Rosetta’s Comet Is Too Hot For Complete Ice Surface, Spacecraft En Route Reveals

Graphic of the instrument on the Rosetta spacecraft that measured the comet's temperature in mid-July 2014. Credit: European Space Agency

Anyone eager for a comet countdown? It’s just a few days now until the Rosetta spacecraft arrives near Comet 67P/Churyumov–Gerasimenko on August 6, and with each passing day more detail becomes visible.

The “rubber duckie”-shaped comet has an average surface temperature of –70 degrees Celsius (-94 degrees Fahrenheit), which is far warmer than scientists expect. At 20 to 30 degrees Celsius (68 to 86 degrees Fahrenheit) warmer than predicted, the scientists say that the comet is too hot to be covered in ice. It must instead of a dark crust.

“This result is very interesting, since it gives us the first clues on the composition and physical properties of the comet’s surface,” stated Fabrizio Capaccioni, principal investigator of the visible, infrared and thermal imaging spectrometer (VIRTIS) that took the measurements.

Capaccioni, who is from Italy’s INAF-IAPS, led a team that took measurements of the comet between July 13 and July 21. What they found was also consistent with the findings from other close-up views of comets, such as 1P/Halley. Observations from afar already revealed that Rosetta had low reflectivity, so this is consistent with those far-off looks.

“This doesn’t exclude the presence of patches of relatively clean ice, however, and very soon, VIRTIS will be able to start generating maps showing the temperature of individual features,” stated Capaccioni.

Source: European Space Agency

This Model Of Earth’s Giant Impacts Makes Us Wonder How Life Arose

Artist's conception of early Earth after several large asteroid impacts, moving magma on to the surface. Credit: Simone Marchi/SwRI

In case you need a reminder that the solar system was a harsh place to grow up, the early Earth looks like it was in the middle of a shooting gallery in this model. The map that you see above shows a scenario for where researchers believe asteroids struck our planet about four billion to 4.5 billion years ago, which is very early in the Earth’s five-billion-year history.

The research reveals the surface of the Earth repeatedly being churned by these impacts as the young solar system came together, with small rocks gradually coalescing into planetesimals. Much of the leftover debris peppered the planets, including our own.

“Prior to approximately four billion years ago, no large region of Earth’s surface could have survived untouched by impacts and their effects,” stated Simone Marchi, who led the research and works at the Southwest Research Institute in Colorado.

“The new picture of the Hadean Earth emerging from this work has important implications for its habitability,” added Marchi, who is also senior researcher at NASA’s Solar System Exploration Research Virtual Institute.

In this dangerous early period, the researchers estimate the Earth was smacked by 1-4 asteroids or comets that were more than 600 miles (966 kilometers) wide — enough to wipe out life across the planet. They also believe that between 3-7 impactors were more than 300 miles (482 kilometers) wide, which would evaporate oceans across the world.

Artist's conception of early Earth after several large asteroid impacts, moving magma on to the surface. Credit: Simone Marchi/SwRI
Artist’s conception of early Earth after several large asteroid impacts, moving magma on to the surface. Credit: Simone Marchi/SwRI

“During that time, the lag between major collisions was long enough to allow intervals of more clement conditions, at least on a local scale,” added Marchi. “Any life emerging during the Hadean eon likely needed to be resistant to high temperatures, and could have survived such a violent period in Earth’s history by thriving in niches deep underground or in the ocean’s crust.”

To produce the model, the researchers took a recent model of lunar impacts and applied it to Earth. The moon’s scarred surface helps them estimate what happened on our own planet, they said, because the craters provide an “absolute impactor flux” separate from any models that talk about how the Earth came together. Recall that erosion on the moon is very slow, providing accessible records of things that happened millions or billions of years ago.

The research was published in the journal Nature.

Source: NASA

If You Mine An Asteroid, Who Does The Property Belong To?

An astronaut retrieves a sample from an asteroid in this artist's conception. Credit: NASA

There have been several proposals in recent months to visit asteroids — NASA is talking about sending astronauts to an asteroid sometime, and both Planetary Resources and Deep Space Industries have outlined distant plans to mine these space rocks for resources.

But once the stuff is extracted, who does it belong to? A bill being considered by the U.S. House of Representatives says it would belong to “the property of the entity that obtained such resources.”

In a blog on Space Politics, aerospace analyst Jeff Foust outlined a discussion on the bill at the NewSpace 2014 conference last week. There are still a few wrinkles to be worked out, with one of the most pressing being to define what the definition of an asteroid is. Also, the backers of the bill are talking with the U.S. State Department to see if it would conflict with any international treaty obligations. (Here’s a copy of the bill on the Space Politics website.)

A single radar image frame close-up view of 2014 HQ124. Credit: NASA
A single radar image frame close-up view of 2014 HQ124. Credit: NASA

The panel also noticed there is precedent for keeping and even selling samples: the visits to the Moon. Both Apollo astronauts (with the United States) and the Luna robotic missions (from the Soviet Union) returned samples of the Moon to the Earth. Some of the Apollo rocks, for example, are on display in museums. Others are stored in the NASA Lunar Sample Laboratory Facility at the Johnson Space Center in Houston.

That said, extraterrestrial property rights are difficult to define. For example, the United Nations Moon Treaty (more properly known as Agreement Governing the Activities of States on the Moon and Other Celestial Bodies) allows samples to be removed and stored for “scientific purposes”, and during these investigations they may “also use mineral and other substances of the moon in quantities appropriate for the support of their missions.” But it also adds that “the moon and its natural resources are the common heritage of mankind.”

Stargazing Timelapse Plus Apollo 14 Launch Soundtrack Is Pure Magic

It feels like a real stargazing session watching this video. You head out at dusk, waiting for the first few stars to emerge. Then there’s a moment when — if you’re in the right spot — whammo. The Milky Way pops out. The sky turns into a three-dimensional playground.

Combine that feeling with the Apollo 14 launch audio from 1971, and this timelapse is a lot of fun.

Continue reading “Stargazing Timelapse Plus Apollo 14 Launch Soundtrack Is Pure Magic”

Rocket Replay: Watch Europe’s Last Space Station Automated Transfer Vehicle Soar

Europe's last automated transfer vehicle, Georges Lemaitre, lifts off from French Guiana en route to the International Space Station July 29, 2014. Credit: ESA–S. Corvaja, 2014

The last of Europe’s five automated transfer vehicles made a flawless launch to orbit yesterday (July 30). So far, all is going well with ATV Georges Lemaître as it brings a load of cargo to the International Space Station. You can watch the launch above. The ship is not only acting as a freighter, but a testbed for technology to help with docking and re-entry.

“It is with great pride that we saw the fifth successful launch of this beautiful spacecraft,” stated Thomas Reiter, the European Space Agency’s director of human spaceflight and operations, in a press release. “But the adventure doesn’t end here. ATV knowhow and technology will fly again to space as early as 2017, powering NASA’s Orion spacecraft with the European Service Module, ushering in the next generation of space exploration.”

It will take until Aug. 12 for the ATV to make its way to the space station. On its way, the vehicle will do a flyaround to test a laser infrared imaging sensor that could help future space vehicles dock with objects that don’t have docking ports.

Then it will stick on the space station for up to six months before making a planned re-entry, full of trash. In a first for Europe, how the ship breaks up will be carefully tracked to inform the design of future space vehicles that could survive re-entry. By the way, ESA has a stunning photo gallery of the rocket’s liftoff here, but we put a couple of samples below.

The Ariane 5 rocket carrying Europe's last automated transfer vehicle blasts off from French Guiana July 29, 2014. Credit: ESA-S. Corvaja
The Ariane 5 rocket carrying Europe’s last automated transfer vehicle blasts off from French Guiana July 29, 2014. Credit: ESA-S. Corvaja

NASA’s First Space-Tweeting Astronaut And ‘Big Bang Theory’ Guest Flies To A New Position

Astronaut Mike Massimino on a spacewalk during shuttle mission STS-109 in March 2002. Credit: NASA

The first astronaut who tweeted from space is leaving NASA, the agency announced yesterday. Mike Massimino (best known to his 1.29 million followers as @astro_mike) — and also one of several astronauts to repair the Hubble Space Telescope — will now bring his skills to a full-time position with Columbia University in New York.

“Mike embraced the opportunity to engage with the public in new ways and set the stage for more space explorers to be able to share their mission experience directly with people around the globe,” stated Bob Behnken, NASA’s chief of the astronaut office at Johnson Space Center in Houston.

“We wish him well in his new role fostering the dreams and innovations of students just beginning their career paths,” he said.

Massimino found time to embrace Twitter, then a new technology to NASA, during the busy STS-125 mission that was the final repair mission for the Hubble Space Telescope in 2009. Here’s the first tweet from space:

Following his social media activities in space, which received a great deal of publicity at the time, Massimino appeared several times on the CBS comedy “The Big Bang Theory” as a fictionalized version of himself.  He also was prominently featured in the IMAX film Hubble 3D in 2010, which in part featured the spacewalking missions to repair the iconic NASA telescope.

Lately, Massimino’s outreach activities also included hosting the regular “ISS Mailbag” YouTube segment with fellow astronaut Don Pettit (@astro_pettit).

While the astronaut has not yet made a statement on Twitter, NASA paid tribute to him on its own Twitter account, as did others:

Astrophoto Heaven: Video Time-Lapse Shows Spectacular Sky Above Desert National Park

Screenshot from the video "Joshua Tree Nights", taken at Joshua Tree National Park. Credit: Mark 'Indy' Kochte / Vimeo

Channelling all U2 fans: this stunning timelapse above Joshua Tree National Park is a walking tourism brochure for astrophotographers. The pictures were taken in September and November 2012 (the latter during the Leonid meteor shower) and just put up on Vimeo a few days ago.

Can you spot any famous astronomical objects? Read below to see some of what was featured in these video clips.

“Due to the lateness in the year I was there, the Milky Way was setting into the light dome of Palm Springs and greater Los Angeles. Consequently, I only got one decent Milky Way sequence in the nights I shot,” wrote videographer Mark ‘Indy’ Kochte on Vimeo.

“At the time I was not traveling with a dolly rail set up, so was limited in the camera movements to using an Astrotrac astrophotography guiding system. However, the Astrotrac would only pan for about 90 minutes before reaching the end of it’s workable motion. Hence why there are a number of  ‘still’, tripod-only sequences.”

Kochte’s page on the project also gives a guide to the astronomical objects and phenomena you will see, including Venus, Jupiter and the zodiacal light — which is caused by sunlight reflecting off dust particles in space (from comets and asteroids).

Astronaut Dance: If We Were Going To Space, We’d Do This Too

Thomas Pesquet, an astronaut and member of the NEEMO 18 crew, dances in the kitchen of the Aquarius underwater lab in July 2014. Credit: Ian Benecken / YouTube

Anyone want to take bets on what this astronaut was listening to? This is a short silent video of Thomas Pesquet, a European astronaut, doing a dance in the kitchen during NEEMO 18 — the latest NASA underwater mission to test asteroid technologies.

The challenge of NASA Extreme Environment Mission Operations (and of living in space in general) is finding ways to stay entertained in isolated, confined environments. A lot of that comes down to group dynamics — having the team work well together. But there also is the need to have your own leisure time, and find the time to relax in between the packed activities.

And NEEMO 18, which began July 21, has been having extremely busy days. The nine-day mission aims to test out technologies that could be used for a human asteroid mission. The astronauts have been testing out techniques, for example, to do geological sampling with a 10-minute time delay in communications.

You can follow the NEEMO mission at their Twitter account, and catch more live views of the astronauts in these cameras. Pesquet will fly to the International Space Station in 2016.

Venus Express Survives Close Encounter With Hellish Atmosphere

Artist's concept of Venus Express. Credit: ESA

It was a daring maneuver, but the plan to put Venus Express lower in the planet’s thick atmosphere has worked. For the past month, the European Space Agency steered the long-running spacecraft to altitudes as low as 81 miles (131 kilometers) for a couple of minutes at a time.

Now the spacecraft has been steered again to safer, higher orbits. And naturally, this was all done in the name of science. It not only showed scientists information about the atmosphere, but also gave them engineering data of how a spacecraft behaves when it touches a planetary atmosphere at high speed. That could be useful for future landing missions.

“We have collected valuable data on the Venusian atmosphere in a region difficult to characterise by other means,” stated Hakan Svedhem, Venus Express project scientist for the European Space Agency.

“The results show that the atmosphere seems to be more variable than previously thought for this altitude range, but further analysis will be needed in order to explain these variations properly.”

The dips into hell were hard on the spacecraft. At times, its temperatures rose by more than 212 degrees Fahrenheit (100 degrees Celsius). That said, initial surveys of the spacecraft show all is well, although more analysis will be needed. Also, its orbit was reduced by more than an hour because its speed was slowed down by so much.

While the spacecraft performed 15 thruster burns to raise up above the atmosphere, the reprieve will be temporary. There is little fuel left in the spacecraft, which has been been at the planet since 2006. Now its new lowest point in the orbit is 460 km (286 miles), but over the next few months it will fall again due to the force of gravity. Mission planners expect the spacecraft will survive until about December, when it falls into the atmosphere for good.

But the scientific yield from the mission has been immense. Among its many discoveries, Venus Express has found an ozone layer above the planet, spotted water vapor in low-lying clouds, and even found a sort of “rainbow.” The aerobraking campaign itself was also helpful, ESA added.

“Aerobraking can be used to reduce the speed of a spacecraft approaching a planet or moon with an atmosphere, allowing it to be captured into orbit, and to move from an elliptical orbit to a more circular one,” the agency wrote.

“Less fuel has to be carried, yielding benefits all round. The technique will be used on future missions and the Venus Express experiments will help guide their design.”

Artist's conception of Venus Express doing an aerobraking maneuver in the atmosphere in 2014. Credit: ESA–C. Carreau
Artist’s conception of Venus Express doing an aerobraking maneuver in the atmosphere in 2014. Credit: ESA–C. Carreau

Source: European Space Agency

NASA Spacecraft Is Now Buzzing Mercury 62 Miles Above The Surface

Artist's conception of NASA's MESSENGER spacecraft above Mercury. Credit: JHUAPL

Look out below! NASA’s MESSENGER spacecraft is at its lowest altitude of any spacecraft above Mercury, and over the next couple of months it’s going to get even lower above the planet.

The spacecraft — whose name stands for MErcury Surface, Space ENvironment, GEochemistry, and Ranging — is doing a close shave above the sun’s closest planet to look at the polar ice and its gravity and magnetic fields.

“This dip in altitude is allowing us to see Mercury up close and personal for the first time,” stated Ralph McNutt, the project scientist for MESSENGER at the Johns Hopkins University Applied Physics Laboratory (APL).

MESSENGER is the first-ever mission to orbit Mercury. It arrived at the planet in March 2011 and has now spent three Earth years or 14 Mercury years examining the cratered planet and its environment. The campaign has revealed many secrets about Mercury, ranging from the discovery of ice deposits to changes in its tenuous atmosphere due to the Sun.

The spacecraft made its lowest approach above the planet on July 25, at 62 miles (100 kilometers) and will keep moving lower due to “progressive changes” in its orbit, APL stated. By Aug. 19, the minimum altitude will be 50 km (31 miles), and then the closet approach will be on Sept. 12 at 25 km (16 miles).

After that, the team will temporarily raise the spacecraft’s orbit again before it makes a planned impact on the planet’s surface in March 2015. The NASA mission is operated and managed by Johns Hopkins University.

Credit: Johns Hopkins University Applied Physics Laboratory