What Happens When Stars Collide? In This Case, A Newly Observed Kind of Pulsating Star

Artist's impression of the eclipsing, pulsating binary star J0247-25. (Credit: Keele University)

It sure would be interesting to watch two stars run into each other — from a safe distance, of course. One can imagine there would be quite the titanic battle going on between their competing gravitational forces, throwing off gas and matter as they collide.

They also leave behind interesting echoes, at least according to new research. A European team looked at the leftovers of one collision and found a type of pulsating star that has never been seen before.

It’s common for stars to form in groups or to be paired up, since they form from immense gas clouds. Sometimes, a red giant star in a binary system gets so big that it will bump into a companion star orbiting nearby. This crash could shave 90% of the red giant star’s mass off, but astronomers are still trying to get their heads around what happens.

Eclipsing Binaries
Artists impression of a binary star system (courtesy NASA)

“Only a few stars that have recently emerged from a stellar collision are known, so it has been difficult to study the connection between stellar collisions and the various exotic stellar systems they produce,” Keele University, which led the research, stated.

Researchers who made the find were actually on the hunt for alien planets. They turned up what is called an “eclipsing” binary system, meaning that one of the stars passes in front of the other from the perspective of Earth.

The scientists then used a high-speed camera on the Very Large Telescope in Chile called ULTRACAM. The camera is capable of taking up to 500 pictures a second to track fast-moving astronomical events.

Observations revealed that “the remnant of the stripped red giant is a new type of pulsating star,” Keele stated.

The Very Large Telescope (VLT) at ESO's Cerro Paranal observing site in the Atacama Desert of Chile, consisting of four Unit Telescopes with main mirrors 8.2-m in diameter and four movable 1.8-m diameter Auxiliary Telescopes. The telescopes can work together, in groups of two or three, to form a giant interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. Credit: Iztok Boncina/ESO
The Very Large Telescope (VLT) at ESO’s Cerro Paranal observing site in the Atacama Desert of Chile, consisting of four Unit Telescopes with main mirrors 8.2-m in diameter and four movable 1.8-m diameter Auxiliary Telescopes. The telescopes can work together, in groups of two or three, to form a giant interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. Credit: Iztok Boncina/ESO

“We have been able to find out a lot about these stars, such as how much they weigh, because they are in a binary system,” stated Pierre Maxted, an astrophysicist at Keele.

“This will really help us to interpret the pulsation signal and so figure out how these stars survived the collision and what will become of them over the next few billion years.”

The next step for the researchers will be to calculate when the star will begin cooling down and become a white dwarf, which is what is left behind after a star runs out of fuel to burn.

Check out more details of the find in Nature.

Source: Keele University

We’ve Found 10,000 Near-Earth Objects. How To Step Up The Search?

Asteroid 2013 MZ5 as seen by the University of Hawaii's PanSTARR-1 telescope. Credit: PS-1/UH

That pale white dot up there? No. 10,000 in a list of near-Earth objects. This rock, 2013 MZ5, was discovered June 18. It is 1,000 feet (300 meters) across and will not come anywhere near to threatening Earth, NASA assures us.

But what else is out there? The agency still hasn’t found every asteroid or comet that could come by Earth. To be sure, however, it’s really trying. But is there more NASA and other agencies can do to search? Tell us in the comments.

A bit of history: the first of these objects was discovered in 1898, but in recent decades we’ve been more systematic about finding them. This means we’ve been picking up the pace on discoveries.

Congress asked NASA in 2005 to find and catalog 90 per cent of NEOs that are larger than 500 feet (140 meters) in size, about enough to level a city. The agency says it has also found most of the very largest NEOs, those that are at least six-tenths of a mile (1 kilometer) across (and none so far discovered are a threat.)

That’s not to say smaller pieces wouldn’t do damage. Remember that Russian meteor this year that blew out windows and caused injuries? It probably was only 50 feet (15 meters) across.

The two main smoke trails left by the Russian meteorite as it passed over the city of Chelyabinsk. Credit: AP Photo/Chelyabinsk.ru
The two main smoke trails left by the Russian meteorite as it passed over the city of Chelyabinsk. Credit: AP Photo/Chelyabinsk.ru

Still, NASA says once it achieves its latest goal (which it is supposed to be by 2020), “the risk of an unwarned future Earth impact will be reduced to a level of only one per cent when compared to pre-survey risk levels. This reduces the risk to human populations, because once an NEO threat is known well in advance, the object could be deflected with current space technologies.”

The major surveys for NEOs in the United States are the University of Arizona’s Catalina Sky Survey, the University of Hawaii’s Pan-STARRS survey and the Lincoln Near-Earth Asteroid Research (LINEAR) survey between the Massachusetts Institute of Technology, the Air Force and NASA. Worldwide, the current discovery rate is 1,000 per year.

In May, the European Space Agency also opened a new “NEO Coordination Centre” intended to be the one-stop shop for asteroid warnings in Europe (and worldwide, of course.) More details here.

EDIT: And NASA also recently issued an Asteroid Grand Challenge to private industry to seek solutions to find these space rocks. Check out more information here.

What more can be done to find and track threatening space rocks? Let us know below.

Credit: NASA

This Supernova Had A ‘Delayed Detonation’

G1.9+0.3 in an image by the Chandra X-ray Observatory. Credit: X-ray (NASA/CXC/NCSU/K.Borkowski et al.); Optical (DSS)

In 2008, astronomers discovered a star relatively nearby Earth went kablooie some 28,000 light-years away from us. Sharp-eyed astronomers, as they will do, trained their telescopes on it to snap pictures and take observations. Now, fresh observations from the orbiting Chandra X-ray Observatory suggest that supernova was actually a double-barrelled explosion.

This composite picture of G1.9+0.3, coupled with models by astronomers, suggest that this star had a “delayed detonation,” NASA stated.

“First, nuclear reactions occur in a slowly expanding wavefront, producing iron and similar elements. The energy from these reactions causes the star to expand, changing its density and allowing a much faster-moving detonation front of nuclear reactions to occur.”

To explain a bit better what’s going on with this star, there are two main types of supernovas:

In a Type Ia supernova, a white dwarf (left) draws matter from a companion star until its mass hits a limit which leads to collapse and then explosion. Credit: NASA
In a Type Ia supernova, a white dwarf (left) draws matter from a companion star until its mass hits a limit which leads to collapse and then explosion. Credit: NASA

– Type Ia: When a white dwarf merges with another white dwarf, or picks up matter from a close star companion. When enough mass accretes on the white dwarf, it reaches a critical density where carbon and oxygen fuse, then explodes.

– Type II: When a massive star reaches the end of its life, runs out of nuclear fuel and sees its iron core collapse.

NASA said this was a Type Ia supernova that “ejected stellar debris at high velocities, creating the supernova remnant that is seen today by Chandra and other telescopes.”

New research shows that some old stars known as white dwarfs might be held up by their rapid spins, and when they slow down, they explode as Type Ia supernovae. Thousands of these "time bombs" could be scattered throughout our Galaxy. In this artist's conception, a supernova explosion is about to obliterate an orbiting Saturn-like planet.   Credit: David A. Aguilar (CfA)
In this artist’s conception, a supernova explosion is about to obliterate an orbiting Saturn-like planet. Credit: David A. Aguilar (CfA)

You can actually see the different energies from the explosion in this picture, with red low-energy X-rays, green intermediate energies and blue high-energies.

“The Chandra data show that most of the X-ray emission is “synchrotron radiation,” produced by extremely energetic electrons accelerated in the rapidly expanding blast wave of the supernova. This emission gives information about the origin of cosmic rays — energetic particles that constantly strike the Earth’s atmosphere — but not much information about Type Ia supernovas,” NASA stated.

Also, unusually, this is an assymetrical explosion. There could have been variations in how it expanded, but astronomers are looking to map this out with future observations with Chandra and the National Science Foundation’s Karl G. Jansky Very Large Array.

Check out more information about this supernova in the scientific paper led by North Carolina State University.

Source: NASA

Discovery! More Planets Found Orbiting In A Star Cluster

An artist's conception of an exoplanet transiting its home star. Credit: NASA's Goddard Space Flight Center

As Earthlings, we’re so used to thinking about planets being in simple orbits around a single star. But the Sun likely didn’t begin its life alone. It formed as part of a cluster of stars, all feeding from the same well of gas.

Could star clusters also host planets? Or do they have to wait for the little guys until the stars evolve and move further apart? Well, astronomers have actually just found planets — yes, two planets — orbiting Sun-like stars in a cluster 3,000 light-years from Earth.

 

These are the third and fourth star cluster planets yet discovered, but the first found “transiting” or passing across the face of their stars as seen from Earth. (The others were found through detecting gravitational wobbles in the star.)

This is no small feat for a planet to survive. In a telescope, a star cluster might look pretty benign, but up close it’s pretty darn harsh. A press release about the discovery used a lot of words like “strong radiation”, “harsh stellar winds” and “stripping planet-forming materials” in a description of what NGC 6811 would feel like.

An artist's conception of a planet in a star cluster. Credit: Michael Bachofner
An artist’s conception of a planet in a star cluster. Credit: Michael Bachofner

“Old clusters represent a stellar environment much different than the birthplace of the Sun and other planet-hosting field stars,” stated lead author Soren Meibom of the Harvard-Smithsonian Center for Astrophysics.

“We thought maybe planets couldn’t easily form and survive in the stressful environments of dense clusters, in part because for a long time we couldn’t find them.”

The find, as you would expect, comes from the prolific planet-hunting NASA Kepler spacecraft that is now battling problems with pointing in the right direction. Although the telescope is in the penalty box, there still are reams of data waiting to be analyzed and released.

The planets are known as Kepler-66b and Kepler-67b, and are both approaching the size of Neptune (which is four times the size of Earth). Their parent cluster, NGC 6811, is one billion years old. Astronomers are still puzzled as to how these little worlds survived for so long.

“Highly energetic phenomena including explosions, outflows and winds often associated with massive stars would have been common in the young cluster,” stated the journal paper in Nature.

“The degree to which the formation and evolution of planets is influenced by a such a dense and dynamically and radiatively hostile environment is not well understood, either observationally or theoretically.”

Check out the entire study in the latest edition of Nature.

Source: Harvard-Smithsonian Center for Astrophysics

So You Wanna Go To Space. Can You Put Up With The Superpower Bacteria?

An artist's conception of future Mars astronauts. Credit: NASA/JPL-Caltech

We all love space here and we’re sure, given that thousands of people applied for a one-way trip to Mars, that at least some of you want to spend a long time in a spacecraft. But have you thought about the bacteria that will be going along with you?

If you don’t feel too squirmy to read on, understand this: one type of bacteria grown aboard two shuttle missions ended up being bigger and thicker than control colonies on Earth, new NASA research shows.

Two astronaut crews aboard space shuttle Atlantis grew colonies of bacteria (more properly speaking, biofilms) on behalf of researchers on Earth. Most biofilms are harmless, but a small number could be associated with disease.

Biofilms were all over the Mir space station, and managing them is also a “challenge” (according to NASA) on the International Space Station. Well, here’s how they appeared in this study:

“The space-grown communities of bacteria, called biofilms, formed a ‘column-and-canopy’ structure not previously observed on Earth,” NASA stated. “Biofilms grown during spaceflight had a greater number of live cells, more biomass, and were thicker than control biofilms grown under normal gravity conditions.”

Astronauts strut their superpowers on the final shuttle mission, STS-135, where they also examined bacteria growth. Credit: NASA
Astronauts strut their superpowers on the final shuttle mission, STS-135. Turns out bacteria acquire some super-growth in microgravity, too. Credit: NASA

The type of microorganism examined was Pseudomonas aeruginosa, which was grown for three days each on STS-132 and STS-135 in artificial urine. That was chosen because, a press release stated, “it is a physiologically relevant environment for the study of biofilms formed both inside and outside the human body, and due to the importance of waste and water recycling systems to long-term spaceflight.”

Each shuttle mission had several vials of this … stuff … in which to introduce the bacteria in orbit. The viles included cellulose membranes on which the bacteria could grow. Researchers also tested bacteria growth on Earth with similar vials. Then, all the samples were rounded up in the lab after the shuttle missions where the biofilms’ thickness, number of cells and volume was examined, as well as their structure.

This is still early-stage work, of course, requiring follow-up studies to find out how the low-gravity environment affects these microorganisms’ growth, according to lead researcher Cynthia Collins from the Rensselaer Polytechnic Institute. Metabolism and virulence are what the scientists are hoping to learn more about in the future.

Samples of bacteria Pseudomonas aeruginosa. Credit: NASA
Samples of bacteria Pseudomonas aeruginosa. Credit: NASA

“Before we start sending astronauts to Mars or embarking on other long-term spaceflight missions, we need to be as certain as possible that we have eliminated or significantly reduced the risk that biofilms pose to the human crew and their equipment,” stated Collins, an assistant professor in the department of chemical and biological engineering.

While this research has more immediate implications for astronaut health, the researchers added that better understanding the biofilms could lead to better treatment and prevention for Earth diseases.

“Examining the effects of spaceflight on biofilm formation can provide new insights into how different factors, such as gravity, fluid dynamics, and nutrient availability affect biofilm formation on Earth. Additionally, the research findings could one day help inform new, innovative approaches for curbing the spread of infections in hospitals,” a NASA press release stated.

If you’re not feeling too itchy by now, you can read the entire study in an April issue of PLOS ONE.

Credit: NASA

This Energy-Boosting Region In The Sun Will Have A New NASA Satellite Watching It

IRIS will take a closer look at the lower parts of the sun's atmosphere, which is producing the spectacular flare shown in this image. Credit: NASA&JAXA/Hinode

How does the sun’s energy flow? Despite the fact that we live relatively close (93 million miles, or eight light-minutes) to this star, and that we have several spacecraft peering at it, we still know little about how energy transfers through the solar atmosphere.

NASA’s next solar mission will launch Wednesday, June 26 (if all goes to plan) to try to learn a little bit more. It’s called the Interface Region Imaging Spectrograph (IRIS), and it will zero in on a spot in the sun’s lower atmosphere known as the “interface region.” The zone only has a thickness of  3,000 to 6,000 miles and is seen as a key transfer point to the sun’s incredibly hot corona (that you can see during total solar eclipses.)

“IRIS will extend our observations of the sun to a region that has historically been difficult to study,” stated Joe Davila, IRIS project scientist at NASA’s Goddard Space Flight Center. “Understanding the interface region better improves our understanding of the whole corona and, in turn, how it affects the solar system.”

Figuring out more about the interface region, NASA stated, will teach us a lot more about the “space weather” that affects Earth.

Some of the energy in the interface region leaks out and powers the solar wind, which is a sort of rain of particles that leave the star. Some of them hit the Earth’s magnetic field and can produce auroras. Most of the sun’s ultraviolet radiation also flows from the interface region.

IRIS’ images will be able to zero in on about 1 percent of the sun in a single go, with resolution of features of as small as 150 miles. The 400-pound satellite will orbit Earth in an orbit perpetually keeping it above the sunrise line, a spot that lets the satellite look at the sun continuously for eight months without the sun being obscured by Earth.

It’ll also form part of a larger network of sun-staring satellites.

Technicians work on NASA’s Interface Region Imaging Spectrograph (IRIS) in a "clean room", a specially designed facility intended to minimize contaminants on spacecraft before launch. Credit: Lockheed Martin
Technicians work on NASA’s Interface Region Imaging Spectrograph (IRIS) in a “clean room”, a specially designed facility intended to minimize contaminants on spacecraft before launch. Credit: Lockheed Martin

NASA highlighted its Solar Dynamics Observatory and a joint mission it has with Japan, called Hinode, which both take images of the sun in high-definition. These other two observatories, however, look at different solar layers (specifically, the surface and the outer atmosphere).

With IRIS joining the fleet and looking at the interface region, it will provide a more complete picture.

“Relating observations from IRIS to other solar observatories will open the door for crucial research into basic, unanswered questions about the corona,” stated Davila.

Source: NASA

Space Art Show Comes Out To Play In L.A., With NASA’s ‘Mohawk Guy’ As Special Guest

SPACE! The Gallery Show will feature space-themed art such as this piece by Joe Van Wetering. Credit: SPACE! The Gallery Show

Space fans in Los Angeles — and we know, given Mars Curiosity is controlled at the nearby NASA Jet Propulsion Laboratory, that there are lots of you — here’s a neat-looking art show for you to check out in the next month.

SPACE! The Gallery Show will open at Gallery 1988: West today with special NASA guest Bobak Ferdowsi, a systems engineer at JPL who is best known as “Mohawk Guy” — that person with the great haircut being shown on television screens worldwide during the Curiosity landing.

“You guys, I am thrilled to finally share this with you,” wrote organizer Mike Mitchell on his blog. “It’s the first time I’ve ever curated a show, and it’s a theme that I’m very passionate about. Take a gander at the artist list, get yourself pumped up and come to the show. It’s going to be a stellar time.”

The event runs today through Saturday, July 20, closing on the 44th anniversary of the Apollo 11 landing. More information is available on the event’s Facebook page and the gallery’s website.

Hat-tip to Laughing Squid, whose post alerted us to the show.

Arkyd Telescope Reaches $1M Goal, But Still Looking For Planet-Hunting Funds

Artist concept of the Arkyd telescope in space. Credit: Planetary Resources Inc.

With more than $1 million in crowdfunded money secured for a public asteroid-hunting space telescope, the ultimate question arises: what about the promised planet chase?

Planetary Resources’ Arkyd-100 telescope reached its $1 million goal yesterday (June 20). But the self-proclaimed asteroid-hunting company has an ambitious aim to add extrasolar planet searching  to the list if it can double that goal to $2 million.

The Kickstarter campaign for Arkyd still has 10 days remaining. To keep the funds flowing, the group behind it has released several “stretch” goals if it can reach further milestones:

$1.3 million: A ground station at an undisclosed “educational partner” that would double the download speed of data from the orbiting observatory.

Example of an orbital 'selfie' that Planetary Resources' ARKYD telescope could provide to anyone who donates to their new Kickstarter campaign. Credit: Planetary Resources.
Example of an orbital ‘selfie’ that Planetary Resources’ ARKYD telescope could provide to anyone who donates to their new Kickstarter campaign. Credit: Planetary Resources.

$1.5 million: This goal, just released yesterday, is aimed at the more than 20,000 people who signed up for “space selfies” incentive where uploaded pictures are photographed on the telescope while it is in orbit. For this goal, “beta selfies” will be taken while the telescope is in the integration phase of the build.

$1.7 million: The milestone will be announced if Arkyd reaches 15,000 backers. (It has more than 12,000 as of this writing.)

$2 million: The telescope will hunt for alien planets. Planetary Resources added this goal last week following technical problems plaguing NASA’s Kepler space telescope that could derail the agency’s prolific planet finder.

Also, a hat-tip to NASA’s Peter Edmonds, who works in public affairs for the Chandra X-ray Observatory, for pointing out the campaign’s Kickstarter video in Klingon. Check it out below:

3-D Printer Passes Key Step On Road to Space Station

A test of the 3-D printer in a microgravity-like environment simulated on an airplane that flies parabolas. Credit: Made in Space

The joke about home renovation projects is it takes at least three trips to the hardware store to finish the work. In space, of course, spare parts are a lot harder to come by, meaning astronauts might have to wait for a spacecraft shipment, if, say, the toilet breaks. (Yes, this yucky situation has happened before.)

Some spare parts could be manufactured in space as early as next year, though, providing a 3-D printer passes all the preliminary steps. It recently got a big boost in that direction after passing its microgravity tests successfully, but there are still environmental tests to come, said the company that was behind the work.

“The 3-D printer we’re developing for the ISS is all about enabling astronauts today to be less dependent on Earth,” stated Noah Paul-Gin, the lead for the microgravity experiment.

“The version that will arrive on the ISS next year has the capability of building an estimated 30% of the spare parts on the station, as well as various objects such as specialty tools and experiment upgrades.”

A close-up of the 3-D printer prototype made by Made in Space. Credit: Made in Space
A close-up of the 3-D printer prototype made by Made in Space. Credit: Made in Space

The firm tested the printer during four flights that, in part, simulated microgravity. They were on a specially designed airplane that flies parabolas, meaning it climbs and then briefly simulates, roller-coaster style, microgravity during the plunge before climbing again. (Each microgravity test is only about 30 seconds long.)

“The unique challenges posed by off-Earth 3-D printing require technology and hardware specifically adapted for space. In these microgravity tests, Made in Space assessed layer adhesion, resolution and part strength in the microgravity environment,” the company added.

After Made in Space received a contract for the 3D printer a couple of years ago, it flew three prototype versions that collectively were in microgravity 32 times.

If this printer makes it to space and performs well, it will add to the excitement of 3-D printing that has been swirling around the space community lately.

A study led by NASA recently investigated the possibility of using 3-D printing in association with creating robots to work on asteroids. Astronauts on the station could also have a food replicator of sorts on board the station, too, if a grant awarded to Systems & Materials Research Corperation this May pans out.

Source: Made In Space

Morpheus Aborts, Then Recovers For a Second Go In Tether Test

Morpheus during an April 2012 test. Credit: Joe Bibby

The above video should satisfy your daily need for rocket foom. Morpheus — a NASA testbed for vertical landing systems — did two firing tests this week that produced a fair amount of the usual fire and smoke, as you can see above.

You’ll actually see two separate firings in that video. In the first one, the lander strayed out of its safety zone and did a soft abort. The second test, NASA stated, “was a complete success.”

The first lander of the program crashed and burned in a test failure in August 2012, but officials recently praised the program for the progress it has made since then.

“Although a hardware failure led to the loss of the original vehicle last August, the failure and our internal investigation gave us valuable insight into areas that needed improvement,” a Project Morpheus blog post from May stated.

“The vehicle may look largely the same as the previous version, but there are numerous changes that have been incorporated.  We have now implemented 70 different upgrades to the vehicle and ground systems to both address potential contributors to the test failure, and also to improve operability and maintainability.”

In the long run, NASA aims to use Morpheus as a “vertical test bed” for environmentally friendly propellants, as well as for automatic advances in landing and hazard detection.

The vehicle is advertised as big enough to land 1,100 pounds of cargo on the moon if it was placed nearby.

Check out more information about the program at the Project Morpheus website.