Alan Parson’s Project Dedicates Song to ISS Astronaut Parmitano

When we heard that the Alan Parsons Project song “Eye in the Sky” was beamed to humanity’s constant eye in the sky — the International Space Station — we just about exploded with space geekiness. It’s even more awesome that the video accompanying the song has tons of space scenes to enjoy.

Turns out the band’s song is Expedition 36 astronaut Luca Parmitano’s favorite, which is why Parsons dedicated that to him during a July 23 Alan Parsons Live Project concert at the Foro Italico in Rome.

Continue reading “Alan Parson’s Project Dedicates Song to ISS Astronaut Parmitano”

Astronomers See Snow … In Space!

Artist's conception of the snow line in TW Hydrae. Credit: Bill Saxton/Alexandra Angelich, NRAO/AUI/NSF

There’s an excellent chance of frost in this corner of the universe: astronomers have spotted a “snow line” in a baby solar system about 175 light-years away from Earth. The find is cool (literally and figuratively) in itself. More importantly, however, it could give us clues about how our own planet formed billions of years ago.

“[This] is extremely exciting because of what it tells us about the very early period in the history of our own solar system,” stated Chunhua Qi, a researcher with the Harvard-Smithsonian Center for Astrophysics who led the research.

“We can now see previously hidden details about the frozen outer reaches of another solar system, one that has much in common with our own when it was less than 10 million years old,” he added.

The real deal enhanced-color picture of TW Hydrae is below, courtesy of a newly completed telescope: the Atacama Large Millimeter/submillimeter Array in Chile. It is designed to look at grains and other debris around forming solar systems. This snow line is huge, stretching far beyond the equivalent orbit of Neptune in our own solar system. See the circle? That’s Neptune’s orbit. The green stuff is the snow line. Look just how far the green goes past the orbit.

The carbon monoxide line as seen by the Atacama Large Millimeter/submillimeter Array (ALMA) telescope. The circle represents the equivalent orbit of Neptune when comparing it to our own solar system. Credit: Karin Oberg, Harvard University/University of Virginia
The carbon monoxide line on TW Hydrae as seen by the Atacama Large Millimeter/submillimeter Array (ALMA) telescope. The circle represents the equivalent orbit of Neptune when comparing it to our own solar system. Credit: Karin Oberg, Harvard University/University of Virginia

Young stars are typically surrounded by a cloud of gas and debris that, astronomers believe, can in many cases form into planets given enough time. Snow lines form in young solar systems in areas where the heat of the star isn’t enough to melt the substance. Water is the first substance to freeze around dust grains, followed by carbon dioxide, methane and carbon monoxide.

It’s hard to spot them: “Snow lines form exclusively in the relatively narrow central plane of a protoplanetary disk. Above and below this region, stellar radiation keeps the gases warm, preventing them from forming ice,” the astronomers stated. In areas where dust and gas are more dense, the substances are insulated and can freeze — but it’s difficult to see the snow through the gas.

In this case, astronomers were able to spot the carbon monoxide snow because they looked for diazenylium, a molecule that is broken up in areas of carbon monoxide gas. Spotting it is a “proxy” for spots where the CO froze out, the astronomers said.

Here are some more of the many reasons this is exciting to astronomers:

  • Snow could help dust grains form faster into rocks and eventually, planets because it coats the grain surface into something more stickable;
  • Carbon monoxide is a requirement to create methanol, considered a building block of complex molecules and life;
  • The snow was actually spotted with only a small portion of ALMA’s 66 antennas while it was still under construction. Now that ALMA is complete, scientists are already eager to see what the telescope will turn up the next time it gazes at the system.

Source: National Radio Astronomy Observatory

 

To The Moon, Jeremy! Canadian Astronaut Thinks Off-Planet Geology During Arctic Trip

Canadian astronaut Jeremy Hansen after rescuing a rover out of the mud in the Arctic's Haughton Crater. Hansen was participating in a geology expedition in July 2013. Credit: Jeremy Hansen/Twitter

It takes gumption to go knee-deep in mud to save a stranded rover. Or to climb up precarious slopes in search of the perfect rock. Oh, and did we mention the location is best accessible by air, with no towns nearby?

Take these challenging conditions, which Canadian astronaut Jeremy Hansen faced in the Arctic this month, and then imagine doing this on the moon. Or an asteroid. Or Mars. Scary, isn’t it? But that’s what he’s thinking of and training for as he does geology work a few times a year.

“It’s important; it provides an opportunity in a somewhat uncomfortable, risky situation when we’re doing real science,” Hansen told Universe Today of his time in Haughton Crater in Canada’s north. In fact, it’s so important to Hansen that he’s gone on similar geology trips with this Western University group three times.

Geology is now part of the package with basic astronaut training. NASA is hoping to get to the moon or an asteroid in the (relatively) near future, and there have been Congressional questions about the agency’s plans for Mars exploration. No one has firm answers yet. The astronauts, still, are preparing themselves as best as they can if the opportunity arises.

There would be vast differences between Earth exploration and heading to another location, however. Some examples:

While the Haughton Crater expedition is an analog for moon or Mars exploration, certain things will be different from the Earth experience. Here, Canadian astronaut Jeremy Hansen gathers water -- a feat that would be way more difficult off-planet. Credit: Jeremy Hansen/Twitter
While the Haughton Crater expedition is an analog for moon or Mars exploration, certain things will be different from the Earth experience. Here, Canadian astronaut Jeremy Hansen gathers water — a feat that would be way more difficult off-planet. Credit: Jeremy Hansen/Twitter
  • Water and supplies. The team Hansen joined had nine people and 29 checked bags for an expedition that lasted just over a week. They could also get water on site at a spot not too far from their camp, reducing the load of that heavy but important substance. NASA’s long-range planning, meanwhile, envisions scenarios such as a month on the moon, Hansen said. Supplies would be an interesting and heavy challenge in that situation. “The next time we’ll go back, what we’ll really be looking to do is travel much greater distances over a longer period of time,” he said. “We’ll be living in a rover for a month, covering 100 kilometers [62 miles] or more, looking for these important outcrops that tell us the story.”
  • Geology. The Earth is an erosive force on geology: wind, rain, glaciation, water, volcanic activity and more alters the landscape. “Sometimes the rocks look very similar” even when they are different, Hansen pointed out. Other places may have different erosion processes (think micrometeroids), making the rocks look strange to Earth-trained eyes.
  • Location. The landscape itself could be challenging for collecting samples. The moon, for example, has “stuff strewn everywhere and pounded into sand”, Hansen said, meaning that astronauts might have to travel much further to see something besides regolith or moon soil. Where Hansen was in the Arctic, by contrast, the group could get to more than a dozen different outcrops in a day of walking.
  • Gravity. The moon has a sixth of the Earth’s gravity. Mars is at about 38% Earth gravity. This means that the machines would need to be designed to work in that environment. For astronauts, it’s riskier to go up slopes or do heavy work in those conditions because their center of gravity is unfamiliar. As this Apollo 17 clip shows, astronauts sometimes fell over on the moon when doing something as simple as picking up as sample bag.
This stain in the rock showed evidence of hot water flowing for million of years after the impact that created Haughton Crater, said Canadian astronaut Jeremy Hansen. "Could support life? Could crater on Mars? Research may answer," he tweeted. Credit: Jeremy Hansen/Twitter
This stain in the rock showed evidence of hot water flowing for million of years after the impact that created the Arctic’s Haughton Crater, said Canadian astronaut Jeremy Hansen. “Could support life? Could crater on Mars? Research may answer,” he tweeted. Credit: Jeremy Hansen/Twitter

Hansen’s work in Haughton Crater did turn up some similarities to work at off-Earth locations, though. His crew had to work in a compressed time situation, learning how to find representative rocks from a 14-mile (23-kilometer) wide crater. That’s the same challenge you’d find during a moon or asteroid or Mars expedition.

“We explored not the entire crater — it’s a lot of ground to cover — but we explored some key areas,” Hansen said. “What’s important for someone like me, at my stage of geologist eyes, is to see the key aspects of the crater, those being what types of rocks that are formed and where do they end up in the crater.”

When a big rock slams into the Earth, it excavates material that is normally inaccessible to a surface visitor. Hansen was encouraged to seek the oldest or genesis rocks when on his expedition because, as in other locations, they provide clues about how the solar system was formed. The hard evidence firms up our theories on what happened.

"Explored rocks, learned origins of Earth. Want to do this on Mars someday like @MarsCuriosity but with a return ticket," tweeted Canadian astronaut Jeremy Hansen, making a joking reference to the Mars One expedition. Credit: Jeremy Hansen/Twitter
“Explored rocks, learned origins of Earth. Want to do this on Mars someday like @MarsCuriosity but with a return ticket,” tweeted Canadian astronaut Jeremy Hansen, making a joking reference to the Mars One expedition. Credit: Jeremy Hansen/Twitter

It’s not only work in the field that is important, but work in the lab. In past years with Gordon Osinski‘s group at Western, Hansen has gone back to the university to talk with those looking at the rock samples. He asks if the samples were representative, easy to analyze. His goal is to do better with each expedition.

“It’s kind of like learning a fourth lagnguage,” said Hansen, who as a Canadian Space Agency astronaut is expected to speak English, French and Russian at a minimum.

“It’s one of those things — you can cram it all in, but you don’t retain a lot unless you use it repeatedly and continue to practice it. My elegant solution is I spend one, maybe two weeks total a year, working on this. It’s a good use of my time. I keep bringing it back, keep reviewing it and keep going a little further.”

Hansen has a busy summer ahead of him. He’s taking off soon for CF-18 training with the Royal Canadian Air Force, where he got his career start. (Funny enough, in his past career he used to survey the Arctic from the air during Canadian sovereignty operations.)

In September, Hansen is spending about a week underground in Sardinia, Italy as part of the European Space Agency’s ongoing CAVES expedition series. Besides geology, this also provides training in unfamiliar and dangerous environments.

Hansen has not been assigned to a flight yet, but continues to work in the International Space Station operations branch in Houston and to represent the Astronaut Office in operational meetings. Also in training is his colleague David Saint-Jacques. Both astronauts were selected in 2009.

The next Canadian spaceflight is expected to happen around 2018, but could be earlier depending on ongoing negotiations by the Canadian Space Agency.

Russian Meteorite Bits Will Be Used In Some 2014 Olympic Medals

The two main smoke trails left by the Russian meteorite as it passed over the city of Chelyabinsk. Credit: AP Photo/Chelyabinsk.ru

Going for gold in the Sochi Winter Olympics could earn athletes some out-of-this-world rocks.

Athletes who top the podium on Feb. 15, 2014 will receive special medals with pieces of the Chelyabinsk meteor that broke up over the remote Russian community on that day in 2013, according to media reports.

“We will hand out our medals to all the athletes who will win gold on that day, because both the meteorite strike and the Olympic Games are the global events,” stated Chelyabinsk Region Culture Minister Alexei Betekhtin in a Ria Novosti report.

The reported sports that will receive these medals include:

  • Women’s 1,000 meter and men’s 1,500 meter short track;
  • Men’s skeleton;
  • Women’s cross-country skiing relay;
  • Men’s K-125 ski jump;
  • Men’s 1,500 meter speed skating;
  • Women’s super giant slalom.

The 55-foot (17-meter) meteor’s airburst in February damaged buildings, causing injuries and fright among those in the region. As astronomers have been collecting fragments and calculating the orbit of the fireball, the incident put renewed attention on the need to monitor space rocks that could threaten the Earth.

Check out this Universe Today collection of videos showing what the meteor looked like.

Doctor Who? Astronauts Need To Figure Out Medical Procedures Before Leaving Earth

ESA astronaut Alexander Gerst practicing his medical skills on a mannequin. Credit: European Space Agency

Should an astronaut get sick on the International Space Station, that could be a bad scene given the nearest hospital requires a spaceship ride. That’s why every crew has at least two medical officers on board that can deal with some routine procedures, getting to items as complex as filling teeth, for example.

How to get that training done?

Here’s an example: above is Alexander Gerst, an astronaut with the European Space Agency, recently working with a mannequin at the Uniklinik Köln, a hospital in Cologne, Germany. The mannequin is at least as realistic as some baby dolls you can buy in stores: “it blinks, breathes and responds to injections”, ESA stated.

That’s in addition to three days Gerst spent in operating theatres, emergency and the intensive care unit at the hospital. He has about another year to do medical training before going to station for Expedition 40/41 in May 2014.

Chris Cassidy, an Expedition 36 flight engineer, tests his eyesight aboard the International Space Station. Credit: NASA
Chris Cassidy, an Expedition 36 flight engineer, tests his eyesight aboard the International Space Station. Credit: NASA

Mind you, help is also a phone call away to a ground control station, who has doctors on site. Also, there are a lot of medical doctors or similarly trained personnel that fly in space.

On board the International Space Station right now is a trained Navy SEAL, for example: Chris Cassidy. He would have been trained to treat injuries during combat. In May, he told Universe Today that he expects “muscle memory” would kick in during an emergency, whether medical or station-related:

“I think just the training that I got in the field, training in the early part of my Navy career, and during my time being an astronaut will all combine together,” he said.

“What I know from combat in the Navy, there’s a sort of calmness that comes over people who are well-trained and know what to do. Muscle memory kicks in, and it’s not until after the thing is over that you realize what you went through.”

While those who fly in space train for medical emergencies, they also serve as medical guinea pigs for ongoing experiments. Turns out microgravity simulates aging processes on Earth, so the research could have benefits on the ground in future decades. Here’s a couple of experiments happening right now on station:

  • Space Headaches: “Current, pre, in-flight and post-flight data via questionnaires to evaluate the prevalence and characteristics of crewmembers’ headaches in microgravity.”
  • Reaction Self Test:  “A portable 5-minute reaction time task that will allow the crewmembers to monitor the daily effects of fatigue on performance while on board the International Space Station.”

Looking at the medical aspect alone, it’s abundantly clear why astronauts spend years in training before flying to the station. Remember, though, this is on top of other science experiments they do there, not to mention repairs, maintenance and the occasional spacewalk or catching a supply spacecraft.

Spacesuit Water Leak Prompts NASA Mishap Investigation

Italian astronaut Luca Parmitano during a spacesuit fit check before his mission. Credit: NASA

In the wake of a spacesuit water leak that sent two astronauts back to the airlock early during a spacewalk last week, NASA has convened a board to look at “lessons learned” from the mishap.

The cause of the leak, which filled Luca Parmitano’s helmet with water, is still being investigated. Some media reports say it may have been a fault within the spacesuit’s cooling system. NASA stated it plans to “develop a set of lessons learned from the incident and suggest ways to prevent a similar problem in the future.”

Chairing the board will be Chris Hansen, the International Space Station’s chief engineer at NASA’s Johnson Space Center in Houston. The other four members, who are all from NASA, include:

  • Mike Foreman, NASA astronaut, Johnson Space Center;
  • Richard Fullerton, International Space Station safety and mission assurance lead, Office of Safety and Mission Assurance, NASA headquarters;
  • Sudhakar Rajula, human factors specialist, Johnson Space Center;
  • Joe Pellicciotti, chief engineer, NASA Engineering and Safety Center, Goddard Space Flight Center.

The July 16 spacewalk stopped early at 1 hour, 32 minutes, far shorter than the crew’s planned 6.5-hour outing. All of the tasks can be easily pushed off to another time, NASA has said. The astronauts were preparing data cables and power for a Russian laboratory module that should reach the station by early 2014, among other tasks.

ISS Astronauts had to scramble to get Luca Parmitano out of his spacesuit after water leaked inside the suit, covering his face. Via NASA TV.
ISS Astronauts had to scramble to get Luca Parmitano out of his spacesuit after water leaked inside the suit, covering his face. Via NASA TV.

During and immediately after the spacewalk, NASA said the crew was in no immediate danger. A few days afterwards, Parmitano reassured officials at the European Space Agency. “Guys, I am doing fine and thanks for all the support. I am really okay and ready to move on,” he said, as reported in an ESA blog post.

Still, there was so much water inside the helmet that after a time, Parmitano had trouble hearing and communicating with his crewmates. “Squeeze my hand if you’re fine,” fellow EVA member Chris Cassidy said to Parmitano during the spacewalk.

NASA also noted there is an engineering analysis happening that is “focused on resolving equipment trouble in an effort to enable U.S. spacewalks to resume.” The board, by contrast, will be looking at aspects such as quality assurance, flight control, operations and maintenance with an eye to improving NASA human spaceflight activities in general.

NASA did not immediately release a date by which it expects the investigation to finish. Meanwhile, at least one news outlet reported that the agency is rushing some spacesuit repair tools on to a Russian Progress supply ship that will leave Kazakhstan for the International Space Station on Saturday.

Source: NASA

Expedition 37/38’s Tips For Surviving Long Voyages in Space

Russian cosmonaut Oleg Kotov (left), Expedition 37 flight engineer and Expedition 38 commander; along with NASA astronaut Michael Hopkins (center) and Russian cosmonaut Sergey Ryazanskiy, both Expedition 37/38 flight engineers. Credit: NASA

NASA wants to bring its astronauts outside of Earth. It recently recruited a new astronaut class for deep space voyages. It’s talking about picking up asteroids and possibly heading to the moon or Mars in the distant future. But there are a heck of a lot of steps to do before anyone can head into space for long periods of time.

The agency and Roscosmos are preparing for a one-year voyage to the International Space Station in 2015 that will add to the limited set of data on people being in space consecutively for a year, or longer. You can bet there will be reams of information collected on sleep habits, bone loss, muscle shrinkage, eye pressure and other health factors of concern.

How about the psychological side? The next space station crew to launch gave some hints about how their training prepares them to live cheek-by-jowl in a tiny space for six months.

The mission’s main goal:

The main goal is to put the station in a good condition, and also for the Russian segment, to [install] the new module, MLM (Multipurpose Laboratory Module.) We’re all targeted to this job. Me especially, being the commander of the station, I have the responsibility of the whole crew and their success and also for their psych [psychological] atmosphere. That’s really what I want to do. — Oleg Kotov, Expedition 37 flight engineer, Expedition 38 commander and preparing for his third spaceflight

Receiving advice from past crews:

Sometimes it’s the little things in terms of how to deal with, for example … the food and your clothes and supplies. Other times it’s trying to make sure you’re focusing on the critical items, and not necessarily getting caught up in all the little details [because] you’re going to be there for such a long amount of time.  — Michael Hopkins, Expedition 37/38 flight engineer and rookie astronaut

The Mars 500 long-duration mission vs. flying to the space station:

Mars 500 was really aimed at science. Most of the station [work] is mostly of the safety of the crew and the safety of the station, and then the [next priority is] science. But it also was a great experience to see, psychologically, the space station can be isolating, and how great the influence of this psychology is on the crew. So that was really the experience. Being commander there helps me a lot in my training for real flight.” — Sergey Ryzansky, commander of a 105-day segment as part of phase two of the Mars 500 program, Expedition 37/38 flight engineer and rookie cosmonaut

Michael Hopkins, Expedition 37/38 flight engineer, during spacewalk training. Credit: NASA
Michael Hopkins, Expedition 37/38 flight engineer, during spacewalk training. Credit: NASA

Communications with Mission Control:

Sometimes you ask a question or an item from the ground, and just realizing that you’re not always going to get that answer right away. Sometimes it takes some time for them to determine what the right answer is. — Hopkins

The challenge for other planets:

[I study] how to develop countermeasure means for flights on another planets. After 200 days, for example, flying in space, then we need human beings to work in a spacesuit on the surface of other planets, in different gravity. — Ryzansky

Military Aurora Research Website Goes Dark As HAARP Facility Enters Contract Negotiations

This photo was taken on January 22, 2012 in Fairbanks North Star Borough County, Alaska, US, using a Nikon D5000. The explodey look is due to perspective from looking right up the magnetic field lines. The aurora in the middle of the explosion is pointing straight down at the camera. Credit: Jason Ahrns

A military program to investigate auroras in the north appears to have been suspended.

The High Frequency Active Auroral Research Program (HAARP)’s website (dead link here) is not available right now, and there’s been some media speculation about the program’s future. So far, though, our attempts to learn more about the situation have turned up little information.

“Currently the site is abandoned. It comes down to money. We don’t have any,” said James Keeney, who reportedly manages the HAARP project at Kirtland Air Force Base, in a report published by the American Radio Relay League earlier this week.

When Universe Today reached out to Keeney, however, he declined comment. We also got in touch with the public affairs officials at Kirtland Air Force Base, who said no one was immediately available for an interview and provided this statement:

A screenshot of Google Earth, with ionosphere overlayed (Google)
A screenshot of Google Earth, with ionosphere overlayed (Google)

“HAARP is currently in contract negotiations and our policy is not to comment on current contract negotiations,” stated Marie M. Vanover, the director of Kirtland public affairs. “HAARP’s website is expected to be reopened and populated with the new and current information within 2-3 weeks.”

The program is jointly managed by the U.S. Air Force Research Laboratory and the U.S. Naval Research Laboratory to investigate activity in the ionosphere, the region of the Earth’s atmosphere where auroras occur. It includes an array of dozens of antennas that, media reports say, energize parts of the ionosphere.

HAARP is also the target of many conspiracy theories, ranging from warnings that it would trigger a change in the Earth’s magnetic poles to accusations that it is actually a weapon prototype. You can read more about the unproven allegations in this 2009 Wired article.

We’ll keep you posted on the facility’s status as we hear more.

What’s Going To Happen With the NASA Budget?

 

As NASA’s fiscal 2014 budget proceeds through Congress, it’s still quite the ping-pong ball match to try to figure out where their budget numbers will fall. How do you think the budget will end up? Leave your thoughts in the comments.

Also, be sure to watch the latest markup on the NASA bill occurring today when the House Committee on Science, Space and Technology meets — the webcast is here. It starts at 11:15 a.m. EDT/3:15 p.m. GMT.

Obama administration initial request – $17.7 billion: Unveiled in early April, the $17.7 billion “tough choices” NASA budget was for $50 million less than requested in 2013; the actual FY 2013 budget was $16.6 billion due to cuts and sequestration. While reducing funding opportunities for planetary science, the FY 2014 budget provided funding for a NASA mission to capture an asteroid. The asteroid mission proposal, in later weeks, did not impress at least one subcommittee.

House Appropriations Committee – $16.6 billion. Last week, the committee’s proposal chopped off $1.1 billion from the initial request. The committee passed the Commerce, Justice, and Science appropriations bill with few changes this Wednesday. The $3.6 billion allotted for exploration is $202 million below FY 2013, which critics say will push back NASA’s ability to fund its commercial crew program to bring astronauts into space from American soil. The proposal, however, shields the Multi-Purpose Crew Vehicle and Space Launch System from schedule changes due to budgetary levels. NASA science programs in this budget were at $4.8 billion, $266 million below FY 2013. “This includes funding above the President’s request for planetary science to ensure the continuation of critical research and development programs,” the appropriations committee stated. This document contains a detailed breakdown of its budget for NASA.

Artist's conception of NASA's Space Launch System. Credit: NASA
It appears that NASA’s proposed Space Launch System is getting budgetary support from at least some House members. Credit: NASA

– U.S. Senate Appropriations Subcommittee on Commerce, Justice, Science, and Related Agencies – $18 billion: On Tuesday, the Senate subcommittee suggested an allocation to NASA of $18 billion. A press release says the budget level will give “better balance for all of NASA’s important missions, including $373 million more for science that helps us to better understand Earth and own solar system while peering at new worlds way beyond the stars. The Senate also provides $597 million more to let humans explore beyond low earth orbit while safely sending our astronauts to the space station on U.S. made vehicles.”

NASA’s reaction: David Weaver, NASA’s associate administrator for communications, said the agency is “deeply concerned” about the House funding levels. “While we appreciate the support of the Committee, we are deeply concerned that the bill under consideration would set our funding level significantly below the President’s request,” he wrote in a blog post, adding, “We are especially concerned the bill cuts funding for space technology – the “seed corn” that allows the nation to conduct ever more capable and affordable space missions – and the innovative and cost-effective commercial crew program, which will break our sole dependence on foreign partners to get to the Space Station. The bill will jeopardize the success of the commercial crew program and ensure that we continue to outsource jobs to Russia.”

Reaction of Commercial Spaceflight Federation: Much the same as NASA. “Less funding for the commercial

Dragon in orbit during the CRS-2 mission. Credit: NASA/CSA/Chris Hadfield
NASA fears there will not be enough money to fund commercial providers such as SpaceX  (Dragon cargo spacecraft pictured) who aim to bring astronauts to the space station themselves. Credit: NASA/CSA/Chris Hadfield

crew program simply equates to prolonged dependence on foreign launch providers,” stated federation president Michael Lopez-Alegria, who is a former NASA astronaut. “As a nation, we should be doing our utmost to regain the capability of putting astronauts in orbit on American vehicles as soon as possible.”

What’s next: The House Committee on Science, Space and Technology markup of the NASA bill takes place starting at 11:15 a.m. EDT/3:15 p.m. GMT (again, watch the webcast at this link.) We’ll keep you posted on what they say. The Planetary Society’s Casey Dreier, who said $16.6 billion is the smallest NASA budget in terms of purchasing power since 1986, points out that the House doesn’t have the final say: “The Senate still needs to weigh in, so this House budget is not the last word in the matter, but it’s deeply troubling. You can’t turn NASA on and off like a spigot. Cuts now will echo through the coming decades.”

New SpaceX Rocket Booster Completes ‘Full Mission Duration’ Firing Test

The Falcon 9-R during a 10-second test in June 2013. Credit: Elon Musk on Twitter

A new booster forming the heart of a next-generation SpaceX Falcon 9 rocket underwent a three-minute test this week ahead of another of its type launching the Canadian Cassiope satellite this fall.

“Just completed full mission duration firing of next gen Falcon 9 booster,” wrote CEO Elon Musk on Twitter on Monday. “V[ery] proud of the boost stage team for overcoming many tough issues.”

SpaceX declined to elaborate on what the issues were in a statement to Space News, saying that the testing program is preliminary. (The company rarely comments on what goes on during tests.)

The firm has been steadily ramping up testing experience on the booster, as well as the Merlin-1D engine that powers it. In early June, it ran a brief 10-second test, then increased that to a 112-second test a week later. Check out the foom factor from that test below.

We’re still waiting for SpaceX to post pictures or video from the latest full mission test, but we’ll put them up if they become available.

SpaceX uses the same engines in the Grasshopper, a 10-story Vertical Takeoff Vertical Landing (VTVL) vehicle.

One of Grasshopper’s goals is to help SpaceX figure out how to bring a rocket back to Earth, ready to lift off again. A single Merlin 1D engine is enough to power Grasshopper. The new Falcon 9-R (R means “reusable”) requires nine.

Falcon 9-R is slated to loft Cassiope, a Canadian satellite that will observe space weather, in September.