Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.
Optical illusions are awesome. In the center of this image are what appear to be two quasars (or galaxies with huge black holes). In fact, however, it’s the same quasar seen twice. So what’s going on?
QSO 0957+561, also called the “Twin Quasar”, was first spotted in 1979. It lies almost 14 billion light-years from Earth (making it about as old as the Universe itself). Initially, astronomers thought it was indeed two objects, but the distances and characteristics of the twins were too similar.
We “see” the quasar twice because of a ginormous galaxy called YGKOW G1. Its immense gravitational mass is bending the light of the quasar so that it appears twice from our perspective. This phenomenon is called “gravitational lensing”, and it turned out in 1979 that QSO 0957+561 was the first object ever confirmed to experience that. (You can read the original Nature research paper here.)
While the discovery is decades old, it’s still fun to turn telescopes in that direction once in a while to spot the illusion. This particular image is a new one from the Hubble Space Telescope.
Funny how a single quasar can illuminate — literally and figuratively — some of the mysteries of the universe. From two million light-years away, astronomers spotted a quasar (likely a galaxy with a supermassive black hole in its center) shining on a nearby collection of gas or nebula. The result is likely showing off the filaments thought to connect galaxies in our universe, the team said.
“This is a very exceptional object: it’s huge, at least twice as large as any nebula detected before, and it extends well beyond the galactic environment of the quasar,” stated Sebastiano Cantalupo, a postdoctoral fellow at the University of California Santa Cruz who led the research.
The find illuminated by quasar UM287 could reveal more about how galaxies are connected with the rest of the “cosmic web” of matter, astronomers said. While these filaments were predicted in cosmological simulations, this is the first time they’ve been spotted in a telescope.
“Gravity causes ordinary matter to follow the distribution of dark matter, so filaments of diffuse, ionized gas are expected to trace a pattern similar to that seen in dark matter simulations,” UCSC stated.
Astronomers added that it was lucky that the quasar happened to be shining in the right direction to illuminate the gas, acting as a sort of “cosmic flashlight” that could show us more of the underlying matter. UM287 is making the gas glow in a similar way that fluorescent light bulbs behave on Earth, the team added.
“This quasar is illuminating diffuse gas on scales well beyond any we’ve seen before, giving us the first picture of extended gas between galaxies,” stated J. Xavier Prochaska, coauthor and professor of astronomy and astrophysics at UC Santa Cruz. “It provides a terrific insight into the overall structure of our universe.”
If anything, NASA’s asteroid-hunting spacecraft seems to be refreshed after going into forced hibernation for 2.5 years. In the first 25 days since it started seeking small solar system bodies in earnest again, the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) found three new objects and detected an additional 854, NASA said Thursday (Jan. 23).
Luckily for people interested in this field, Amy Mainzer (the principal investigator for this mission) has been tweeting out discoveries as they come — and other observations besides. “Just passed our @WISE_Mission post-restart review. I believe the technical term is “Yee haw!!” she wrote Jan. 21. Below are a couple of illustrated examples of discoveries from her Twitter feed. Click on the pictures for larger versions.
In a release, NASA added that NEOWISE is “observing and characterizing” one NEO a day, which means not only looking at the object, but probing its size and composition. Astronomers know of about 10,500 NEOs, but of those only 10% (or about 1,500) have physical measurements cataloged as well. NEOWISE investigators aim to make hundreds of more of these measurements.
The mission (originally called WISE) launched in December 2009 to examine the universe in infrared light. After completely mapping the sky, it ran out of coolant it needed to do this work in 2010. It then shifted to examining comets and asteroids before being put into hibernation in February 2011. Read more about its mission history in this past Universe Today article.
Got gas? The black hole in galaxy cluster RX J1532.9+3021 is keeping it all for itself and stopping trillions of stars from coming to be, according to new research. You can see data above from NASA’s Chandra X-ray Observatory (purple) and the Hubble Space Telescope (yellow).
The drama is taking place about 3.9 billion light-years from Earth, showing an extreme phenomenon that has been noted in other galaxies on smaller scales, Chandra officials stated.
“The large amount of hot gas near the center of the cluster presents a puzzle,” a statement read. “Hot gas glowing with X-rays should cool, and the dense gas in the center of the cluster should cool the fastest. The pressure in this cool central gas is then expected to drop, causing gas further out to sink in towards the galaxy, forming trillions of stars along the way. However, astronomers have found no such evidence for this burst of stars forming at the center of this cluster.”
What’s blocking the stars (according to data from Chandra and the National Science Foundation’s Karl G. Jansky Very Large Array) could be supersonic jets blasting from the black hole and shoving the gas in the area away, forming cavities on either side of the galaxy. These cavities, by the way, are immense — at 100,000 light-years across each, this makes them about as wide as our home galaxy, the Milky Way.
The big question is where that power came from. Perhaps the black hole is “ultramassive” (10 billion times of the sun) and has ample mass to shoot out those jets without eating itself up and producing radiation. Or, the black hole could be smaller (a billion times that of the sun) but spinning quickly, which would allow it to send out those jets.
Remember those snorkels and pads astronauts used during the ammonia pump replacement on station this past December? The new measures went a long way to helping astronauts stay safe if another helmet water leak happens, but at the same time, NASA is eager to find the cause so they know how it happened and how to prevent it.
Two maintenance spacewalks are planned for Expedition 40, but they’re not necessarily going forward yet. NASA has traced the issue to a fan pump separator, but there’s another issue, explained expedition commander Steve Swanson: where the particulates in the water came from. Perhaps they were from a filter, or perhaps from the water system itself. So NASA is reserving spacewalks on a need-only basis until more is known.
“That was the problem. Now, we’ve got to find out where that came from,” Swanson said in a phone interview with Universe Today from Houston to preview Expedition 39/40’s mission, which launches in late March. Joining the two-time shuttle astronaut will be two other people, including Alexander Skvortsov. The Russian cosmonaut commanded Expedition 24 in 2010, which experienced a similar ammonia leak to the one that was just repaired a few months ago.
While leaks and spacewalks are the items that grab headlines when it comes to spaceflight, one of the major goals of the International Space Station is more subtle. Researchers hope to understand how spaceflight affects the human body during long-duration missions. (This will be a major focus of a one-year mission to station in 2015.) Through a translator, Skvortsov explained that the recent decision to extend station’s operations to at least 2024 will be a help for research of this kind.
“It is great that they have expanded the station until 2024 at least, and it will be very beneficial to the science programs and projects we have on board,” he said in Russian. “I hope that it will be extended even further. It will depend on the condition of the station.”
Expedition 39 is expected to launch March 26, 2014 from the Baikonour Cosmodrome in Kazakhstan. The crew will join orbiting spacefarers Koichi Wakata (who will command Expedition 39, a first for Japan), Rick Mastracchio (who participated in the ammonia pump swap-out) and Mikhail Tyurin.
How badly will climate change affect our planet? Different models tell us different things, and that’s partly because we need more precise information about the factors that warm the world. How much is sea level rising? What are the levels of carbon dioxide in the atmosphere? All of these things must be known.
NASA expects to launch five Earth science missions this year, which is the biggest roster in more than a decade. They’ll track rainfall, seek water hiding in soil, and examine carbon dioxide and ocean winds around the world. Here’s a quick rundown of the busy launch schedule:
Global Precipitation Measurement (GPM) Core Observatory (Feb. 27): This will be the first of a series of satellites to look at snow and rain from space. “This new information will help answer questions about our planet’s life-sustaining water cycle, and improve water resource management and weather forecasting,” NASA stated. This joint spacecraft with the Japanese Aerospace Exploration Agency (JAXA) will launch from Japan’s Tanegashima Space Center on a H-IIA rocket. GPM was built at NASA’s Goddard Space Flight Center in Maryland.
ISS-RapidScat (June 6): This sensor will sit on the International Space Station and monitor ocean winds (including storms and hurricanes). What’s interesting about this mission is its use of old parts, NASA points out, as well as the decision to mount it on a station rather than take the more expensive route of making it a separate satellite. The probe will launch on a SpaceX Dragon spacecraft (aboard a SpaceX Falcon 9 rocket) from Florida’s Cape Canaveral Air Force Station as part of a regular commercial resupply flight.
Orbiting Carbon Observatory (OCO)-2 (July): NASA plans to take a second crack at this type of satellite after the OCO launch failure in 2009. The satellite will seek out carbon dioxide to better understand where it is emitted (in both natural and artificial processes) and how it moves through the water, air and land. This will launch from California’s Vandenberg Air Force Base on a Delta II rocket. OCO-2 will be managed by NASA’s Jet Propulsion Laboratory in California.
Cloud-Aerosol Transport System (CATS) (Sept. 12): This technology demonstration project will use lasers, in three wavelengths, to examine tiny particles borne into the atmosphere from phenomena such as pollution, smoke, dust and volcanoes. “These aerosol particles pose human health risks at ground level and influence global climate through their impact on cloud cover and solar radiation in Earth’s atmosphere,” NASA stated. This will also leave Earth aboard a SpaceX resupply flight from Cape Canaveral.
Soil Moisture Active Passive (SMAP) mission (November): Will check out the moisture level of soil, with the aim of refining “predictions of agricultural productivity, weather and climate,” NASA stated. Also managed by JPL, this satellite will spend its time in an almost-polar “sun-synchronous” orbit that keeps the sun’s illumination below constant during SMAP’s turns around the Earth. SMAP will launch from Vandenberg on a Delta II rocket.
Bigelow — that company that has two inflatable structures in orbit and that plans to add an inflatable room to the International Space Station — is looking for help. The company is asking people to come to its Las Vegas facility and pretend to be astronauts for a few hours, to better test spacecraft ideas.
“The successful candidates will be expected to spend eight, 16 or 24 hour periods in a closed volume spacecraft simulation chamber. Candidates will live (eat, sleep and exercise) inside the chamber for defined periods of time and will be monitored continuously,” Bigelow wrote on the job description.
“Successful candidates will be given structured daily tasks and schedules and will be expected to produce detailed daily reports on their activities and on their interactions with other crew members. The candidate will implement Bigelow Aerospace programs for quantifying, evaluating and optimizing crew systems, including process efficiencies, program quality and reporting on psychological, existential, social and environmental factors in spacecraft crews.”
Take note that only U.S. citizens or permanent residents are allowed to apply, and that you must hold a “BS or MS in Social, Psychological, Behavioral, Biological, Nursing, Engineering, or Human Factors Sciences,” Bigelow added.
Watch out, you comet, Rosetta is on its way with a probe. The European Space Agency spacecraft is preparing to wake up in January from a nearly three-year-long hibernation period to ready for a close encounter with Comet 67P/Churyumov–Gerasimenko.
If all goes well, Rosetta should reach its destination in August and — after a couple of months in a mapping orbit — comes another exciting bit: the probe will deploy a spider-like lander called Philae on the surface in November. That will be the first time anything has soft-landed on a comet.
Philae has a ream of scientific instruments on board, most notably a drill that can penetrate as far as 20 centimeters (eight inches) into whatever lies below it. It can then pick up the samples and analyze them right on sight. This will allow the lander to learn more about what the comet’s surface and subsurface are made of, ESA says, and to figure out how its nucleus is constructed. (You can read more technical details here.)
“As Philae touches down on the comet, two harpoons will anchor it to the surface; the self-adjusting landing gear will ensure that it stays upright, even on a slope, and then the lander’s feet will drill into the ground to secure it to the comet’s surface in the low gravity environment,” ESA wrote.
But first comes Rosetta’s reactivation. ESA is so excited about this forthcoming milestone on Jan. 20 that it’s inviting the public to send in videos where people tell the spacecraft, essentially, to wake up after 31 months of hibernation. (The campaign is called “Wake Up, Rosetta”, and more contest details are here.)
What’s cute is that the official Rosetta Twitter account (@ESA_Rosetta) will become more exciting then as well. The last update, from Dec. 3, simply says “still sleeping” (as most of the updates do.) In response to someone asking the account to write something else this summer, the Twitter response was laconic: “A sleeping probe cannot tweet.”
But keep your eyes peeled even after the landing. Rosetta plans to stay with the comet as the icy body moves closer to the solar system, watching as the sun’s heat changes its surface. Read more about the mission here.
There won’t be any pictures out of this close encounter, but the animations sure were spectacular. The European Space Agency’s Mars Express spacecraft skimmed just 45 kilometers (28 miles) above the surface of the moon Phobos yesterday, and through these various videos you can see what the orbital trajectory would have looked like during that time.
“The flyby on 29 December will be so close and fast that Mars Express will not be able to take any images, but instead it will yield the most accurate details yet of the moon’s gravitational field and, in turn, provide new details of its internal structure,” ESA wrote in a press release last week.
“As the spacecraft passes close to Phobos, it will be pulled slightly off course by the moon’s gravity, changing the spacecraft’s velocity by no more than a few centimetres per second. These small deviations will be reflected in the spacecraft’s radio signals as they are beamed back to Earth, and scientists can then translate them into measurements of the mass and density structure inside the moon.”
The goal is to learn more about the structure of Phobos with the aim of figuring out where the moon came from. There are competing theories about the origin of Phobos and the other Martian moon, Deimos. Perhaps they were captured asteroids, or perhaps they were made up of debris made up from huge collisions from the Martian surface.
“Earlier flybys, including the previous closest approach of 67 km in March 2010, have already suggested that the moon could be between a quarter and a third empty space – essentially a rubble pile with large spaces between the rocky blocks that make up the moon’s interior,” ESA added.
Customers eager to watch live, high-definition images of Earth may have to wait a bit longer. Two Russian spacewalkers were unable to get two UrtheCast cameras to function despite spending eight hours and seven minutes outside yesterday (Dec. 27) — the longest spacewalk in Russian history.
The cause of the problem is not known. Oleg Kotov and Sergey Ryazanskiy followed all the steps as instructed, but controllers did not see telemetry or data flowing from the cameras as expected. The spacewalkers tried unplugging and replugging cables and other steps to fix the problem, but were eventually told to take some pictures of the equipment and then bring the cameras back inside for more analysis.
“So it appears we have seen an unsuccessful attempt at bringing those two cameras to life,”said Rob Navias, NASA’s Mission Control commentator, in live remarks published on CBS.
“The exact cause of the problem is not known at this point. The Russian flight control team will spend some time, obviously, analyzing the data and trying to understand from the analysis of these photographs whether or not the problem lies in the electrical connectors themselves or in the cameras, which of course would be a more significant issue.”
In remarks on Twitter, UrtheCast said it was preparing an official statement to release. ” ‘Tis the nature of space tech,” the British Columbia-based company said in response to a comment talking about the challenges of doing high-tech work in space. The company also made a comment to Reuters saying there was a problem with camera connectivity.
UrtheCast plans to use the two cameras to broadcast live views of the Earth to paying customers (particularly government and private agencies), while also serving as an educational platform for young students. The company is working directly with Russian aerospace giant RSC Energia and has no agreement with NASA for the work, according to this past Universe Today report.
The longest spacewalk in history took place on March 11, 2001 and took eight hours, 56 minutes. NASA astronauts Jim Voss and Susan Helms were doing work on the International Space Station during the record-setting jaunt.
This was the third spacewalk in a week on station. The other two were performed by Rick Mastracchio and Mike Hopkins, who replaced an ammonia pump needed to keep one of the station’s two cooling loops functioning. Experiments are gradually coming back online, NASA said, after the equipment spent two weeks in a forced shutdown.