Planet Formation Doesn’t Have to be a Rush job After all

Astronomers believe that it can take 10 million years or more to build a planet like the Earth. But studies of protoplanetary disks show that they can only last 1 to 3 million years. How can planet formation finish if the material its made from disappears so quickly? A team of astronomers have proposed a solution: it’s a simple matter of bias in our observations.

Continue reading “Planet Formation Doesn’t Have to be a Rush job After all”

Uncontrolled Rocket Reentries are a Bigger Problem Than you Think

Artist's impression of an Electron first stage re-entering the atmosphere. Credit: rocketlabusa.com

Over 60% of the launches in 2020 resulted in one or more rocket parts making an uncontrolled reentry into the atmosphere. While thankfully no one was hurt by that debris, with the expected rise in rocket launches over the coming decade the chances of a casualty are increasing. A new study paints the picture of how current methods of assessing risk are inadequate and new steps need to be taken.

Continue reading “Uncontrolled Rocket Reentries are a Bigger Problem Than you Think”

The First cry From a Brand new Baby Star

With its helical appearance resembling a snail’s shell, this reflection nebula seems to spiral out from a luminous central star in this new NASA/ESA Hubble Space Telescope image. The star in the centre, known as V1331 Cyg and located in the dark cloud LDN 981 — or, more commonly, Lynds 981 — had previously been defined as a T Tauri star. A T Tauri is a young star — or Young Stellar Object — that is starting to contract to become a main sequence star similar to the Sun. What makes V1331Cyg special is the fact that we look almost exactly at one of its poles. Usually, the view of a young star is obscured by the dust from the circumstellar disc and the envelope that surround it. However, with V1331Cyg we are actually looking in the exact direction of a jet driven by the star that is clearing the dust and giving us this magnificent view. This view provides an almost undisturbed view of the star and its immediate surroundings allowing astronomers to study it in greater detail and look for features that might suggest the formation of a verylow-mass object in the outer circumstellar disc.

The early universe was a much different place than our own, and astronomers do not fully understand how baby stars grew up in that environment. And while instruments like the James Webb Space Telescope will pierce back into the earliest epochs of star formation, we don’t always have to work so hard – there may be clues closer to home.

Continue reading “The First cry From a Brand new Baby Star”

The History of the Sun is Written on the Moon

A 300 megapixel photo of our Sun, taken by using a specially modified telescope, compiling over 150,000 individual images. Credit and copyright: Andrew McCarthy.

If you want to learn about the history of the Sun, then look no further than the Moon. That’s the recommendation of a team of scientists who hope to harness future Artemis lunar missions to help understand the life history of our home star.

Continue reading “The History of the Sun is Written on the Moon”

Galactic Superwinds From Supernovae and Newly-Forming Stars Shape a Galaxy’s Early Development

This illustration shows a messy, chaotic galaxy undergoing bursts of star formation. This star formation is intense; it was known that it affects its host galaxy, but this new research shows it has an even greater effect than first thought. The winds created by these star formation processes stream out of the galaxy, ionising gas at distances of up to 650 000 light-years from the galactic centre. Credit: ESA, NASA, L. Calçada

Astronomers have long believed that supernovae and stellar winds drive outflows from galaxies known as superwinds. New research suggests that they may instead be due to a ring of nuclear fire.

Continue reading “Galactic Superwinds From Supernovae and Newly-Forming Stars Shape a Galaxy’s Early Development”

The Tonga Eruption Produced a 90-Meter Tsunami

The Tonga Hunga volcanic eruption sent a tsunami across the Pacific. Air pressure disturbances from the tsunami distorted GPS signals. GOES imagery courtesy NOAA,NESDIS.
The Tonga Hunga volcanic eruption as seen by a GOES satellite. Credit: NOAA,NESDIS.

The gigantic underwater Tonga volcano eruption event captured the world’s attention in January of this year. People from around the world marveled at the satellite imagery of this awesome demonstration of nature’s destructive capability. But only now are we learning that the volcano triggered something else – a tsunami wave up to 90m tall, nine times higher than the tsunamis generated by earthquakes. 

Continue reading “The Tonga Eruption Produced a 90-Meter Tsunami”

Massive Stars don’t Always Grow Their own Planets. Sometimes They Steal Them

Artist's conception of early planetary formation from gas and dust around a young star. Outbursts from newborn and adolescent stars might drive planetary water beneath the surface of rocky worlds. Credit: NASA/NASA/JPL-Caltech

Recently astronomers have discovered Jupiter-sized planets orbiting at extremely large distances from giant stars. How can these stars end up with such big planets at such extreme orbits? A team of researchers has proposed that the answer is that the stars steal those planets from their neighbors.

Continue reading “Massive Stars don’t Always Grow Their own Planets. Sometimes They Steal Them”

It’s Thought to Rain Diamonds on Uranus and Neptune, and now Scientists Duplicated it in the lab

An experiment conducted by an international team of scientists recreated the "diamond rain" believed to exist in the interiors of ice giants like Uranus and Neptune. Credit: Greg Stewart/SLAC National Accelerator Laboratory

The ice giant planets of Neptune and Uranus might have just the right conditions to rain diamonds. Unfortunately we can’t go and check ourselves, so we have to rely on laboratory recreations of their atmospheres to find out. And so that’s exactly what a team of physicist did: they used a vaporized form of common plastics to find out how quickly and how easily diamonds could grow in those kinds of conditions.

Continue reading “It’s Thought to Rain Diamonds on Uranus and Neptune, and now Scientists Duplicated it in the lab”

Has JWST Found Proto-Globular Clusters?

This image from VISTA is a tiny part of the VISTA Variables in the Via Lactea (VVV) survey that is systematically studying the central parts of the Milky Way in infrared light. On the right lies the globular star cluster UKS 1 and on the left lies a much less conspicuous new discovery, VVV CL001 — a previously unknown globular, one of just 160 known globular clusters in the Milky Way at the time of writing. The new globular appears as a faint grouping of stars about 25% of the width of the image from the left edge, and about 60% of the way from bottom to top. Credit: ESO/D. Minniti/VVV Team

The James Webb Space Telescope continues to deliver surprise after surprise. Next up, a team of astronomers have identified likely candidates for proto-globular clusters. Clusters like these can help astronomers understand the evolution and ultimate fate of galaxies like our own.

Continue reading “Has JWST Found Proto-Globular Clusters?”