailers. Expect to see more as the release date comes up in about a year.

Mashable has some amusing asides based on what we see in the trailer. Our favorite: “There’s one piece of writing in the trailer, on the X-wing pilot’s uniform, written in the language of the Star Wars universe, known as Aurebesh. And what does it say? Star Wars nerds had that answer almost immediately: ‘Pull to inflate.’ ”

Carscoops watches the trailer with perhaps the best unique angle ever: what if the characters had to drive cars? What would they look like?

Delaying Death: Mercury Spacecraft Firing Engines To Stay Up Until 2015

Illustration of MESSENGER in orbit around Mercury (NASA/JPL/APL)

Don’t take these spectacular Mercury images (below the jump) for granted. Three weeks ago, NASA’s orbiting Mercury spacecraft did an engine fire to boost its altitude above the hothouse planet. Another one is scheduled for January.

But all this will do is delay the end of the long-running mission — the first one to orbit Mercury — until early 2015, the Johns Hopkins Applied Physics Laboratory wrote in an update. These maneuvers “extend orbital operations and delay the probe’s inevitable impact onto Mercury’s surface until early next spring,” the organization said in a statement.

Until MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) flew by Mercury for the first time in January 2008, we knew very little about the planet. The only close-up pictures previously came from Mariner 10, which whizzed by a few times in 1974-75. After a few flybys, MESSENGER settled into orbit in 2011.

A 3-D image of Balanchine crater on Mercury obtained by the MESSENGER spacecraft. Scientists are examining the region to learn more about its oddly shaped ejecta, which may have occurred when one impact crater dumped material on top of another pile. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
A 3-D image of Balanchine crater on Mercury obtained by the MESSENGER spacecraft. Scientists are examining the region to learn more about its oddly shaped ejecta, which may have occurred when one impact crater dumped material on top of another pile. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

In that brief span of years, MESSENGER has taught us that Mercury is a different planet than we imagined. In a statement this August celebrating the spacecraft’s 10th launch anniversary, NASA identified several things that made MESSENGER’s science special:

  • Mercury’s high density compared to other planets remains a mystery. MESSENGER investigations found a surface that didn’t have a lot of iron in it, but lots of volatile materials such as sodium and sulfur.
  • The surface had volcanoes on it and still has water ice in permanently shadowed craters near the poles.
  • Its magnetic field produces weird effects that are still being examined. NASA speaks of “unexplained bursts of electrons and highly variable distributions of different elements” in its tenuous atmosphere, called an exosphere.
This is an Andy Warhol-like image of an unnamed crater near Mercury's north pole. Data obtained by the MESSENGER spacecraft makes scientists suspect there is water ice inside the 15-mile (24-kilometer) divot. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
This is an Andy Warhol-like image of an unnamed crater near Mercury’s north pole. Data obtained by the MESSENGER spacecraft makes scientists suspect there is water ice inside the 15-mile (24-kilometer) divot. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

“Our only regret is that we have insufficient propellant to operate another 10 years, but we look forward to the incredible science returns planned for the final eight months of the mission,” stated Andy Calloway, MESSENGER mission operations manager at the Johns Hopkins University Applied Physics Laboratory, at the time.

MESSENGER has done several orbital-boosting maneuvers in recent months to prolong the mission as possible. The first one in June adjusted its orbit to between 71.4 miles (115 kilometers) and 97.2 miles (156.4 kilometers), while the second in September went lower: a minimum of 15.7 miles (25.2 kilometers) to 58.2 miles (93.7 kilometers).

As of late October, MESSENGER’s minimum altitude was 115.1 miles (185.2 miles) and it took roughly eight hours for it to orbit Mercury. Once it finally crashes, Europe’s and Japan’s BepiColombo is expected to be the next Mercury orbiting mission. It launches in 2016, but will take several flybys past planets to get there and won’t arrive until 2024.

Ice is lurking at the bottom of these craters on Mercury in this double image. From left to right, the large craters are  Chesterton, Tryggvadóttir, and Tolkien. The right-hand image is stretched to show the permanent dark bottoms in each crater. Data is from the NASA MESSENGER mission. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Ice is lurking at the bottom of these craters on Mercury in this double image. From left to right, the large craters are Chesterton, Tryggvadóttir, and Tolkien. The right-hand image is stretched to show the permanent dark bottoms in each crater. Data is from the NASA MESSENGER mission. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Beam Me Up, Mars! Uwingu Will Send 90,000 Radio Messages There Today

Early Spring Dust Storms at the North Pole of Mars. Early spring typically brings dust storms to northern polar Mars. As the north polar cap begins to thaw, the temperature difference between the cold frost region and recently thawed surface results in swirling winds. The choppy dust clouds of several dust storms are visible in this mosaic of images taken by the Mars Global Surveyor spacecraft in 2002. The white polar cap is frozen carbon dioxide. (NASA/JPL/Malin Space Science Systems)

Maybe you can’t climb on a rocketship to Mars, at least yet, but at the least you can get your desire for exploration out through other means. Today, take comfort that humanity is sending 90,000 messages in the Red Planet’s direction. That’s right, the non-profit Uwingu plans to transmit these missives today around 3 p.m. EST (8 p.m. UTC).

Among the thousands of ordinary folks are a collection of celebrities: Bill Nye, the Science Guy; George Takei (“Sulu” on Star Trek) and commercial astronaut Richard Garriott, among many others.

“This is the first time messages from people on Earth have been transmitted to Mars by radio,” Uwingu stated. “The transmission, part of Uwingu’s ‘Beam Me to Mars’ project, celebrates the 50th anniversary of the 28 November 1964 launch of NASA’s Mariner 4 mission—the first successful mission to explore Mars.”

The project was initially released in the summer with the idea that it could help support struggling organizations, researchers and students who require funding for their research. The messages cost between $5 and $100, with half the money going to the Uwingu Fund for space research and education grants, and the other half for transmission costs to Mars and other needed things.

While only robots can receive those messages for now, it’s another example of transmission between the planets that we take for granted. For example, check out this stunning picture below from Mars Express, a European Space Agency mission, that was just released yesterday (Nov. 27). Every day we receive raw images back from the Red Planet that anyone can browse on the Internet. That was unimaginable in Mariner 4’s days. What will we see next?

Close-up of a trough in the huge Hellas Basin on Mars, taken by the European Space Agency's Mars Express spacecraft and released Nov. 27, 2014. Credit: ESA/DLR/FU Berlin
Close-up of a trough in the huge Hellas Basin on Mars, taken by the European Space Agency’s Mars Express spacecraft and released Nov. 27, 2014. Credit: ESA/DLR/FU Berlin

Rocket Remains? Video Shows ‘Pieces Of Whatever’ Flaming High Above Belgrade

Just before dawn on Wednesday (Nov. 26), a pilot in Belgrade caught this stunning video of a “huge number of glowing pieces of whatever” breaking up in the atmosphere above.

You know what this is? A rocket, most likely! It’s the upper stage for the Soyuz that launched three people to space on Sunday (Nov. 23), the European Space Agency says.

Continue reading “Rocket Remains? Video Shows ‘Pieces Of Whatever’ Flaming High Above Belgrade”

‘Meteoric Smoke’: Comet Siding Spring Could Alter Mars Chemistry Permanently

Observations of Comet Siding Spring Oct. 19 by the Mars Orbiter Mission. Credit: Indian Space Research Organisation

Feeling lucky? Events such as the Comet Siding Spring approach by Mars in October only happen about once every eight million years, according to NASA.

And after we were treated to spectacular views from the agency’s spacecraft (see Curiosity and Opportunity and MAVEN, for example), we now have fresh pictures this month from an Indian mission. Also, NASA has released science results suggesting that the chemistry of Mars’ atmosphere could be changed forever from the close encounter.

“The image in the center shows a streak … radiating out of the comet’s nucleus (out of frame), possibly indicating the jet from [the] comet’s nucleus,” the Indian Science Research Organisation wrote of the above image sequence on its Facebook mission page.

“Usually jets represent outgassing activity from [the] vents of the comet-nucleus, releasing dust and ice crystals. The outgassing activity gradually increases as the comet moves closer to the Sun.”

Artist view of the comet passing closest to Mars this Sunday. At the time, the Mars orbiters from the U.S., Europe and India will be huddled on the opposite side of the planet to avoid possible impacts from comet dust. Credit: NASA
Artist view of the comet passing closest to Mars this Sunday. At the time, the Mars orbiters from the U.S., Europe and India will be huddled on the opposite side of the planet to avoid possible impacts from comet dust. Credit: NASA

The comet’s dust likely produced a meteor shower or meteor storm when particles from it crashed into the upper atmosphere, which “literally changed the chemistry,” added Jim Green, director of NASA’s planetary science division, in a recent discussion highlighted on an agency blog.

The agency says the dust created vaporized metals, which will eventually transform to dust or “meteoric smoke.” MAVEN (which stands for Mars Atmosphere and Volatile EvolutioN) will be monitoring the long-term effects. Possible results include high-altitude clouds or at the most extreme, maybe permanently altering what the chemistry of the atmosphere is. Not a bad thing for a mission to study shortly after it arrived at Mars.

You can view more science results from NASA’s studies of Siding Spring in this recent Universe Today story from Bob King, which talks in more detail about the meteor shower, new layers in the Mars atmosphere and the omnipresent dust.

Venus Express Spacecraft, Low On Fuel, Does Delicate Dance Above Doom Below

Artist's impression of Venus Express performing aerobreaking maneuvers in the planet's atmosphere in June and July 2014. Credit: ESA–C. Carreau

It’s been an interesting year for Venus Express. A few months ago, controllers deliberately dipped the spacecraft into the atmosphere of the planet — for science purposes, of course. The daring maneuver was approved because the spacecraft is near the end of its mission. It’s nearly out of fuel and will fall into Venus — sometime. Likely in 2015. No one knows exactly when, however.

Until Dec. 30, European Space Agency operators are going to boost the spacecraft’s orbit to try to get a little more productivity out of it. After that, all depends on what gas is left in the tank.

The push against the dense atmosphere revealed a few surprises. In a recent blog post, ESA said the atmosphere was changing more than expected. Between different altitudes, controllers sometimes saw a steady rise in pressure and sometimes multiple peaks. The spacecraft’s journeys took it as low as 129.2 kilometers (80 miles) above the surface, but mostly involving a month of “surfing” between 131 km and 135 km (81.4 miles and 83.9 miles).

Artist's conception of Venus Express doing an aerobraking maneuver in the atmosphere in 2014. Credit: ESA–C. Carreau
Artist’s conception of Venus Express doing an aerobraking maneuver in the atmosphere in 2014. Credit: ESA–C. Carreau

“One possible explanation is that we detected atmospheric waves,” stated Håkan Svedhem, Venus Express project scientist.

“These features can be caused when high speed winds travel over mountain ranges. The waves then propagate upwards. However, such waves have never before been detected at such heights – twice the altitude of the cloud deck that blankets Venus.”

ESA observed that the atmospheric density increased 1,000 times between 165 km and 130 km (102.5 miles and 80.8 miles) and that it also changed when the spacecraft moved from day to night (specifically, it was four times greater on the sunlit side.) Measurements were also taken of high-energy particles and Venus’ magnetic fields, which are still being examined.

False colour composite of a ‘glory’ seen on Venus on 24 July 2011. The image is composed of three images at ultraviolet, visible, and near-infrared wavelengths from the Venus Monitoring Camera. The images were taken 10 seconds apart and, due to the motion of the spacecraft, do not overlap perfectly. The glory is 1200 km across, as seen from the spacecraft, 6000 km away. Credit: ESA/MPS/DLR/IDA.
False colour composite of a ‘glory’ seen on Venus on 24 July 2011. The image is composed of three images at ultraviolet, visible, and near-infrared wavelengths from the Venus Monitoring Camera. The images were taken 10 seconds apart and, due to the motion of the spacecraft, do not overlap perfectly. The glory is 1200 km across, as seen from the spacecraft, 6000 km away. Credit: ESA/MPS/DLR/IDA.

But now, the end is indeed near for the spacecraft after eight years at Venus — four times longer than its primary mission. Although it is healthy and performing routine science operations, fuel is only standing at around 3 kilograms (6.6 pounds) and oxidizer at 5 kg (11 lbs). It’s possible not all of it is accessible due to propellant movement in the tanks, ESA said. The new maneuvers are expected to subtract 1.4 kg of fuel and 2 kg of oxidizer from these totals.

“Unfortunately, we do not know how much fuel remains in its tanks, but we are intending to continue the up-down process as long as possible, until the propellant runs out,” Svedhem added.

“We have yet to decide whether we shall simply continue until we lose control, allowing it to enter the atmosphere and burn up naturally, or whether we attempt a controlled descent until it breaks up.”

Source: European Space Agency (here and here)

How Do Astronauts Celebrate Thanksgiving On The Space Station?

The Expedition 28 crew on the International Space Station celebrates after a fresh food delivery in 2011. Credit: NASA

As Americans get ready for turkey feasts and other Thanksgiving goodies today, let’s take a few moments to think about the crew of six people on board the International Space Station. Two Americans, a European and three Russians are working there now and will be taking most of today (Nov. 26) off for the holiday.

What the heck will they eat? The NASA interview above provides some clues, including a surprise about leftovers. More details below the jump.

NASA, which is responsible for supplying the three astronauts using the American segment of the space station, generally allocates four pounds of food per crew member per day (including packaging), according to Vickie Kloeris, food system manager for the station. Astronauts can also bring a little bit of bonus food with them for special treats. The food isn’t sent up as meal plans, but as different kinds (meats, vegetables, and the like) that the astronauts can assemble at will.

“We don’t have a set-aside meal for Thanksgiving. but they do have all these products available to choose from,” Kloeris said in the interview. “Crew members do know that they’re going to be on orbit during the holidays, [so] they often put special items in their bonus containers with the holidays in mind.”

Kloreis said she couldn’t reveal what Expedition 42 has in its grab boxes, but in the past astronauts have brought up items such as cranberry sauce or icing/frosting to put on cookies in orbit.

Below you can see a recent tweet from former Canadian astronaut Chris Hadfield concerning a typical meal for astronauts, which he put up with a Thanksgiving reference. Whatever the crew is having up there, we wish them a Happy Thanksgiving!

 

Jet! Rosetta’s Comet Is Feeling The Heat As Gas and Dust Erupts From Surface

Gas and dust stream from Comet 67P/Churyumov–Gerasimenko in this mosaic from the Rosetta spacecraft taken Nov. 20, 2014. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Get a load of those streaks! Rosetta’s comet is picking up in activity as it moves ever closer to the Sun, sending out a steady stream of gas and dust captured in this image released today (Nov. 26). It’s also possible that there might be an “atmosphere” developing around the comet, although the images aren’t clear on if that’s an artifact of Rosetta itself.

As the European Space Agency scurries to find the final resting place of the Philae lander, Rosetta continues normal operations above the comet and will keep tracking it through 2015. Rosetta is the first orbiter to stick around near a comet, which will allow scientists an unprecedented chance to see a comet change from up close as the Sun’s heat and particles affect it. Could there be an atmosphere starting up?

“At the bottom of the mosaic, the non-illuminated part of the comet stands out as a silhouette against the broader diffuse emission coming from the comet’s coma,” ESA stated. “There are hints of a diffuse ‘atmosphere’ close to the surface of the comet seen along the illuminated edges, but this could be due to scattering in the NAVCAM optics. The large number of small white blobs in the image are likely specks of dust or other small objects in the vicinity of the comet.”

Here’s the same image below, but slightly oversatured to bring out those streaks. It’ll be fun to see the changes at 67P over the next few months, and ESA is still holding out hope that Philae will wake up in a few months once enough sunlight reaches its shady spot. If that happens, scientists can then get an extreme close-up of 67P’s activity as well.

Source: European Space Agency

A mosaic of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft Nov. 20, with more exposure and contrast to bring out jets erupting from the comet's surface. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
A mosaic of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft Nov. 20, with more exposure and contrast to bring out jets erupting from the comet’s surface. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

NASA Airship Could Watch The Stars Without The Need Of a Rocket

Artist's concept of a NASA airship that would fly at a suborbital altitudes for hours at a time. Credit: Mike Hughes (Eagre Interactive)/Keck Institute for Space Studies

Dreams of space are often tied to jet engines or solar sails or taking a ride on a rocketship. But it’s often quite efficient to do research from Earth, especially from the high reaches of the atmosphere where there are few molecules to get in the way of observations.

NASA wants to do more of this kind of astronomy with an airship — but at an extreme height of 65,000 feet (20 kilometers) for 20 hours. No powered-airship mission has managed to last past eight hours at this height because of the winds in that zone, but NASA is hoping that potential creators would be up to the challenge.

This isn’t a guaranteed mission yet. NASA has a solicitation out right now to gauge interest from the community, and to figure out if it is technically feasible. This program would be a follow-on to ideas such as SOFIA, a flying stratospheric telescope that the agency plans to defund in future budgets.

Their goal is to fly an airship with a 44-pound (20-kilogram) payload at this altitude for 20 hours. If a company is feeling especially able, it can even try for a more difficult goal: a 440-pound (200-kilogram) payload for 200 hours.

NASA's Stratospheric Observatory for Infrared Astronomy 747SP aircraft flies over Southern California's high desert during a test flight in 2010. Credit: NASA/Jim Ross
NASA’s Stratospheric Observatory for Infrared Astronomy 747SP aircraft flies over Southern California’s high desert during a test flight in 2010. Credit: NASA/Jim Ross

“We are seeking to take astronomy and Earth science to new heights by enabling a long-duration, suborbital platform for these kinds of research,” stated lead researcher Jason Rhodes, an astrophysicist at NASA’s Jet Propulsion Laboratory in California.

And why not just use a balloon? It comes down to communications, NASA says: “Unlike a balloon, which travels with air currents, airships can stay in one spot,” the agency states. “The stationary nature of airships allows them to have better downlink capabilities, because there is always a line-of-sight communication.”

If the prize goes forward, NASA is considering awarding $2 million to $3 million across multiple prizes. You can get more on the official request for information at this link.

Source: NASA