Robot Spacecraft Swarm Among Group Tapped For More NASA Funding

Artist's conception of "spacecraft/rover hybrids for the exploration of small solar system bodies", a concept funded under Phase II of NASA' Innovative Advanced Concepts program in 2014. Credit: NASA

How do crazy but neat ideas such as the Mars crane make it to space? It’s through years, sometimes decades, of development to try to solve a problem in space exploration. NASA has an entire program devoted to far-out concepts that are at least a decade from making it into space, and has just selected five projects for a second round of funding.

One of them is a robotic swarm of spacecraft that we’ve written about before on Universe Today. Flying out from a mothership, these tiny spacecraft would be able to tumble across the surface of a low-gravity moon or asteroid.

“The systematic exploration of small bodies would help unravel the origin of the solar system and its early evolution, as well as assess their astrobiological relevance,” stated its principal investigator, Stanford University’s Marco Pavone, in a 2012 story. “In addition, we can evaluate the resource potential of small bodies in view of future human missions beyond Earth.”

The concept, called “Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies“, is among the selectees in the second phase of the NASA Innovative Advanced Concepts program. Each will receive up to $500,000 to further develop their concept during the next two years. While Phase I studies are considered to show if a project is feasible, Phase II begins to narrow down the design.

Artist's conception of a 10-meter sub-orbital large balloon reflector funded under NASA's Innovative Advanced Concepts program. Credit: NASA
Artist’s conception of a 10-meter sub-orbital large balloon reflector funded under NASA’s Innovative Advanced Concepts program. Credit: NASA

“This was an extremely competitive year for NIAC Phase II candidates,” stated Jay Falker, the program’s executive at NASA Headquarters. “But the independent peer review process helped identify those that could be the most transformative, with outstanding potential for future science and exploration.”

This is the rest of the selected concepts:

10 meter Sub-Orbital Large Balloon Reflector (Christopher Walker, University of Arizona): A telescope that uses part of a balloon as a reflector. The telescope would fly high in the atmosphere, perhaps doing examinations of Earth’s atmosphere or performing telecommunications or surveillance.

Deep mapping of small solar system bodies with galactic cosmic ray secondary particle showers (Thomas Prettyman, Planetary Science Institute): Using subatomic particles to map asteroids, comets and other smaller objects in the solar system.

Low-Mass Planar Photonic Imaging Sensor (Ben S.J. Yoo, University of California, Davis): A new way of thinking about telescopes that would use a low-mass planar photonic imaging sensor. This could be useful for missions to the outer solar system.

Orbiting Rainbows (Marco Quadrelli, NASA Jet Propulsion Laboratory): Using “an orbiting cloud of dust-like matter” for astronomical imaging by taking advantage of the spots where light passes through.

Source: NASA

Power Up! Distant Uranus Sees A Storm Surge Of ‘Monstrous’ Proportions

Huge storms on Uranus were spotted by the Keck Observatory on Aug. 5 and Aug. 6, 2014. Credit: Imke de Pater (UC Berkeley), Pat Fry (University of Wisconsin), Keck Observatory

Who can imagine Uranus as a quiet planet now? The Keck Observatory caught some spectacular pictures of the gas giant undergoing a large storm surge a few days ago, which took astronomers by surprise because the planet is well past the equinox in 2007, when the sun was highest above the equator.

“We are always anxious to see that first image of the night of any planet or satellite, as we never know what it might have in store for us,” stated Imke de Pater, an astronomer at the University of California, Berkeley that led the research.

“This extremely bright feature we saw on UT 6 August 2014 reminds me of a similarly bright storm we saw on Uranus’s southern hemisphere during the years leading up to and at equinox.”

Astronomers say the brightest of the storms is “monstrous” and reminds them of a dissipated feature nicknamed the “Berg”, since it looked a bit like an iceberg.

These two pictures of Uranus -- one in true color (left) and the other in false color -- were compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. Image credit: NASA/JPL
These two pictures of Uranus — one in true color (left) and the other in false color — were compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. Image credit: NASA/JPL

The Berg, which might have been there when one of the Voyager spacecraft flew by in 1986, moved between the southern latitudes of 32 and 36 degrees between 2000 and 2005. After getting brighter in 2004, it moved towards the equator and got even stronger, where it remained until falling apart in 2009. (You can see pictures of it here.)

“The present storm is even brighter than the Berg. Its morphology is rather similar, and the team expects it may also be tied to a vortex in the deeper atmosphere,” Keck stated. Based on how bright the storm appears, researchers believe it must be reaching high into the atmosphere, perhaps approaching the tropopause (just below the stratosphere)

Source: Keck Observatory

The Latest Pictures From Mars Make Us Feel Spoiled

A HiRISE image called "steep north polar peripheral scarp." Credit: NASA/JPL/University of Arizona

Don’t you love it when close-up pictures come beaming to your computer from another planet? Below are some of the latest images from Mars taken by the High Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter.

And by the way, there’s a way for you to request where HiRISE will be pointing next.

All you need to go to this page (called HiWish) and leave a suggestion for where you’d like the spacecraft to look. For some tips on what to do:

The general consensus seems to be picking a spot that is not over-popular, and trying to find a spot that HiRISE has not looked at before or very frequently. Best of luck!

To see more HiRISE images from the latest release, check out this webpage.

A HiRISE image called "Nili Patera." Credit: NASA/JPL/University of Arizona
A HiRISE image called “Nili Patera.” Credit: NASA/JPL/University of Arizona
A HiRISE image called "scalloped surface in Utopia region." Credit: NASA/JPL/University of Arizona
A HiRISE image called “scalloped surface in Utopia region.” Credit: NASA/JPL/University of Arizona
A HiRISE image called "gullied crater wall." Credit: NASA/JPL/University of Arizona
A HiRISE image called “gullied crater wall.” Credit: NASA/JPL/University of Arizona
A HiRISE image called "active dune gullies in Kaiser crater." Credit: NASA/JPL/University of Arizona
A HiRISE image called “active dune gullies in Kaiser crater.” Credit: NASA/JPL/University of Arizona
A HiRISE image called "dark-capped plain and hills in western Arabia region intercrater terrain." Credit: NASA/JPL/University of Arizona
A HiRISE image called “dark-capped plain and hills in western Arabia region intercrater terrain.” Credit: NASA/JPL/University of Arizona

These Mercury Crater Pictures Look Like Amazing Abstract Art

Images of the surface of Mercury taken by the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft. Some are in visual wavelengths and some are in other wavelengths. Yellow areas are considered to be younger spots. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

We’re lucky to have a spacecraft looking at Mercury and sending back information like this. NASA’s MESSENGER satellite just beamed back these images of three craters on the hplanet — Kertesz (top), Dominici (middle) and an unnamed crater (bottom).


Why the interesting appearance? That’s because some of these are color composites representing spectral information gathered by the spacecraft. By examining elements that are a part of the surface, scientists can get a sense of how the planet was formed and what parts of it were made when. For example, the yellow parts of those images are believed to be the youngest parts.

MESSENGER made its first flyby of Mercury in 2008 and entered orbit into the planet, which is the closest to the Sun, in 2011. Its discoveries including finding ice and hot flows amid the pictures of its cratered surface.

Source: Johns Hopkins University Applied Physics Laboratory

Where Exactly Is Pluto? Pinpoint Precision Needed For New Horizons Mission

Artist's conception of the Pluto system from the surface of one of its moons. Credit: NASA, ESA and G. Bacon (STScI)

When you have a spacecraft that takes the better part of a decade to get to its destination, it’s really, really important to make sure you have an accurate fix on where it’s supposed to be. That’s true of the Rosetta spacecraft (which reached its comet today) and also for New Horizons, which will make a flyby past Pluto in 2015.

To make sure New Horizons doesn’t miss its big date, astronomers are using the Atacama Large Millimeter/submillimeter Array (ALMA) to figure out its location and orbit around the Sun. You’d think that we’d know where Pluto is after decades of observations, but because it’s so far away we’ve only tracked it through one-third of its 248-year orbit.

“With these limited observational data, our knowledge of Pluto’s position could be wrong by several thousand kilometers, which compromises our ability to calculate efficient targeting maneuvers for the New Horizons spacecraft,” stated Hal Weaver, a New Horizons project scientist at Johns Hopkins University Applied Physics Laboratory in Maryland.

Pluto’s moon Charon moves around the dwarf planet in this animated image based on the data from the Atacama Large Millimeter/submillimeter Array (ALMA). Credit: B. Saxton (NRAO/AUI/NSF)

As ALMA is a radio/submillimeter telescope, the array picked up Pluto and its largest moon, Charon, by looking at the radio emission from their surfaces. They examined the objects in November 2013, in April 2014 and twice in July. More observations are expected in October.

“By taking multiple observations at different dates, we allow Earth to move along its orbit, offering different vantage points in relation to the Sun,” stated Ed Fomalont, an astronomer with the National Radio Astronomy Observatory who is assigned to ALMA’s operations support facility in Chile. “Astronomers can then better determine Pluto’s distance and orbit.”

New Horizons will reach Pluto in July 2015, and Universe Today is planning a series of articles about the dwarf planet. We’ll need your support to get it done, though. Check out the details here.

Source: National Radio Astronomy Observatory

Can A ‘Planet-Like Object’ Start Its Life Blazing As Hot As A Star?

How WISE 70304-2705 could have evolved from a star to a "planet-like object". Credit: John Pinfield,

Nature once again shows us how hard it is to fit astronomical objects into categories. An examination of a so-far unique brown dwarf — an object that is a little too small to start nuclear fusion and be a star — shows that it could have been as hot as a star in the ancient past.

The object is one of a handful of brown dwarfs that are called “Y dwarfs”. This is the coolest kind of star or star-like object we know of. These objects have been observed at least as far back as 2008, although they were predicted by theory before.

A group of scientists observed the object, called WISE J0304-2705, with NASA’s space-based Wide-field Infrared Survey Explorer (WISE). Looking at the spectrum of light it had emitted, which shows the object’s composition, has scientists saying that what the brown dwarf is made of suggests it is rather old — billions of years old.

“Our measurements suggest that this Y dwarf may have a composition … or age characteristic of one of the galaxy’s older members,” stated David Pinfield at the University of Hertfordshire, who led the research.

“This would mean its temperature evolution could have been rather extreme – despite starting out at thousands of degrees, this exotic object is now barely hot enough to boil a cup of tea.”

Size comparison of stellar vs substellar objects. (Credit: NASA/JPL-Caltech/UCB).
Size comparison of stellar vs substellar objects. (Credit: NASA/JPL-Caltech/UCB).

While the object started out hot, its interior never was quite enough to fuse hydrogen. That led to the extreme cooling visible today.

Models suggest the object would have begun its life shining at 2,800 degrees Celsius (5,072 Fahrenheit), for a phase that would have lasted for 20 million years. In the next 100 million years, its temperature would have almost halved to 1,500 Celsius (2,730 Fahrenheit).

And it would have kept cooling, with a temperature of 1,000 Celsius (1,832 Fahrenheit) after a billion years, and after billions of more years, the temperature we see today — somewhere between 100 Celsius (212 Fahrenheit) and 150 Celsius (302 Fahrenheit).

The paper will be published shortly in the Monthly Notices of the Royal Astronomical Society. The research is available in preprint version on Arxiv. One limitation of the research is the small number of Y dwarfs discovered, only about 20, which means that more observations will be needed to see if other objects could have had this same evolution.

Source: Royal Astronomical Society

This Robotic Laser System On A Telescope Is Looking At Alien Planets

Still from a timelapse video showing the Robo-AO laser originating from the Palomar 1.5-meter Telescope dome. The laser is not visible to human eyes, but do show up in digital cameras if their UV blocking filters are removed. Credit: Institute for Astronomy, University of Hawaii / YouTube (screenshot)

There’s a group of people probing exoplanets with a laser robot, and the results are showing a few surprises. Specifically, a survey of “hot Jupiters” — the huge gas giants in tight orbits around their parent stars — shows that they are more than three times likely to be found in double star systems than other kinds of exoplanets.

The robotic laser adaptive optics system, which is installed on California’s Palomar Observatory’s 1.5-meter telescope, also discovered double star systems that each have their own planetary systems, rather than sharing one.

“We’re using Robo-AO’s extreme efficiency to survey in exquisite detail all of the candidate exoplanet host stars that have been discovered by NASA’s Kepler mission,” stated Christoph Baranec, a researcher at the University of Hawaii at Manoa’s Institute for Astronomy who led a paper on Robo-AO results.

“While Kepler has an unrivaled ability to discover exoplanets that pass between us and their host star, it comes at the price of reduced image quality, and that’s where Robo-AO excels.”

Lasers and adaptive optics are commonly used to account for changes in the atmosphere. A computer system helps the mirror change shape as the atmosphere swirls, providing clearer images for astronomers.

The Robo-AO survey cited looked at 715 candidate exoplanet systems that were first tracked down by NASA’s planet-hunting Kepler space telescope. The team is now planning to tackle the rest of the 4,000 Kepler planet candidate hosts.

Results from Robo-AO have been published in The Astrophysical Journal, here and here. You can also see a preprint version of one of these journal articles here.

Source: Institute for Astronomy University of Hawaii

Here’s Your Chance To Fund A Universe Today Project On The Pluto Planethood Debate

New Horizons
Artist's impression of the New Horizons spacecraft. Image Credit: NASA

This fall, Universe Today plans to get in-depth into the Pluto planethood debate. I (Elizabeth Howell) just launched a crowdfunding project on a new platform called Beacon that will allow me to fly down to Washington, D.C. for several days to interview Pluto scientists.

Should the project be funded, a few fun things are going to happen. Here, Universe Today readers will get a series of articles into the Pluto planethood debate. We’ll examine the controversial International Astronomical Union vote and why certain scientists still don’t believe Pluto is a dwarf planet today.

The question has special relevance today because NASA’s New Horizons spacecraft is on a journey to Pluto, and is less than a year from getting there. Examining Pluto will give scientists a window into how the solar system formed, which in turn gives us clues as to how the Earth came to be. We’ll have some stuff about the science as well; stay tuned for the details!

You’ll also get the chance to support astronomy education and outreach. I’m pleased to announce that CosmoQuest will be a partner on the project, receiving 15% of all proceeds for the project. If you contribute $250, $500 or $1,000, they will receive an additional 15% of your money. Contributors at this level will have their name mentioned in at least two of a series of six podcasts I will do for CosmoQuest’s 365 Days of Astronomy. There are other fun perks, too, so check out the Beacon page for more.

CosmoQuest-Logo-Full-sm3

As a freelance journalist, my challenge with doing travel stories is I have to pay my own way. Beacon solves that problem. It will allow me to spend a few days in person with scientists, gathering pictures and videos and podcasts, instead of relying on the phone interviews I usually conduct.

After paying contributions to CosmoQuest and to Beacon, every single cent remaining will be for travel expenses only. The money will give me a flight to Washington, D.C., a few nights in a reasonable hotel, and a car rental. I promise you that I’m extremely frugal — ask my mortgage broker — and I will spend every dollar of your contributions wisely. Additional money after $2,400 will allow me to draw a salary for the days I am there. If a substantial amount of extra money is raised, I’ll consider a second trip to D.C.

A NASA "poster" marking the one year to Pluto encounter by New Horizons. Credit: NASA
A NASA “poster” marking the one year to Pluto encounter by New Horizons. Credit: NASA

I’m not one to brag about my experience, but I will say that I’ve been proudly writing about space for a decade for many publications (including Universe Today). I’m one of the few journalists in Canada to focus on space virtually full-time. And I have covered some fun stories, such as three shuttle launches (2009-10), Chris Hadfield’s last mission (2012-13) and participating in a simulated Mars mission in Utah (early 2014). I see space as a field where I can always learn more, and this will be a great chance to share what I learn about Pluto with you.

Any questions? Feel free to get in touch with me at contact AT elizabethhowell DOT ca or to leave comments below. I likely won’t be able to respond until tomorrow as this launch coincidentally falls on a planned vacation day for me, but I promise that for the rest of the campaign I’ll answer your queries as fast as I can.

‘Explore Mars’ Group Wants To Build Instrument Seeking Subsurface Red Planet Life

Artist's concept of the proposed "ExoLance" instrument that Explore Mars would have burrow beneath the Red Planet's surface for life. Credit: ExoLance/Indiegogo/YouTube (screenshot)

Not-for-profit group Explore Mars has a new IndieGoGo campaign that could see an instrument, ExoLance, head to the Red Planet to burrow for subsurface life. The first stage will be to raise money to build the prototype and then test it, within 12-14 months of finishing the fundraising.

No launch date for this mission has been announced, but the group says that will be determined after testing is finished and a launch provider can be found.

“Explore Mars has devised a simple system capable of being delivered to the Martian surface to detect microorganisms living on or under the surface,” the campaign page states.

“ExoLance leverages a delivery system that was originally designed for military purposes.  As each small, lightweight penetrator probe (“arrow”) impacts the surface, it leaves behind a radio transmitter at the surface to communicate with an orbiter, and then kinetically burrows to emplace a life-detection experiment one  to two meters below the surface.  ExoLance combines the experiments of the 1970s Viking landers and the Curiosity rover with bunker-busting weapons technology.”

The project aims to raise $250,000, but there will be milestone goals available all the way up to $1 million.

 

Companion Planet Could Keep Alien Earths Warm In Old Age: Study

An artist's concept of a rocky world orbiting a red dwarf star. (Credit: NASA/D. Aguilar/Harvard-Smithsonian center for Astrophysics).

People are generally social creatures, and in the case of planets that generally is the case as well. Many of these alien worlds we have discovered are in groups of two or more around their parent star or stars. A new study, however, goes a step further and says that a companion planet could actually save another planet in its old age.

“Planets cool as they age. Over time their molten cores solidify and inner heat-generating activity dwindles, becoming less able to keep the world habitable by regulating carbon dioxide to prevent runaway heating or cooling,” the University of Washington stated.

“But astronomers … have found that for certain planets about the size of our own, the gravitational pull of an outer companion planet could generate enough heat — through a process called tidal heating — to effectively prevent that internal cooling, and extend the inner world’s chance at hosting life.”

The researchers ran computer models finding that tidal heating, which is known to happen on Jupiter’s moons Europa and Io, can also happen in planets the size of Earth that are in non-circular orbits around dwarf stars. An outer planet would keep the orbit from stabilizing in a circle, generating tidal heating and keeping conditions potentially warm enough for life.

The study, led by the University of Arizona’s Christa Van Laerhoven, will be available in the Monthly Notices of the Royal Astronomical Society and is available now in preprint version on Arxiv.