Key Step in Evolution Replicated by Scientists – With Yeast

Sacharomyces cerevisiae yeast cells. Credit: Wikimedia Commons

[/caption]

One of the great puzzles in science has been the evolution of single-celled organisms into the incredibly wide variety of flora and fauna that we see today. How did Earth make the transition from an initially lifeless ball of rock to one populated only by single-celled organisms to a world teeming with more complex life?

As scientists understand it, single-celled organisms first began evolving into more complex forms more than 500 million years ago, as they began to form multi-cellular clusters. What isn’t understood is just how that process happened. But now, biologists are another step closer figuring out this puzzle, by successfully replicating this key step – using an ingredient common in the making of bread and beer – ordinary Brewer’s yeast (Saccharomyces cerevisiae). While helping to solve evolutionary riddles here on Earth, it also by extension has bearing on the question of biological evolution on other planets or moons as well.

The results were published in last week’s issue of the Journal Proceedings of the National Academy of Sciences (PNAS).

Yeasts are a microscopic form of fungi; they are uni-cellular but can become multi-cellular through the formation of a string of connected budding cells, like in molds. The experiments were based on this fact, and were surprisingly simple, they just hadn’t been done before, according to Will Ratcliff, a scientist at the University of Minnesota (UMN) and a co-author of the paper. “I don’t think anyone had ever tried it before,” he said, adding: “There aren’t many scientists doing experimental evolution, and they’re trying to answer questions about evolution, not recreate it.”

Sam Scheiner, program director in NSF’s Division of Environmental Biology, also adds: “To understand why the world is full of plants and animals, including humans, we need to know how one-celled organisms made the switch to living as a group, as multi-celled organisms. This study is the first to experimentally observe that transition, providing a look at an event that took place hundreds of millions of years ago.”

It’s been thought that the step toward multi-cellular complexity was a difficult one, an evolutionary hurdle that would be very hard to overcome. The new research however, suggests it may not be that difficult after all.

It took the first experiment only 60 days to produce results. The yeast was first added to a nutrient-rich culture, then the cells were allowed to grow for one day. They were then stratified by weight using a centrifuge. Clusters of yeast cells landed on the bottom of the test tubes. The process was then repeated, taking the cell clusters and re-adding them to fresh cultures. After sixty cycles of this, the cell clusters started to look like spherical snowflakes, composed of hundreds of cells.

The most significant finding was that the cells were not just clustering and sticking together randomly; the clusters were composed of cells that were genetically related to each other and remained attached after cell division. When clusters reached “critical mass,” some cells died, a process known as apoptosis, which allows the offspring to separate.

This then, simply put, is the process toward multi-cellular life. As described by Ratcliff, “A cluster alone isn’t multi-cellular. But when cells in a cluster cooperate, make sacrifices for the common good, and adapt to change, that’s an evolutionary transition to multi-cellularity.”

So next time you are baking bread or brewing your own beer, consider the fact that those lowly little yeast cells hold a lot more importance than just a useful role in your kitchen – they are also helping to solve some of the biggest mysteries of how life started, both here and perhaps elsewhere.

New NASA Gallery of Restored 1960s Project Gemini Photos

Credit: NASA / JSC / Arizona State University

[/caption]

NASA has published a new online gallery of beautifully restored photographs from the historic Project Gemini of the 1960s, the second U.S. manned spaceflight program. The digitally remastered photos have been scanned from the original film, showing highlights of Project Gemini in beautifully enhanced colour and detail.

Project Gemini followed the initial Project Mercury program and was the predecessor for the ambitious Apollo missions to the Moon, with ten crewed flights from 1965-1966. It used a two-man spacecraft and tested new technologies and procedures for the later Apollo missions such as precision atmospheric reentry, Extra Vehicular Activity (spacewalking), fuel cells to generate electricity and water, perfect the rendezvous and docking process between two spacecraft, new techniques for propelling and maneuvering two docked spacecraft and long-term human spaceflight.

It featured the first spacewalk, the first rendezvous between two Gemini spacecraft, the first docking between a manned and unmanned vehicle, the first maneuver to change orbit and the first onboard computer.

Gemini VII's rendezvous with Gemini VI. Credit: NASA / JSC / Arizona State University

The photo gallery is part of the March to the Moon website archive, which also has restored photo galleries from the Mercury missions as well as background information on the missions, Quicktime video clips and links to additional resources.

Titan’s Layered Atmosphere is Surprisingly Earth-Like

Titan's thick, smog-like upper atmosphere obscures our view of the lower atmosphere and surface. The much smaller moon Enceladus is also seen in this image. Credit: NASA/JPL

[/caption]

Titan, the largest moon of Saturn, is in some ways the most Earth-like world in the solar system, with a thick nitrogen atmosphere, rain, rivers, lakes and seas. Albeit it is much colder, and liquid methane/ethane takes the place of water, but the hydrological processes are quite similar to those here. There may, however, also be a liquid water-ammonia ocean below the surface. Now, new research suggests that Titan is Earth-like in another way as well, with a layered lower atmosphere similar to ours.

It’s been long known that Titan has a dense atmosphere; you can’t even see the surface due to a thick smog-like upper haze composed of hydrocarbons. As it turns out, the lower atmosphere has two distinct layers; the lowest layer, like on Earth, is known as the boundary layer, which has the most influence on climate and weather.

There has been a lot of uncertainty about the nature of Titan’s lower atmosphere, so scientists developed a 3-D climate model to try to answer those questions – previous data from Voyager 1, Cassini and Huygens had led to conflicting results. This was largely due to the fact that the lower atmosphere can’t be observed directly because of the opaque upper atmosphere. The new climate model shows that there are two lower layers which are distinct from each other as well as from the upper atmosphere. The lowest boundary layer is about 800 metres (2,600 feet) thick while the next layer is about 2 kilometers (1.2 miles) deep.

According to Paulo Penteado from the Institute of Astronomy, Geophysics and Atmospheric Science at the University of São Paulo in Brazil, “The most interesting point is that their model shows the presence of two different boundaries, the lower one caused by the daily heating and cooling of the surface – and varying in height during the day – and the higher one caused by the seasonal change in global air circulation.”

Benjamin Charnay from the French National Centre for Scientific Research (CNRS) in Paris and lead author of the study, adds: “This unprecedented organisation of the boundary layer has several consequences. It controls the atmospheric circulation and wind patterns in the lower atmosphere; it controls the size and spacing of dunes on Titan; it could imply the formation of boundary layer clouds (of methane on Titan). Such clouds seem to have been observed but not explained.”

These differences are surprising, since Titan receives far less solar energy from the Sun than Earth does. This solar insulation, which determines temperature variations in the atmosphere, is 1,000 times weaker on Titan than on Earth. Such a dynamic atmosphere on Titan was unexpected, but it may hold clues as to the formation of our own atmosphere. This could also be extrapolated to exoplanets; if a smaller world so far from the Sun can have unanticipated Earth-like conditions, how many exoplanets, now being discovered by the thousands, could as well?

The findings were published in the January 15, 2012 issue of Nature Geoscience.

From the abstract:

“We conclude that Titan’s troposphere is well structured, featuring two boundary layers that control wind patterns, dune spacing and cloud formation at low altitudes.”

The abstract and article are here. The full article is available for $18.00 US or by subscription to Nature Geoscience.

Citizen Scientist Project Finds Thousands of ‘Star Bubbles’

A prominent star bubble. Credit: NASA / The Milky Way Project / Zooniverse

[/caption]

Remember when you were a kid and blowing bubbles was such great fun? Well, stars kind of do that too. The “bubbles” are partial or complete rings of dust and gas that occur around young stars in active star-forming regions, known as stellar nurseries. So far, over 5,000 bubbles have been found, but there are many more out there awaiting discovery. Now there is a project that you can take part in yourself, to help find more of these intriguing objects.

The Milky Way Project, part of Zooniverse, has been cataloguing these cosmic bubbles thanks to assistance from the public, or “citizen scientists” – anyone can help by examining images from the Spitzer Space Telescope, specifically the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) and the Multiband Imaging Photometer for Spitzer Galactic Plane Survey (MIPSGAL).

They have been seen before, but now the task is to find as many as possible in the newer, high-resolution images from Spitzer. A previous catalogue of star bubbles in 2007 listed 269 of them. Four other researchers had found about 600 of them in 2006. Now they are being found by the thousands. As of now, the new catalogue lists 5,106 bubbles, after looking at almost half a million images so far. As it turns out, humans are more skilled at identifying them in the images than a computer algorithm would be. People are better at pattern recognition and then making a judgment based on the data as to what actually is a bubble and what isn’t.

The bubbles form around hot, young massive stars where it is thought that the intense light being emitted causes a shock wave, blowing out a space, or bubble, in the surrounding gas and dust.

Eli Bressert, of the European Southern Observatory and Milky Way Project team member, stated that our galaxy “is basically like champagne, there are so many bubbles.” He adds, “We thought we were going to be able to answer a lot of questions, but it’s going to be bringing us way more questions than answers right now. This is really starting something new in astronomy that we haven’t been able to do.”

There are currently about 35,000 volunteers in the project; if you would like to take part, you can go to The Milky Way Project for more information.

Tatooine the Sequel: Kepler Finds Two More Exoplanets Orbiting Binary Stars

Artist's conception of the Kepler-35 system. Lynette Cook / extrasolar.spaceart.org

[/caption]

For exoplanet fans, this week has been an exciting one, with some amazing new discoveries being announced at the American Astronomical Society meeting in Austin, Texas – our galaxy is brimming with planets, probably billions, and the smallest known planets have been found (again), with one about the size of Mars. But that’s not all; it was also announced that Kepler has found not one but two more planets orbiting binary stars!

The two star systems are Kepler-34 and Kepler-35; they consist of double stars which orbit each other and are about 4,900 and 5,400 light-years from Earth. The two new planets, Kepler-34b and Kepler-35b, each orbit one of these pairs of stars and are both about the size of Saturn. Since they orbit fairly close to their stars, they are not in the habitable zones; Kepler 34-b completes an orbit in 289 days and Kepler-35b in 131 days. It’s more the fact that they orbit double stars that makes them so interesting.

This is now the third planet found in a binary star system. The first, Kepler-16b, was nicknamed Tatooine as it was reminiscent of the world orbiting two suns in the Star Wars films. Until recently, it was unknown if any such star systems had planetary companions. It was considered possible, although unlikely, and remained only a theory. But now, the view is that there may indeed be a lot of them out there, just as planets are now apparently common around single stars. That’s good news for planet-hunters, as most stars in our galaxy are binaries.

According to William Welsh of San Diego State University who participated in the study, “This work further establishes that such ‘two sun’ planets are not rare exceptions, but may in fact be common, with many millions existing in our galaxy. This discovery broadens the hunting ground for systems that could support life.”

Eric B. Ford, associate professor of astronomy at the University of Florida, stated: “We have long believed these kinds of planets to be possible, but they have been very difficult to detect for various technical reasons. With the discoveries of Kepler-16b, 34b and 35b, the Kepler mission has shown that the galaxy abounds with millions of planets orbiting two stars.”

The hope now is that Kepler will continue until 2016 to be able to further refine its findings so far. That will require a mission extension, but scientists involved are optimistic they will get it.

According to Ford, “Astronomers are practically begging NASA to extend the Kepler mission until 2016, so it can characterize the masses and orbits of Earth-size planets in the habitable zone. Kepler is revolutionizing so many fields, not just planetary science. It would be a shame not to maximize the scientific return of this great observatory. Hopefully common sense will prevail and the mission will continue.”

Yes, indeed.

The study was published January 11, 2012 in the journal Nature (payment or subscription required for access to full article).

See also PhysOrg.com for a good overview of the new findings.

100 Year Starship Project Has a New Leader

Mae Jemison. Credit: NASA

[/caption]

You may have heard by now about the 100 Year Starship project, a new research initiative to develop the technology required to send a manned mission to another star. The project is jointly sponsored by NASA and the Defense Advanced Research Projects Agency (DARPA). It will take that long just to make such a trip feasible, hence the name. So we’re a long ways off from naming any crew members or a starship captain, but the project itself does have a new leader, a former astronaut.

Mae Jemison, a former Space Shuttle astronaut, has been appointed the position by DARPA. She was also the first African-American woman to go into space, in 1992. Her own non-profit educational organization, the Dorothy Jemison Foundation for Excellence (in honor of her late mother) was chosen to work with DARPA, receiving a $500,000 contract. That funding is just seed money, to start the process of developing the framework needed for such an ambitious undertaking. The focus at this point is to create a foundation that can last long enough to research the technology required, rather than the actual government-funded building of the spacecraft.

As stated by the proposal, the goal is to “develop a viable and sustainable non-governmental organization for persistent, long-term, private-sector investment into the myriad of disciplines needed to make long-distance space travel viable.”

From the project’s mission statement:

The 100 Year Starship™ (100YSS™) study is an effort seeded by DARPA to develop a viable and sustainable model for persistent, long-term, private-sector investment into the myriad of disciplines needed to make long-distance space travel practicable and feasible.

The genesis of this study is to foster a rebirth of a sense of wonder among students, academia, industry, researchers and the general population to consider “why not” and to encourage them to tackle whole new classes of research and development related to all the issues surrounding long duration, long distance spaceflight.
DARPA contends that the useful, unanticipated consequences of such research will have benefit to the Department of Defense and to NASA, as well as the private and commercial sector.
This endeavor will require an understanding of questions such as: how do organizations evolve and maintain focus and momentum for 100 years or more; what models have supported long-term technology development; what resources and financial structures have initiated and sustained prior settlements of “new worlds?”

With today’s technology, it would take about 100,000 years to reach just the nearest star, Alpha Centauri. That time would hopefully be reduced significantly with the development of new, faster propulsion methods.

The dream of travelling to the stars may still be a long ways off in the future before becoming reality, but we are getting closer. Ad astra!

More information about the 100 Year Starship project is here.

The Next Generation of Robotic Space Explorers – Powered by Bacteria!

Illustration of how a tiny robotic explorer could use bacteria. Credit: NASA/Naval Research Laboratory

[/caption]

As technology advances, a lot of the gadgets and other things we use keep getting smaller, lighter and thinner. Now that trend may soon be taken to another extreme – small robotic space explorers which in turn use a miniscule power source – bacteria.

It may sound like science fiction, or just odd even, but that is the idea behind a new proposal by NASA for an alternative to the solar and nuclear powered missions common today. The bacteria could provide a long-lived energy source which could sustain a tiny robotic probe; the amount of energy generated would also be small however, not enough to power larger probes like the Mars rovers for example. The microbial fuels cells could last a long time however, as long as the bacteria themselves had an adequate food supply.

The microbe being considered for the project is Geobacter sulfurreducens, which does not require oxygen for its survival.

Electron microscope image of Geobacter sulfurreducens, the microbe to be used in the new fuel system. Credit: Naval Research Laboratory

A research team at the Naval Research Laboratory would like to have a working prototype of just such a robot within the next ten years that would weigh about 2 pounds (1 kilogram). There are technological hurdles, as with any new mission concept, to be overcome which will take several years.

Another major concern however, is the problem of contamination. Planetary probes, especially ones going to Mars, have been sterilized before launch according to a long-standing protocol, to minimize the introduction of earthly bacteria to the alien environments. So what would happen if a bacteria-powered probe was sent? It seems counter-productive then to deliberately send microbes which not only hitch a ride but are actually the fuel.

According to Gregory Scott at NSL: “There are planetary protection concerns, as well as concerns about protecting the microbes themselves from radiation. Sometime down the road we also have to consider whether the microbes we’re looking at are most effective for radiation environments or extreme temperatures.”

Any bacteria-based fuel system would have to take the contamination issue into account and be developed so as to try to minimize the chances of accidental leakage, especially in a place like Mars, where such organisms would have a decent chance at survival.

The concept is an innovative and exciting one, if the various technological and environmental concerns can be addressed. If so, our tiny friends may help to open a new chapter in space exploration.

Scott continues: “As we move forward in the utilisation of MFCs as an energy generation method, this research begins to lay the groundwork for low powered electronics with a long-term potential for space and robotic applications,” says Scott. Microbial fuel cells coupled with extremely low-power electronics and a low energy requirement for mobility addresses gaps in power technology applicable to all robotic systems, especially planetary robotics.”

Analysis of the First Kepler SETI Observations

Example of signals KOI 817 and KOI 812. Credit: The Search for Extra Terrestrial Intelligence at UC Berkeley

[/caption]

As the Kepler space telescope begins finding its first Earth-sized exoplanets, with the ultimate goal of finding ones that are actually Earth-like, it would seem natural that the SETI (Search for Extraterrestrial Intelligence) program would take a look at them as well, in the continuing search for alien radio signals. That is exactly what SETI scientists are doing, and they’ve started releasing some of their preliminary results.

They are processing the data taken by Kepler since early 2011; some interesting signals have been found (a candidate signal is referred to as a Kepler Object of Interest or KOI), but as they are quick to point out, these signals so far can all be explained by terrestrial interference. If a single signal comes from multiple positions in the sky, as these ones do, it is most likely to be interference.

They do, however, also share characteristics which would be expected of alien artificial signals.

A couple of examples are from KOI 817 and KOI 812. They are of a very narrow frequency, as would be expected from a signal of artificial origin. They also change in frequency over time, due to the doppler effect – the motion of the alien signal source relative to the radio telescope on Earth. If a signal is found with these characteristics but also does not appear to be just interference, that would be a good candidate for an actual artificial signal of extraterrestrial origin.

These are only the results of the first observations and many more will come during the next weeks and months.

Looking for signals has always been like looking for a needle in the cosmic haystack; until now we were searching pretty much blind, starting even before we knew if there were any other planets out there or not. What if our solar system was the only one? Now we know that it is only one of many, with new estimates of billions of planets in our galaxy alone, based on early Kepler data. Plus the fact that the majority of those are thought to be smaller, rocky worlds like Earth, Mars, etc. How many of them are actually habitable is still an open question, but finding them narrows down the search, providing more probable actual targets to turn the radio telescopes toward instead of just trying to search billions of stars overall.

All twelve signal examples so far can be downloaded here (PDF).

Four New Exoplanets to Start Off the New Year!

Artist's conception of a gas giant orbiting close to its star. Credit: NASA/JPL-Caltech/T. Pyle (SSC)

[/caption]

It’s only a few days into 2012 and already some new exoplanet discoveries have been announced. As 2011 ended, there were a total of 716 confirmed exoplanets and 2,326 planetary candidates, found by both orbiting space telescopes like Kepler and ground-based observatories. The pace of new discoveries has accelerated enormously in the past few years. Now there are four more confirmed exoplanets to add to the list.

The four planets, HAT-P-34b, HAT-P-35b, HAT-P-36b, HAT-P-37b all have very tight orbits around their (four different) stars, taking only 5.5, 3.6, 1.3 and 2.8 days to complete an orbit. Compare that to Mercury, which takes 87.969 days and 365 days of course for Earth.

They were found by astronomers with the Harvard-Smithsonian Center for Astrophysics which operates a network of ground-based telescopes known as the HATNet project. The first exoplanet discovery by HATNet, the planet HAT-P-1b, was in 2006.

They are all “hot jupiter” type planets, gas giants which orbit very close to their stars and so are much hotter than Earth, like Mercury in our own solar system. Mercury though, of course, is a small rocky world, but in some alien solar systems, gas giants have been found orbiting just as close to their stars, or even closer, than Mercury does here. HAT-P-34b however, may have an “outer component” and is in a very elongated orbit. The other three are more typical hot Jupiters. They were discovered using the transit method, when a planet is aligned in its orbit so that it passes in front of its star, from our viewpoint.

So what does this mean? If exoplanet discoveries continue to grow exponentially as expected, then 2012 should be a good year, not only for yet more new planets being found, but also for our understanding of these alien worlds and how such a wide variety of solar systems came to be. We’ve come a long way from 1992 and the first exoplanet discoveries and things promise to only get more exciting in the future.

If you want to get your exoplanet news quickly this year, I recommend the Exoplanet App for iPhone, iPad and iPod Touch. You can also follow @ExoplanetApp on Twitter.

The abstract and paper are here.

‘Impossible’ Crystals May Have Come From Space

Credit: Paul Steinhardt, Princeton University

[/caption]

A unique type of crystal appears to have its origins in meteorites, according to a new study. Quasicrystals are an unusual type of crystalline structure that were initially thought to have only occurred in artificial conditions in labs, and impossible in nature, until they were found by geologists in the Koryak mountains in Russia in 2009. Their origin was unknown, but now new evidence indicates that they most likely came from space in meteorites, dating back to the early stages of the formation of the solar system.

Regular crystals, such as diamonds, snowflakes and salt, are symmetrical, ordered and repeating geometrical arrangements of atoms that extend in all three spatial dimensions (at both microscopic and macroscopic scales); they are commonly found in different types of rock. Quasicrystals are different however, with variations from the standard structure and composition.

When the newly found quasicrystals were studied, they were found to be composed primarily of copper and aluminum, similar to carbonaceous meteorites. The clincher came when the isotope measurements (ratios of oxygen atoms) indicated an extraterrestrial origin.

From the paper:

“Our evidence indicates that quasicrystals can form naturally under astrophysical conditions and remain stable over cosmic timescales.”

“The rock sample was first identified for study as a result of a decade-long systematic search for a natural quasicrystal (4). Quasicrystals are solids whose atomic arrangement exhibits quasi-periodic rather than periodic translational order and rotational symmetries that are impossible for ordinary crystals (5) such as fivefold symmetry in two-dimensions and icosahedral symmetry in three-dimensions. Until recently, the only known examples were synthetic materials produced by melting precise ratios of selected elemental components and quenching under controlled conditions (6–8). The search consisted of applying a set of metrics for recognizing quasicrystals to a database of powder diffraction data (4) and examining minerals outside the database with elemental compositions related to those of known synthetic quasicrystals.”

“What is clear, however, is that this meteoritic fragment is not ordinary. Resolving the remarkable puzzles posed by this sample will not only further clarify the origin of the quasicrystal phase but also shed light on previously unobserved early solar system processes. Fitting all these clues together in a consistent theory of formation and evolution of the meteorite is the subject of an ongoing investigation.”

The report has been published in the January 2 issue of Proceedings of the National Academy of Science. The article (PDF) is here. More detailed information about quasicrystals is also available here and here.