Ken Mattingly Explains How the Apollo 13 Movie Differed From Real Life

The original Apollo 13 crew, from left to right: Jim Lovell, Thomas "Ken" Mattingly, Fred Haise. Credit: NASA

Many astronauts seem to like the Apollo 13 movie, but being technically minded folk they also enjoy pointing out what actually happened during that so-called “successful failure” that landed safely on this day in 1970.

Thomas “Ken” Mattingly was supposed to be on that crew, but was yanked at the last minute because he was exposed to the German measles. The movie shows him wallowing on the couch with a can of beer before hearing of an oxygen tank explosion on board. He then spends most of the movie stuck in a simulator, helping to save the three men on board the spacecraft.

Real life wasn’t quite the same as the movie portrayed, the real Mattingly said in a 2001 interview with NASA.

For one thing, Mattingly had no assigned role in the rescue as he was a backup crew member. He ended up working in a lot of teams rather than a single project or two. There also were some technical differences between the movie and real life. Some examples:

The “lifeboat” procedures: In the movie, mission controllers huddle in a side room and try to figure out how to stretch the resources of the lunar module — designed to carry only two men for a couple of days — into a four-day lifeboat to support three men. While this is somewhat true, NASA already had a preliminary lifeboat procedure simulated, Mattingly pointed out. The movie made it appear as though, he said, “we invented a lot of stuff”.

Somewhere in an earlier sim [simulation], there had been an occasion to do what they call LM lifeboat, which meant you had to get the crew out of the command module and into the lunar module, and they stayed there. I vaguely remember—when you have a really exciting sim, why, generally everybody knows about it. I vaguely remember that they had come up with a thing that contaminated the atmosphere in the command module, and they had to vent it, and they put the crew into the—there’s some reason that instead of staying in their suits in the command module, they put them in the lunar module while they did this.

Apollo 13's original crew of Jim Lovell, Ken Mattingly and Fred Haise with an unidentified person. Credit: NASA
Apollo 13’s original crew of Jim Lovell, Ken Mattingly and Fred Haise with an unidentified person. Credit: NASA

The carbon dioxide filter: In the movie, as the crew faces a deadly buildup of carbon dioxide, a team in mission control builds a new system on the spot that adapts an originally incompatible filter. “Well, the real world is better than that,” Mattingly explained, saying there was a simulation for the Apollo 8 mission where a cabin fan was jammed due to a loose screw.

The solution that they came up with was that they could make a way to use the vacuum cleaner in the command module with some plastic bags cut up and taped to the lithium hydroxide cartridges and blow through it with a vacuum cleaner. So, having discovered it, they said, “Okay, it’s time for beer.” Well, on 13, someone says, “You remember what we did on that sim? Who did that?” So in nothing short, Joe [Joseph P.] Kerwin showed up, and we talked about “How did you build that bag and what did you do?” … Of course it worked like a gem.

Simulating the startup: In the movie, Mattingly spends hours in a simulator putting together the procedures for starting up the cold, dead command module in time to bring the astronauts safely back to Earth. While that is a good way of conveying the mission’s aim to the public, the simulation runs (done by other astronauts, Mattingly said) were more of a verification of already written procedures.

We said, “Let’s get somebody cold to go run the procedures.” So I think it was [Thomas P.] Stafford, [Joe H.] Engle — I don’t know who was the third person, might have been [Stuart A.] Roosa. But anyhow, they went to the simulator there at JSC [Johnson Space Center], and we handed them these big written procedures and said, “Here. We’re going to call these out to you, and we want you to go through, just like Jack will. We’ll read it up to you. See if there are nomenclatures that we have made confusing or whatever. Just wring it out. See if there’s anything in the process that doesn’t work.”

For more on what Mattingly thinks of the Apollo 13 movie, check out the entire transcript of his interview on NASA’s website. We’re sure there are other technical details the movie simplified or got wrong, so feel free to share your thoughts in the comments.

Launch! Anik G1 Satellite Aims To Ease Communications Overcrowding

Anik G1 lifts off from Baikonur, Kazakhstan on April 15, 2013. Credit: ILS Launch Services (screencap)

Update, April 16, 8:20 a.m. EDT: Anik G1 was successfully released from the upper stage of the rocket nine hours and 13 minutes after the launch. The satellite is now in orbit above Earth.

A new communications satellite aims to ease the strain of overcrowded communications networks in Latin America, while adding capacity to direct-to-home services in Canada and government and military users across the Americas.

Anik G1 lifted off at 2:36 p.m. EDT (6:36 p.m. UTC) today, April 15, from Baikonur, Kazakhstan. The satellite, carried by a Proton-M rocket, is still undergoing orbital maneuvers as of this writing; the upper Breeze-M stage will fire five times to put Anik G1 in the proper orbit.

These maneuvers should be completed about 9 hours after launch, if all goes well, at which point Anik G1 will separate.

Anik G1 is expected to last 15 years, a typical lifespan for a communications satellite. Once Anik G1 is activated, should all go well with the deployment, Canadian operator Telesat is marketing the satellite as a way to alleviate overcapacity in Latin American telecommunications services.

Continue reading “Launch! Anik G1 Satellite Aims To Ease Communications Overcrowding”

Spacewalkers To Give Cargo Spacecraft A Helping Hand

Friday's spacewalk is supposed to replace a navigational aid to guide in spacecraft, such as the European Space Agency's Automated Transfer Vehicle. Credit: NASA

Spacewalkers will replace a faulty navigational aid Friday to ensure that a cargo spacecraft in June docks safely with the  International Space Station.

Expedition 35 cosmonauts Pavel Vinogradov and Roman Romanenko will venture into space to remove and replace a broken retroreflector on the Russian Zvezda station module.  The first spacecraft to use the new retroreflector will be the European Space Agency’s automated transfer vehicle (ATV) Albert Einstein, which is scheduled to dock with the station in June.

The ATV has a videometer on board that shoots laser beams at retroreflectors on the outside of the station. Then, the videometer analyzes the pattern of light that is returned. Based on this pattern, it navigates towards the station and in for a docking.

Albert Einstein will carry about two tons of cargo to the station, including water, oxygen, and extra fuel to boost the space station’s orbit. Tipping the scales at 44,611 pounds (20,235 kg), this ATV will be the heaviest ever lifted by an Ariane rocket.

Replacing the retroreflector won’t be the cosmonauts’ only task. They’ll retrieve an experiment, called Biorisk, that is supposed to evaluate how much microbes affect spacecraft structures. They may also take the Vinoslivost experiment (which looks at how exposed materials behave in space) back inside, depending on how much time they have.

Pavel Vinogradov during a 2006 spacewalk. Friday will mark the seventh spacewalk for the veteran Russian cosmonaut. Credit: NASA
Pavel Vinogradov during a 2006 spacewalk. Friday will mark the seventh spacewalk for the veteran Russian cosmonaut. Credit: NASA

These experiments are part of the long-term mandate of the station’s activities to study how well people and structures survive after years in space. Based on the results, engineers back on Earth can make adjustments for spacecraft under development, making them more robust for long-term missions.

Additionally, the cosmonauts plan to install the Obstanovka experiment, which will look at “space weather” in the Earth’s ionosphere. This region of the atmosphere is where auroras arise after the Sun’s particles strike the area.

Besides producing these pretty patterns, space weather has a darker side: it can cause communications shortouts or hurt satellites. That’s why NASA has the Solar Dynamics Observatory and other spacecraft keeping a close eye on the sun. The agency wants to improve space weather predictions to protect infrastructure on Earth.

You can watch Expedition 35’s first spacewalk on NASA Television at 9:30 a.m. EDT (1:30 p.m. UTC) on Friday. The cosmonauts should head outside around 10:06 a.m. EDT (2:06 p.m. UTC). This could change depending on how quickly the cosmonauts depressurize the Pirs airlock and complete their pre-spacewalk checklist.

This spacewalk will be the seventh for Vinogradov and the first for Romanenko. Including this upcoming spacewalk, there have been 167 spacewalks performed to construct the space station and do maintenance.

How To Crowdsource Astronomy Without People Messing It Up

A family portrait of the PH1 planetary system that was discovered in part due to crowdsourcing. Image Credit: Haven Giguere/Yale.

Maybe it’s because Jurassic Park is in theaters again, but we at Universe Today sometimes worry about how one person can mess up an otherwise technologically amazing system. It took just one nefarious employee to shut down the dinosaur park’s security fences in the movie and cause havoc. How do we ensure science can fight against that, especially when everyday citizens are getting more and more involved in the scientific process?

But perhaps, after talking to Chris Lintott, that view is too suspicious. Lintott is in charge of a collaborative astronomy and science project called the Zooniverse that uses public contributions to fuel some of the science he performs. Basically, anyone with an Internet connection and a desire to contribute can hunt for planets or examine astronomical objects, among many other projects.

Lintott, an astrophysicist at the University of Oxford, says the science requires public contributions. Moreover, he hasn’t had a problem yet despite 800,000 individual contributors to the Zooniverse. He told Universe Today about how that’s possible in an e-mail interview.

1) Zooniverse has already produced tangible scientific results in space through collaborating with ordinary folks. Can you talk about some of the papers/findings that have been produced in your various projects?

There’s a long, long list. I’m particularly excited at the minute about our work on bulgeless galaxies; most spiral galaxies have a bulge full of old stars at their centre, but we’ve found plenty that don’t. That’s exciting because we think that means that they’re guaranteed not to have had a big merger in the last 10 billion years or so, and that means we can use them to figure out just what effect mergers have on galaxies. You’ll be hearing more about them in the next year or so as we have plenty of observing time lined up.

I’m also a big fan of Planet Hunters 1b, our first confirmed planet discovery – it’s a planet in a four-star system, and thus provides a nice challenge to our understanding of how planets form. We’ve found lots of planet candidates (systems where we’re more than 90% sure there’s a planet there) but it’s nice to get one confirmed and especially nice for it to be such an interesting world.

One of Zooniverse's projects examines the nature of spiral galaxies, particularly those without central bulges at the center. Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)
One of Zooniverse’s projects examines the nature of spiral galaxies, particularly those without central bulges at the center. Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

2) What benefits have you received from involving the public in space projects, in terms of results as well as raising awareness?

We couldn’t do our research any other way. Astronomers have got very good in the last few decades at collecting information about the universe, but we’re not always so good at learning how to use all of that information. The Zooniverse allows us to collaborate with hundreds of thousands of people so that we can scale our efforts to deal with that flood of data, and many of those volunteers go much further than just clicking on buttons we provide. So really our research is now driven in collaboration with thousands of people, spread all around the world – that’s an inspiring thought.

3) How many people do you manage in your space projects, approximately? How do you keep track of them all?

We have more than 800,000 registered volunteers – luckily, the computer keeps track of them (when they log in!).

4) How do you ensure their results meet the standards of scientific publication?

We carefully design projects so that we’re sure they will produce scientifically useful results before they’re launched; this usually means running a test with a small amount of data and comparing work done by volunteers with that of professionals. We usually find the volunteers are better than us! It helps that we have several people complete each task, so collectively we don’t make accidental mistakes.

5) How do you guard against somebody deliberately or accidentally altering the results?

The system insists that every classification is independent, and as we have several people look at each classification finding any deliberate attack would be easy – in any case, we’ve never seen any evidence of such a thing. Despite popular reports, most people are nice!

Want to be an Astronaut? Learn How to Speak Russian

Canadian astronaut David Saint-Jacques prepares to simulate a spacewalk in NASA's Neutral Buoyancy Laboratory. Credit: NASA

A fire breaks out on the International Space Station while the orbiting complex is over Russian mission control. How, as an English-speaking astronaut, would you keep up with instructions?

The answer is years of Russian training. In between time in simulators, jet airplanes and underwater, neophyte astronauts spend hours learning to read Cyrillic characters and pronounce consonant-heavy words. In fact, one of NASA’s requirements for its astronauts now is to learn the Russian language.

“It’s taken very seriously in the program because of the level you need to reach if, God forbid, there was an emergency on board and there was a panicky discussion going on in Russian on the radio,” Canadian astronaut and medical doctor David Saint-Jacques told Universe Today. “Ultimately, you need to be fluent to be really useful in a situation like that.”

Saint-Jacques himself is no neophyte to language learning. A native francophone, he learned English in public school and really improved it when he was 15 and moved with his family to England for a year. Today he speaks it fluently. He also has some abilities in Japanese, a language he picked up while in that country for a junior academic position at a university.

David Saint-Jacques (left) with fellow Canadian astronaut trainee Jeremy Hansen. The two men were selected as astronauts in 2009. Credit: NASA
David Saint-Jacques (left) with fellow Canadian astronaut trainee Jeremy Hansen. The two men were selected as astronauts in 2009. Credit: NASA

Now approaching four years as an astronaut trainee, Saint-Jacques told us how astronauts learn Russian. It’s a process that not only includes classroom instruction, but time living with a family in Moscow to really pick up on colloquialisms. Below is an edited interview.

What language training focuses on: “The point is not to write perfectly. The point is to communicate, similar to how businessmen learn languages. The emphasis for us is understanding spoken language, but the emphasis for us, the vocabulary, is different. I know all these obscure space hardware words and these crazy Russian space acronyms, but I may not know some of the flowers, for example. I can’t know everything.”

Basic Russian training: “We have Russian classes one-on-one with a Russian instructor. We get anything between one lesson every two weeks to three, four lessons a week, depending on how you accommodate the training schedule. Most astronauts want as much training as possible. It’s part of the requirements for basic training; you have to pass a certain competency test in Russian. There is a standard test that is used by the foreign affairs department, and so we do the same test. It’s a verbal test where you call the examiner on the phone and you have a discussion with them on the phone. If you pass a certain grade on that test, you are good to go.”

NEEMO 15 crew members from right to left: Shannon Walker (NASA), Steve Squyres (Cornell University), David Saint-Jacques (Canadian Space Agency), Takuya Onishi (Japanese Space Agency).
NEEMO 15 crew members from right to left: Shannon Walker (NASA), Steve Squyres (Cornell University), David Saint-Jacques (Canadian Space Agency), Takuya Onishi (Japanese Space Agency). Credit: NASA

Living in Russia: “You have to go to Russia at some point to learn the Soyuz spacecraft and the Russian segment of space station. That, of course, is in all in Russian. The training is in Russian and the books are in Russian. There are translators that could be there with you, but you don’t want to rely on an interpreter for class. It really hits home; the more you know, the better. You will be living there for months, and it’s a no-brainer: you have to speak Russian when you are going to Russia.”

Immersion: “I took some holidays there [in Russia] with my family. That’s one of the great things when you speak the language of the country; you have fun there. I try to hang out with any Russian cosmonaut that comes here to Houston to keep up with them. There are two other ways we can train: you can block two to three weeks to do an intensive Russian test where all you want to do [beforehand] is study Russian. Also, when you are assigned to a spaceflight, in the year before your spaceflight, they [NASA] will try to send you for a month and a half in Moscow in a family for total immersion. That makes most people bump up their Russian level quite a lot.”

Side benefits: “It makes you realize how at the end of the day, international relations is really a form of personal relations, and speaking a language is absolutely fundamental. It makes you graduate from having a professional experience to a life experience with the other person, the other country.”

How Do Astronauts on the Space Station Stay in Touch with Earth?

The International Space Station. Credit: NASA

Gemini 8 was in trouble. The spacecraft was spinning rapidly, the astronauts were fighting to stay conscious, and worst of all — they were out of the reach of NASA’s Mission Control.

The astronauts eventually did make contact during that 1966 mission, and splashed down safely. Still, the incident illustrated a weakness of having scattered ground stations staying in touch with orbiting spacecraft. NASA had a large network of stations, including ships and remote satellite dishes, but there were large gaps in coverage.

Today, NASA and Roscosmos (the Russian space agency) have virtually 100% communications contact with orbiting astronauts and cosmonauts in the International Space Station, including video. That’s due to a network of satellites called the Tracking and Data Relay Satellite system. The first of these satellites launched 30 years ago today (April 5) in 1983.

A United Launch Alliance Atlas V 401 rocket streaks away from Space Launch Complex 41 into the night sky over Cape Canaveral Air Force Station in Florida, carrying NASA's Tracking and Data Relay Satellite-K, TDRS-K, to orbit. Credit: NASA/Glenn Benson
A United Launch Alliance Atlas V 401 rocket streaks away from Space Launch Complex 41 into the night sky over Cape Canaveral Air Force Station in Florida, carrying NASA’s Tracking and Data Relay Satellite-K, TDRS-K, to orbit. Credit: NASA/Glenn Benson

TDRS includes seven operational satellites that are in geosynchronous orbit (essentially, in an orbit that keeps them above a fixed location on Earth.) The satellites are designed to serve spacecraft that are orbiting in low Earth orbit, above 45 miles (73 kilometers) in altitude. They’re spaced out to make sure that customers receive coverage throughout the orbit. Operations on the ground consist of two ground terminals located near Las Cruces, New Mexico.

Launching these satellites took years. Although the first satellite was deployed successfully, the second one was destroyed in the Challenger shuttle explosion of 1986. The rest of the first generation of TDRS satellites went into space between 1988 and 1995. Three more advanced satellites then launched between 2000 and 2002.

This means the TDRS fleet is getting pretty old, but luckily, there are fresh replacements on the way. TDRS-K launched in January and is still being tested before assuming operational status. TDRS-L will launch in 2014, and TDRS-M in 2015.

The Man Who Sold The Moon … And Other ‘Lunarcy’

One man claims to own the moon. Another promises to create effective lunar habitats. And yet another, a former astronaut, paints pictures of its surface.

Lunarcy! is a movie that chronicles our obsession with the Moon. It’s currently making the rounds at independent theatres, but before long it will be easy to watch it on cable, or even Netflix and Amazon.

The film chronicles the efforts of half a dozen people working, in their own way, to bring the notion of regular Moon exploration closer to reality. There’s Alan Bean, the Apollo 12 moonwalker who now paints scenes of lunar exploration. Or Dennis Hope, who has staked a claim on the entire Moon and has sold plots to interested homesteaders.

At the story’s center, however, is an ordinary man called Christopher Carson who is convinced he could be the first person to colonize the Moon — if he could only obtain enough money. Director Simon Ennis follows his efforts to get funds and awareness, sprinkling the rest of the movie with other lunar-loving people.

Universe Today caught up with Ennis, who answered our questions by e-mail.

1) What was your aim with filming/presenting Lunarcy?

As with any film, the aim is to make something that is entertaining, informative and moving. Something that can capture people’s imagination in some way.

2) Why is the moon so attractive to the people in you interviewed?

They all had different reasons. Some want to live there, some are inspired by it, for Dennis Hope (the man who owns it), he saw a business opportunity. Others are interested in space exploration in general and the Moon seems the most practical first step. Apollo astronaut Alan Bean has been there, so his attraction should be obvious.

3) One of your greatest challenges must have been trying to present some of the characters — people such as Christopher Carson, who has been ignored in his belief that living on the moon is possible — in a way that helps the audience feel understanding for their cause. How did you try to do that?

I don’t think that was much of a challenge actually. I only included subjects in the film who I felt a very strong affinity for, whose goals, quests or projects were ones that caught my imagination and that I could get behind myself. Considering that I felt understanding for the “cause”, I figured that would naturally come through to the audience.

4) A minor theme in Lunarcy! is presenting the moon as a viable place to do business — selling plots of land or colonizing it, for example. We also have companies that are looking to mine asteroids. But often, these plans meet with ridicule, as Newt Gingrich discovered when he promised a moon base. What, in your view, will it take for off-earth private ventures such as these to succeed?

I think they will ultimately succeed when they become financially viable industries. For that to happen, I suspect that some of the billionaire space enthusiasts (e.g. [SpaceX‘s Elon] Musk, [Virgin Galactic’s Richard Branson, etc) will have to invest their own funds to get various projects going and to show that they’re not only possible but viable. So far SpaceX seems to be doing just this.

5) What else would you like to add?

Lunarcy! will premiere on EPIX on April 3 and will be available on Netflix and Amazon at the beginning of July.

5 Weird Things About Vesta

An impact structure on asteroid Vesta resembling a snowman. Credit: NASA

When Heinrich Wilhelm Olbers first glimpsed Vesta on March 29, 1807 — this date in history — the asteroid was but a small point of light. Asteroid science was very, very new at the time as the first asteroid (Ceres) had been discovered only six years before.

Fast-forward 200-plus years and we can treat Vesta as a little world in its own right. NASA sent the Dawn spacecraft in orbit for about a year, which has produced a wealth of weird results. (Stay tuned for what happens at Dawn’s next port of call: Ceres.)

Below are five strange things we’ve discovered about Vesta:

1) Vesta has a fresh face.

This image from NASA’s Dawn spacecraft shows a close up of part of the rim around the crater Canuleia on the giant asteroid Vesta. Canuleia, about 6 miles (10 kilometers) in diameter, is the large crater at the bottom-left of this image. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/PSI/Brown
This image from NASA’s Dawn spacecraft shows a close up of part of the rim around the crater Canuleia on the giant asteroid Vesta. Canuleia, about 6 miles (10 kilometers) in diameter, is the large crater at the bottom-left of this image. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/PSI/Brown

Space “weathering” from tiny particles hitting the Moon has shaped the surface over time. Not so much on Vesta. It turns out the topography on the asteroid (and other factors) allow constant mixing of the surface, making it appear almost new even though the asteroid is several billion years old. “Vesta ‘dirt’ is very clean, well mixed and highly mobile,” said Carle Pieters, one of the lead authors and a Dawn team member based at Brown University, Providence, R.I. when the finding was made public.

2) Vesta might have stretch marks.

Dawn image of Vesta showing its nearly circumferential equatorial grooves (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)
Dawn image of Vesta showing its nearly circumferential equatorial grooves (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

While trying to wrap their mind around fault lines that circle Vesta’s equator, a group of scientists proposed these could be graban — features that show surface expansion. It’s possible these faults came to be after something big smashed into the planet, creating a gigantic crater with a peak that is almost three times as high as Mt. Everest. The expansion occurred as Vesta’s interior differentiated, or experienced a separation of its core, mantle and crust.

3) Vesta kind of looks like a planet.

'Rainbow-Colored Palette' of Southern Hemisphere of Asteroid Vesta from NASA Dawn Orbiter. This mosaic using color data obtained by the framing camera aboard NASA's Dawn spacecraft shows Vesta's southern hemisphere in false color, centered on the Rheasilvia impact basin, about 290 miles (467 kilometers) in diameter with a central mound reaching about 14 miles (23 kilometers) high. The black hole in the middle is data that have been omitted due to the angle between the sun, Vesta and the spacecraft.  The green areas suggest the presence of the iron-rich mineral pyroxene or large-sized particles. This mosaic was assembled using images obtained during Dawn's approach to Vesta, at a resolution of 480 meters per pixel. The German Aerospace Center and the Max Planck Institute for Solar System Research provided the Framing Camera instrument and funding as international partners on the mission team.  Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
‘Rainbow-Colored Palette’ of Southern Hemisphere of Asteroid Vesta from NASA Dawn Orbiter. This mosaic using color data obtained by the framing camera aboard NASA’s Dawn spacecraft shows Vesta’s southern hemisphere in false color, centered on the Rheasilvia impact basin, about 290 miles (467 kilometers) in diameter with a central mound reaching about 14 miles (23 kilometers) high. The black hole in the middle is data that have been omitted due to the angle between the sun, Vesta and the spacecraft. The green areas suggest the presence of the iron-rich mineral pyroxene or large-sized particles. This mosaic was assembled using images obtained during Dawn’s approach to Vesta, at a resolution of 480 meters per pixel. The German Aerospace Center and the Max Planck Institute for Solar System Research provided the Framing Camera instrument and funding as international partners on the mission team. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Looking at Vesta in false color — wavelengths that let different kinds of minerals shine — show a veritable cornucopia of different types of stuff.  There’s the iron-rich mineral pyroxene, there’s diagenite material (characteristic of stony meteorites), and various particles of different sizes and ages. “Vesta is a transitional body between a small asteroid and a planet and is unique in many ways,” said mission scientist Vishnu Reddy of the Max Planck Institute for Solar System Research in Katlenburg-Lindau, Germany. “We do not know why Vesta is so special.”

4) Vesta has hydrogen.

Hydrated minerals are circling the equator of the little world. It’s not quite water, but still an interesting find for scientists. “The source of the hydrogen within Vesta’s surface appears to be hydrated minerals delivered by carbon-rich space rocks that collided with Vesta at speeds slow enough to preserve their volatile content,” stated Thomas Prettyman, lead scientist for Dawn’s gamma ray and neutron detector (GRaND) from the Planetary Science Institute.

5) The northern and southern hemispheres look completely different.

Shaded-relief topographic map of Vesta southern hemisphere showing two large impact basins - Rheasilvia and Older Basin. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Shaded-relief topographic map of Vesta southern hemisphere showing two large impact basins – Rheasilvia and Older Basin.
Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

It’s fun to get to a new world and end up with something fundamentally surprising. Some of the very first pictures of Vesta showed a vast difference between different regions of the planet, giving scientists a workout in terms of figuring out how that came to be. “The northern hemisphere is older and heavily cratered in contrast to the brighter southern hemisphere where the texture is more smooth and there are lots of sets of grooves. There is a massive mountain at the South Pole. One of the more surprising aspects is the set of deep equatorial troughs,” said Carol Raymond, Dawn deputy principal investigator, of NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

Here’s a video where you can see that for yourself:

Chris Hadfield’s Top 5 Videos from Space

Chris Hadfield all dressed up for another day in space. Credit: Chris Hadfield (Twitter)

Chris Hadfield — the ever-tweeting, always charming Canadian running the space station these days — has had an eventful few months in space. If he’s not chatting with Captain Kirk, he’s playing guitar or, as it turns out, making very watchable videos.

Being on television requires a certain flair. You need to talk in sound bites, cultivate a charismatic presence, and keep the action moving enough so people don’t flip the channel. For an astronaut, who usually works methodically, carefully and slowly, working on television must be fully alien (pun intended) to how one does the technical parts of the job.

But Hadfield — who knows how to study a situation and make the most of it — has created videos with hundreds of thousands of views on YouTube. Whatever he’s doing is working.

Universe Today checked up on Hadfield’s secrets to success by watching the most popular videos in a playlist curated by the Canadian Space Agency. Here are the top five. Strangely, the last one doesn’t even include Hadfield’s face or voice.

5) Chris Hadfield Talks with the Queen’s Representative in Canada

If you’re all about cute questions from kids, or enjoy a brush with royalty, this lengthy press conference with Hadfield is very interesting. This is a bit of a marathon charm session on Hadfield’s part, but he pulls it off with his charismatic aplomb. One of the best answers demonstrates what he’s learned about weightless life: “I can fly. I can go in different directions,” Hadfield says enthusiastically, spinning before the camera.

4) Chris Hadfield Demonstrates How Astronauts Wash Their Hands in Zero G

For a question that came out of a routine Q&A with kids, Hadfield’s performance is pretty good. He demonstrates that soapy water looks like some sort of Teenage Mutant Ninja Turtles-like ooze in space, and compares life on the space station to life on a sailboat, all while simply washing his hands. It’s almost existential.

3) Nail Clipping in Space

It turns out that Hadfield chooses to cut his nails because long ones interfere with his guitar playing. We wouldn’t want that to happen (and neither would the Barenaked Ladies), so fortunately Hadfield gets right on the problem, positions himself over an air vent and trims them with an ordinary nail clipper. Charmingly, this was not fully scripted, as he makes a mistake with the first clipping.

2) Chris Hadfield’s Space Kitchen (aka how to make a peanut butter sandwich in space)

With words you’d never hear on Martha Stewart — “We’ve got one tortilla. Oh, got away!” — Hadfield slathers condiments on to a tortilla and eats it. His sense of humor helps break up a very routine act; we’d be scared to be one of his kids after seeing the stern way in which he says, “Disinfectant wipe!”

1) Mixed Nuts in Space

This video is oddly mesmerizing, and that’s not just because of the UFO-type music near the beginning. It’s quite a simple setup: Hadfield shoots a bunch of nuts floating around inside of a can. But face it, it looks awfully weird for those of us used to grabbing similar packages off the kitchen shelf. Maybe that’s why this video has more than 4 million views.

5 Mercury Secrets Revealed by MESSENGER

Artist's concept of MESSENGER in orbit around Mercury. Courtesy of NASA
Artist's concept of MESSENGER in orbit around Mercury. Courtesy of NASA

After two years of doing the loop-the-loop around Mercury, MESSENGER has unveiled a bunch of surprises from Mercury — the closest planet to the Sun.

The spacecraft launched in 2004 and made three flybys of the planet before settling into orbit two years ago today. Incredibly, MESSENGER is only the second NASA probe to visit Mercury; the first one, Mariner 10, only flew by a few times in the 1970s. It was an incredible feat for the time, but we didn’t even have a complete map of Mercury before MESSENGER arrived at the planet.

So, what have scientists found in MESSENGER’s two years in orbit? Tales of sulfur, organic materials and iron, it turns out.

Mercury’s south pole has a weak spot

Magnetic field lines differ at Mercury's north and south poles As a result of the north-south asymmetry in Mercury's internal magnetic field, the geometry of magnetic field lines is different in Mercury's north and south polar regions. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Magnetic field lines differ at Mercury’s north and south poles As a result of the north-south asymmetry in Mercury’s internal magnetic field, the geometry of magnetic field lines is different in Mercury’s north and south polar regions. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

The magnetic field lines converge differently at the north and south poles of Mercury. What does this mean? There’s a larger “hole” at the south pole for charged particles to do their thing to the surface of Mercury. At the time this information was released, NASA said it’s possible that space weathering or erosion would be different at the north and south poles because of this. Charged particles on the surface would also add to Mercury’s wispy atmosphere.

How the atmosphere changes according to distance from the sun

Comparison of neutral sodium observed during MESSENGER’s second and third Mercury flybys
Comparison of neutral sodium observed during MESSENGER’s second and third Mercury flybys. Credit: NASA

Wondering about the atmosphere on Mercury? It depends on the season, and also the element. The scientists found striking changes in calcium, magnesium and sodium when the planet was closer to and further from the sun.

“A striking illustration of what we call ‘seasonal’ effects in Mercury’s exosphere is that the neutral sodium tail, so prominent in the first two flybys, is 10 to 20 times less intense in emission and significantly reduced in extent,” said participating scientist Ron Vervack, of the Johns Hopkins University Applied Physics Laboratory in 2009. “This difference is related to expected variations in solar radiation pressure as Mercury moves in its orbit and demonstrates why Mercury’s exosphere is one of the most dynamic in the solar system.”

Discovery of water ice and organics

A radar image of Mercury’s north polar region is shown superposed on a mosaic of MESSENGER images of the same area. All of the larger polar deposits are located on the floors or walls of impact craters. Deposits farther from the pole are seen to be concentrated on the north-facing sides of craters. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/National Astronomy and Ionosphere Center, Arecibo Observatory
A radar image of Mercury’s north polar region is shown superposed on a mosaic of MESSENGER images of the same area. All of the larger polar deposits are located on the floors or walls of impact craters. Deposits farther from the pole are seen to be concentrated on the north-facing sides of craters. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/National Astronomy and Ionosphere Center, Arecibo Observatory

Late in 2012, NASA finally was able to corroborate some science results from about 20 years ago. Scientists on Earth saw “radar bright” images from Mercury in the 1990s, implying that there was ice and organic materials at the poles. MESSENGER finally confirmed that through three separate lines of investigation that were published in Science in 2012. Scientists estimated the planet holds between 100 billion and 1 trillion tons of water ice, perhaps as deep as 20 meters in some places. “Water ice passed three challenging tests and we know of no other compound that matches the characteristics we have measured with the MESSENGER spacecraft,” said MESSENGER principal investigator Sean Solomon in a NASA briefing.

Mercury has a big iron core

The internal structure of Mercury is very different from that of the Earth. The core is a much larger part of the whole planet in Mercury and it also has a solid iron-sulfur cover. As a result, the mantle and crust on Mercury are much thinner than on the Earth.  Credit: Case Western Reserve University
The internal structure of Mercury is very different from that of the Earth. The core is a much larger part of the whole planet in Mercury and it also has a solid iron-sulfur cover. As a result, the mantle and crust on Mercury are much thinner than on the Earth.
Credit: Case Western Reserve University

While scientists knew before that Mercury has an iron core, the sheer size of it surprised scientists. At 85%, the proportion of the core to the rest of the planet dwarfs its rocky solar system companions. Further, scientists measured Mercury’s gravity. From that, they were surprised to see that the planet had a partially liquid core. “The planet is sufficiently small that at one time many scientists thought the interior should have cooled to the point that the core would be solid,” stated Case Western Reserve University’s Steven A. Hauck II, a co-author of a paper on the topic that appeared in Science Express.

The surface is sulfur-rich

A global view of Mercury, as seen by MESSENGER. Credit: NASA
A global view of Mercury, as seen by MESSENGER. Credit: NASA

At some point in Mercury’s history, it’s possible that it could have had lavas erupt and sprinkle the surface with sulfur, magnesium and similar materials. At any rate, what is known for sure is there is quite a bit of sulfur on Mercury’s surface. “None of the other terrestrial planets have such high levels of sulfur. We are seeing about ten times the amount of sulfur than on Earth and Mars,” said paper author Shoshana Weider of the Carnegie Institution of Washington.