Celestial Laser Show? Nope, These Are Trails Showing Off Star Colors

Star trails above the European Space Observatory's Paranal Observatory in Chile, showing three of the four auxiliary telescopes of the Very Large Telescope Interferometer (VLTI). Credit: ESO/B. Tafreshi

There are so many colorful streaks in that image above that you’d be forgiven for thinking somebody is shooting lasers around the European Southern Observatory (ESO) in Chile. Actually, though, this demonstrates a common technique for astronomy photo-taking where you do a time lapse to watch the stars moving as the Earth makes its daily rotation.

The image of auxiliary telescopes of Very Large Telescope Interferometer is not only pretty, but does have some scientific interest as well, ESO said.

“This technique … enhances the natural colours of the stars, which gives an indication of their temperature, ranging from about 1000 degrees Celsius [1,832 Fahrenheit] for the reddest stars to a few tens of thousands of degrees Celsius [or Fahrenheit] for the hottest, which appear blue. The sky in this remote and high location in Chile is extremely clear and there is no light pollution, offering us this amazing light show,” stated the European Southern Observatory.

According to ESO, these supplementary telescopes working together allow astronomers to “see details up to 25 times finer than with the individual telescopes.” You can read more about the VLTI at this ESO link, which includes some interesting facts — such as why the interferometers are named Antu, Kueyen, Melipal and Yepun.

Source: European Southern Observatory

Chris Hadfield Launched Into Space One Year Ago Today

Chris Hadfield in the Cupola of the ISS. Credit: NASA

And we have liftoff … for a social media sensation! Canadian astronaut Chris Hadfield rocketed into orbit a year ago today (Dec. 19, 2012) accompanied by NASA astronaut Tom Marshburn and Russian cosmonaut  Roman Romanenko.

Hadfield was a part of the Expedition 34 crew, then took command of the station during Expedition 35 in early 2013. While running an extremely productive science mission, he did tons of public outreach, ranging from singing to humorous space-y how-to videos to chatting with numerous celebrities before landing in May.

The Canadian Space Agency invited folks on Twitter to share their reflections under the hashtag #hadfield1yr, which is already producing a lot of thoughtful responses (a few of which you can see below the jump). What was your favorite part of the mission? Feel free to share in the comments.

While Hadfield is retired as an astronaut, he remains very busy. He’s in the middle of a multi-country book tour and will begin teaching at the University of Waterloo in Ontario, Canada in fall 2014.

hadfield4

hadfield1

 

hadfield2

 

hadfield3

Leaky Spacesuit Fixed For Christmas Spacewalk Blitz On Station, NASA Says

NASA astronaut Rick Mastracchio during a spacewalk on STS-118. Credit: NASA

When NASA astronaut Mike Hopkins steps into space for the first time this week, he will wear a spacesuit that previously sprung a water leak and forced Italian astronaut Luca Parmitano back to station in July, NASA officials said Wednesday (Dec. 18).

While at first glance this sounds like an extra bit of drama as Hopkins and Rick Mastracchio make contingency spacewalks Dec. 21, 23 and 25 to kickstart a shut-down cooling loop, NASA officials say the suit is ready to go for another trip outside because astronauts (under NASA’s direction) have made a bunch of changes to the unit.

Repurposing spacesuit parts, a new pad will be added to the back of all NASA spacesuit helmets to soak up water, should one leak again. Astronauts also velcroed a pipe into each suit — a sort of snorkel — that in the worst case, would give an astronaut with a water leak an alternate route for drawing in air.

Also, the Expedition 38 crew swapped out a fan pump separator that likely malfunctioned and caused the spacesuit leak. The cause is still under investigation, but NASA believes that a problem in the water chemistry caused contamination that plugged a tiny hole inside the water separation part of the unit. This allowed the water to escape, enter the air loop and get into the helmet.

Finally, there are new procedures in place for the astronauts themselves. They will monitor the helmet pad for fluid. NASA additionally plotted out its spacewalk procedures — which include the use of a Canadian robotic arm on station — to make sure the astronauts are always within reasonable reach of an airlock.

NASA astronauts Rick Mastracchio and Mike Hopkins will do spacewalks in December 2013 to swap out a cooling pump on the International Space Station. Credit: : NASA
NASA astronauts Rick Mastracchio and Mike Hopkins will do spacewalks in December 2013 to swap out a cooling pump on the International Space Station. Credit: NASA

So here’s why the spacewalks are happening: a week ago (Dec. 11), a flow control valve inside of a pump — the pump is located outside of the station — stopped regulating ammonia temperatures inside of an external cooling loop. The loop is required to, as the name implies, cool down space station electronics. The loop got too cold, it shut down automatically, and NASA took science experiments and redundant systems offline to deal with the problem. (The main problem is NASA can’t run a heat exchanger on Node 2, which affects experiments in the U.S. Columbus laboratory and Japanese Experiment Module. No completed research has been lost to date, however.)

After figuring out that it couldn’t control the valve again, NASA shifted its attention to an isolation valve upstream. That valve is only designed to be in two positions — opened or closed — but the hardware vendor said it could be used at spots in between to regulate the ammonia flow. So software engineers created a patch to make this happen, and uploaded it to station.

Throw in another element, however: the station is about to enter what’s called an annual “high beta” period, when orbital dynamics mean the sun will be shining on it for longer periods of time than usual. (Read more technical details here.) When the angle exceeds 60 degrees, for safety reasons NASA suspends all cargo flights to station as well as spacewalks.  This year, it will happen between about Dec. 30, 2013 and Jan. 9, 2014.

Space Station
The International Space Station in 2010. Credit: NASA

So if NASA spent time playing with the valve and found out it couldn’t work in the long run, a couple of problems could happen. First, it would be harder to do a spacewalk to fix it.

Also, the agency was weighing whether to allow Orbital Sciences to fly a Cygnus cargo flight this month, and felt that they could run into a problem where the spacecraft was ready to go, but NASA needed more time to fix the problem. So that’s why the spacewalk is happening.

Here’s a diagram of the pump that Mastracchio and Hopkins plan to replace:

A view of a pump module aboard the International Space Station that is used  to maintain ammonia at the correct temperature in an external cooling loop. Credit: NASA
A view of a pump module aboard the International Space Station that is used to maintain ammonia at the correct temperature in an external cooling loop. Credit: NASA

The “nominal” plan is for three spacewalks, but it could range anywhere from two to four depending on how things go. To put things simply, here’s how the spacewalks would go:

  • EVA 1: The pump with the broken valve would be disconnected and a spare pump (which is some distance away, but reachable using Canadarm2) would be prepped for the swap.
  • EVA 2: The pump with the broken valve would be removed and set aside while the spare pump is partially installed (meaning, only the bolts and electrical connections would be put in.)
  • EVA 3:  The spare pump’s installation would be finished, and the pump with the broken valve would be stowed more permanently outside. NASA thinks that eventually, it could use that first pump again if astronauts installed a new valve on it, but that isn’t a need for the time being.

Flying Canadarm2 would be Japanese astronaut Koichi Wakata, who has operated every type of robotics currently in orbit. Mastracchio has six spacewalks under his belt already, while Hopkins will be on his first go.

If all goes to plan, NASA will not only swap out the pump, but also preserve the option for the Russians to proceed with a planned Dec. 27 spacewalk that is less urgent. In that case, the cosmonauts plan to swap out experiments, put in a foot restraint and install some cameras.

We’ll cover the spacewalks as they happen. They’re scheduled for Dec. 21, 23 and 25 at 7:10 a.m. EST (12:10 p.m. UTC) and should run about 6.5 hours each. Broadcasts will run live on NASA Television.

By the way, the pump with the problem is just three years old — astronauts had to make three spacewalks in 2010 to install it after a more severe failure. NASA characterized this situation as a more unusual failure and said this is not a symptom of an aging station at all.

Overview of the tasks that Rick Mastracchio and Mike Hopkins will perform during three spacewalks in December 2013 to remove and replace a pump with a faulty valve inside of it. The pump is required to maintain the external cooling system at the right temperature. Credit: NASA
Overview of the tasks that Rick Mastracchio and Mike Hopkins will perform during three spacewalks in December 2013 to remove and replace a pump with a faulty valve inside of it. The pump is required to maintain the external cooling system at the right temperature. Credit: NASA

Where Will ExoMars Land? Proposals Invited For Future Mars Rover And Lander

An artist's conception of the European Space Agency's ExoMars rover, scheduled to launch in 2018. Credit: ESA

Scientists, start your engines. The next few weeks will see a flurry of proposals come for the European Space Agency’s first rover mission on the Red Planet in 2018.

The ExoMars mission will see a lander and rover touch Mars, and what’s neat about this particular mission is the rover has a drill on board that can burrow as far down as 6 feet (2 meters) — a first on that planet. This means the mission would be well-suited to look for organic molecules, especially in light of the stunning findings Mars Curiosity scientists recently presented about a possibly life-friendly ancient lake on Mars.

Here, in ESA’s words, are what the site must accomplish:

  1. The site must be ancient (older than 3.6 Ga)—from Mars’ early, habitable period: Pre- to late-Noachian (Phyllosian), possibly extending into the Hesperian;
  2. The site must show abundant morphological and mineralogical evidence for long-duration, or frequently reoccurring, aqueous activity;
  3. The site must include numerous sedimentary rock outcrops;
  4. The outcrops must be distributed over the landing ellipse to ensure that the rover can get to some of them (typical rover traverse range is a few km);
  5. The site must have little dust coverage.

If you’re well-versed in Red Planet geology, we’d love to hear your idea for possible sites. Feel free to leave your thoughts in the comments. For more information about the mission requirements, you can check out the ESA page, which details what proposals must contain.

‘You Cannot Press Pause While You’re Flying A Jet’: Why Planes Help Astronauts Prepare For Space

Astronauts use planes to prepare psychologically for the rigors of spaceflight, since they must constantly filter out information to proceed safely. Credit: Canadian Space Agency/Youtube (screenshot)

In between these sweet, sweet video shots of jets in the video above, you’ll find some wisdom about why it’s so important that astronauts climb into these planes for training. Turns out that flying has a lot to do with preparing for very quick-changing situations in spaceflight — whether it’s in a cockpit or in a spacesuit.

“Psychologically, being in an aircraft is very similar to being in a rocket because you are dependent on this machinery,” says astronaut David Saint-Jacques in this new Canadian Space Agency video.

“You are in an uncomfortable cockpit. You’re wearing a helmet, oxygen mask. There’s tens of dials in front of you. You have to monitor all that data; the radio, on many channels talking at the same time. You have to constantly filter out what is important and to make decisions that could have big impacts. You cannot press pause while you’re flying a jet.”

Saint-Jacques and fellow Canadian Jeremy Hansen took part in this video to mark the 110th anniversary of the Wright brothers’ first powered flight, which took place Dec. 17, 1903.

And there’s more to this video than jets — you can see astronauts participating in spacewalks and also the ongoing European Space Agency CAVES expedition series in Sardinia, Italy. There’s even a quick glimpse of the Snowbirds, a famous military flying demonstration team in Canada (which Hansen flew with earlier this year).

For more information on the T-38s used for astronaut training, check out this NASA link.

A T-38 plane parked in front of space shuttle Discovery in this undated photo taken by NASA astronaut Story Musgrave, who flew six times in space in the 1980s and 1990s.
A T-38 plane parked in front of space shuttle Discovery in this undated photo taken by NASA astronaut Story Musgrave, who flew six times in space in the 1980s and 1990s.

Astronauts Get Three Spacewalks As An Early Christmas Present

The Expedition 38 crew tests spacesuits in preparation for December spacewalks to replace a pump for the International Space Station's cooling system. In the spacesuits are NASA astronauts Mike Hopkins (left) and Rick Mastracchio. Japanese astronaut Koichi Wakata is in the foreground, with Russian commander Oleg Kotov behind. Credit: NASA TV

The week before Christmas will be full of spacewalk preparations for Expedition 38 as they get ready to remove and replace a malfunctioning pump aboard the International Space Station.

NASA astronauts Rick Mastracchio and Mike Hopkins will participate in the spacewalks, NASA said today (Dec. 17), with Japanese astronaut Koichi Wakata handling robotic operations during the Dec. 21, Dec. 23 and Dec. 25 activities.

A new pump is needed to regulate temperatures in an external ammonia cooling loop that shut down automatically Wednesday (Dec. 11) when it got too cold. The loop keeps equipment at the right temperature on station. While the astronauts have been fine for the past week, several redundant systems and some experiments are offline. Luckily for the crew, other astronauts previously installed three spare pumps on station, which you can see in the graphic below.

Locations of spare pumps on the International Space Station as of December 2013. Credit: NASA
Locations of spare pumps on the International Space Station as of December 2013. Credit: NASA

Spacewalks are always a risky proposition, and NASA has not conducted any since Italian astronaut Luca Parmitano experienced a leak in an American spacesuit in July. As such, the agency spent several days trying to fix the cooling loop by other means.

A faulty control valve made the pump malfunction on Wednesday. The valve normally mixes warm ammonia that flows past external radiators on station with cooler ammonia that was put through those radiators. NASA first tried to control the valve from the ground, then focused its attention on an isolation control valve upstream from the pump that the agency hoped could serve as a backup. The isolation valve, however, was only designed to be closed or opened fully — not positioned in between.

As of 11 a.m. EST (4 p.m. UTC) today, NASA was working on a software patch to try to freeze the valve in different positions to manually regulate the flow of ammonia.

“The fidelity that we have here on the ground to precisely control when that valve starts moving and stops is on the order of about 0.2 seconds, 0.3 seconds, somewhere in that range. We really need the fidelity to be much higher than that,” said Judd Frieling, the Expedition 38 lead flight director, in an update on NASA Television.

“We need it to be on the order of 0.1 seconds. So the way we can reliably produce that is by putting some software on the computers on board that basically allows us to get that finer control. So engineers and coders, overnight, have been working on a software — we call it a patch — software fix, to one of the computers that controls that valve.”

NASA planned to upload the patch to the station this afternoon (EST) to see if it was possible to control the isolation valve by telling it to move, then cutting the power when it got to a certain spot. The agency did not say how successful that fix was, but will likely address that in a media briefing tomorrow at 3 p.m. EST (8 p.m. UTC).

Cooling problems have occurred on station before. The most recent failure was a leak in May, which the Expedition 35 crew fixed just days before some of the astronauts went home. A more prominent failure on the same cooling loop occurred in 2010, when Expedition 24 astronauts performed three spacewalks to replace a faulty pump.

Each of the three emergency spacewalks this month (Dec. 21, 23 and 25) will start at 7:10 a.m. EST (12:10 p.m. UTC) and take about 6.5 hours to perform, NASA added. The activities will be carried live on NASA Television, with coverage starting about an hour before each spacewalk is expected to begin.

Comet Tourism Flight Trades ISON For Lovejoy

Bright, brighter, brightest: these views of Comet ISON after its closest approach to the sun Nov. 28 show that a small part of the nucleus may have survived the comet's close encounter with the sun. Images from the Solar and Heliospheric Observatory. Credit: ESA/NASA/SOHO/GSFC

When Comet ISON entered its zombie stage a few weeks ago, the effects were not only felt in the astronomical community, but also on astronomy tourists as the comet faded from the view of amateurs.

German company “Eclipse-Reisen” (Eclipse Travel) had to make a last-minute change in plans for a Dec. 8 flight for some 75 tourists planning to observe ISON, which morphed into a travelling dust blob after skimming too close to the sun in late November. Fortunately, Comet Lovejoy is still a strong astronomical object, providing an alternate thing to watch.

“Most of the passengers weren’t disappointed. They were more excited to see something new. Only a few journalists cancelled the flight. All photographers and experts fully understood the situation,” a statement from Air Partner to Universe Today said. (The spokespeople were German-speaking, requiring a translation by another party.)

Negative image taken Nov. 14 of Lovejoy's nucleus and dust fan. Credit: Dr. P. Clay Sherrod
Negative image taken Nov. 14 of Lovejoy’s nucleus and dust fan. Credit: Dr. P. Clay Sherrod

“Comet Lovejoy is no less spectacular and still very exciting like ISON and they were pleased to see it, actually. Although Lovejoy is less bright than ISON, it is weaker by four size classes, its tail is smaller and pale and Lovejoy flies farther past the Earth and the Sun.”

The company had to ask for permission to alter its flight path, and inform the passengers of the last-minute change, all in a few days, but officials added that the flight went off without a hitch.

You can read more information about the company (in German) on its website. In 2014, it plans to run a flight to observe auroras over Iceland, among others.

How Scientists Confirmed The Mass Of An Invisible Exoplanet

Artist's conception of Kepler-88. Credit: Center for Astrophysics of the University of Porto

Planets are so very tiny next to stars outside of the solar system, making it really hard to spot exoplanets unless they transit across the face of their star (or if they are very, very big). Often, astronomers can only infer the existence of planets by their effect on the host star or other stars.

That’s especially true of the curious case of Kepler-88 c, which researchers using the Kepler space telescope said was a possible planet due to its effects on the orbit of Kepler-88 b, a planet that goes across the host of its host star. European astronomers just confirmed the Kepler data using the SOPHIE spectrograph  at France’s Haute-Provence Observatory.

It’s the first time scientists have successfully used a technique to independently verify a planet’s mass based on what was found from the transit timing variation, or how a planet’s orbit varies from what is expected as it goes across the face of its sun. That means TTV can likely be used as a strong method on its own, advocates say.

Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)
Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)

SOPHIE’s technique relies on measuring star velocity, which also can reveal a planet’s mass by seeing its effect on the star.

“This independent confirmation is a very important contribution to the statistical analyzes of the Kepler multiple planet systems,” stated Magali Deleuil, an exoplanet researcher at Aix-Marseille University who participated in the research. “It helps to better understand the dynamical interactions and the formation of planetary systems.”

Actually, the two planets behave similarly to Earth and Mars in our own solar system in terms of orbits, according to work from a previous team (led by David Nesvorny of the Southwest Research Institute). They predicted the planets have a two-to-one resonance, which is approximately true of our own solar system since Mars takes about two Earth years to orbit the sun.

The new research was led by S.C.C. Barros at Aix-Marseille University in France. You can read the study in the Dec. 17 edition of Astronomy & Astrophysics, or in preprint version on Arxiv.

Source: Center for Astrophysics at the University of Porto

Spacewalk, Or Backup Valve? NASA Works The Space Station Cooling Problem

The International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. Credit: NASA

While Expedition 38 astronauts Rick Mastracchio and Michael Hopkins get their spacesuits and the Quest airlock ready in case they need to do a spacewalk to fix a cooling problem on board the station, NASA engineers have come up with an alternate proposal that could allow an interim fix from the ground.

A faulty flow control valve inside an external pump caused one of the station’s two main cooling loops to shut down automatically on Wednesday when the loop became too cold. This forced NASA to power down noncritical systems and some experiments as they moved the most needed systems on to a single loop.

After playing with the balky valve for several days, controllers determined it can’t be worked normally. Yet there is another valve nearby that possibly can.

Just “upstream” of the control valve is an isolation valve that possibly can be manipulated to control the temperature, said Kenny Todd, the ISS mission operations integration manager. While the valve is usually either open or closed to do its work, it is possible that it could be positioned at positions in between to warm up the coolant.

NASA Television graphic of where spare cooling pumps are located on station as of Dec. 13, 2013. On that day, NASA was weighing whether spacewalks were necessary to deal with a cooling problem caused by a malfunctioning flow control valve inside of a pump. Credit: NASA TV
NASA Television graphic of where spare cooling pumps are located on station as of Dec. 13, 2013. On that day, NASA was weighing whether spacewalks were necessary to deal with a cooling problem caused by a malfunctioning flow control valve inside of a pump. Credit: NASA TV

“Can we use it as a regulator, if you will, to restrict the flow coming from the radiator and by doing that, that would help to put the temperature in the loop a little warmer,” Todd said in an update broadcast on NASA Television today (Dec. 16) that you can watch in full below.

He added, “We’re taking a valve and using it for a different purpose than we’d originally intended.” This means that software must be adapted to control the valve from the ground, among other things. The hardware vendor (which Todd did not name) has said that theoretically this finer control would be possible.

It’s too early to say if this fix could work in the short term, let alone the long term, which is why Mastracchio and Hopkins are standing by ready to do a spacewalk if need be. NASA has experience with this kind of repair before, most notably in 2010 when astronauts aboard Expedition 24 performed three spacewalks to deal with a broken pump in the same cooling loop. There are three spare pumps aboard station that could swap out the crippled one.

NASA and Mastracchio have both said that the crew is doing fine. The largest scheduling changes are reportedly related to science experiments being suspended, as well as adding in some spacewalk preparation activities. Also, the Cygnus cargo spacecraft’s planned launch has been pushed back at least one day to Dec. 19; last week, NASA said the station’s cooling problem means it is violating certain “commit criteria” for the launch to move forward.

We’ll keep you updated as events warrant.

Second Monkey Travels Safely To Space And Back, Iran Reports

Iran’s space program reportedly launched its second monkey into space on a 15-minute flight on Saturday (Dec. 14).

Reports from the Islamic Republic News Agency said the ballistic flight reached as high as 75 miles (120 kilometers). That’s just beyond the Karman line of 62 miles (100 kilometers) that many authorities cite as the boundary of space.

“The President said that thank God, Iranian astronauts launched into the space the second monkey, Fargam, on the first day of the Week of Research, the ‘Pajouhesh’ explorer and landed in full safety and health,” read a dispatch on IRNA, which is the official state agency in Iran.

The launch has not been verified outside of Iran. In January, the country announced the launch of a first monkey, Pishgam (which means “Pioneer” in Farsi).

The United States, Soviet Union and France sent primates themselves into space in the 1960s, many of which did not survive the trip. “Ham” is among the most famous monkey space voyagers; the U.S. chimp launched into space and landed safely on Jan. 31, 1961, a few months before astronaut Al Shepard became the first American person in space that May.