Quasars can twinkle?

This illustration depicts a gas halo surrounding a quasar in the early Universe. The quasar, in orange, has two powerful jets and a supermassive black hole at its centre, which is surrounded by a dusty disc. The gas halo of glowing hydrogen gas is represented in blue. A team of astronomers surveyed 31 distant quasars, seeing them as they were more than 12.5 billion years ago, at a time when the Universe was still an infant, only about 870 million years old. They found that 12 quasars were surrounded by enormous gas reservoirs: halos of cool, dense hydrogen gas extending 100 000 light years from the central black holes and with billions of times the mass of the Sun. These gas stashes provide the perfect food source to sustain the growth of supermassive black holes in the early Universe.

It turns out you can teach an old dog new tricks. With a recent upgrade to a 50-year-old radio telescope, astronomers have spotted nearly a dozen of a rare class of quasars, ones capable of flickering in less than an hour.

Continue reading “Quasars can twinkle?”

Europa’s entire icy shell shifted 70-degrees a few million years ago

Images from NASA's Galileo spacecraft show the intricate detail of Europa's icy surface. Image: NASA/JPL-Caltech

The mysterious world Europa, the ice-covered second moon of Jupiter, sports deep scars that cut across its face. An international team of investigators studied high-resolution maps of that surface to reveal a pattern: something shook Europa sometime within the past few million years, causing the entire shell to shift by 70 degrees.

Continue reading “Europa’s entire icy shell shifted 70-degrees a few million years ago”

Astronomers find 100 brown dwarfs in our neighborhood

An artist's conception of a brown dwarf. A new study identifies CK Vulpeculae as the remnant of a collison between a brown dwarf and a white dwarf. Image: By NASA/JPL-Caltech (http://planetquest.jpl.nasa.gov/image/114) [Public domain], via Wikimedia Commons
An artist's conception of a brown dwarf. Brown dwarfs are more massive than Jupiter but less massive than the smallest main sequence stars. Their dimness and low mass make them difficult to detect. Image: By NASA/JPL-Caltech (http://planetquest.jpl.nasa.gov/image/114) [Public domain], via Wikimedia Commons

Brown dwarfs are smallish objects sitting somewhere between stars and planets, making them notoriously hard to find. But a recent citizen science project aimed at finding the elusive Planet 9 has instead revealed a treasure trove of these oddities, right next door.

Continue reading “Astronomers find 100 brown dwarfs in our neighborhood”

Did a supernova cause the Devonian mass extinction event?

Artist's impression of a supernova. Supernovae bombarded Earth with radiation that has implications for the development of life on Earth. Image Credit: NASA

359 million years ago the Earth suffered one of its worst extinction events, and a team of researchers at the University of Illinois think that it might be caused by a series of supernova explosions no more than 35 light years away.

Continue reading “Did a supernova cause the Devonian mass extinction event?”

Seeing baby stars at every stage of their formation

Observations of the Taurus Molecular Cloud obtained by the Herschel Space Observatory. Image credit: ALMA (ESO/NAOJ/NRAO), Tokuda et al., ESA/Herschel

Stars form from the collapse of dense clouds of gas and dust, which makes it very hard for astronomers to watch the process unfold. Recently the ALMA telescope has revealed a treasure trove of embryonic stars in the Taurus Molecular Cloud, illuminating how baby stars are born.

Continue reading “Seeing baby stars at every stage of their formation”

A magnetar has been discovered throwing off bizarre blasts of radiation. Is this where fast radio bursts come from?

Artist's impression of a magnetar throwing off a seriously impressive blast. Image credit: ESA

Magnetars are the ultimate aggressive star: intense magnetic fields, massive outbursts, the works. We’ve known that magnetars are capable of producing some of the most powerful blasts in the cosmos, but new observations reveal a different kind of radiation: radio waves. This could potentially solve the long-standing puzzle of the origins of the mysterious Fast Radio Bursts.

Continue reading “A magnetar has been discovered throwing off bizarre blasts of radiation. Is this where fast radio bursts come from?”

Neutron stars of different masses can make a real mess when they collide

An artistic rendering of two neutron stars merging. Credit: NSF/LIGO/Sonoma State/A. Simonnet

When neutron stars collide, they go out with a tremendous bang, fueling an explosion up to a thousand times more powerful than a supernova. But sometimes they go out with a whimper, and a recent suite of simulations is showing why: they turn into a black hole.

Continue reading “Neutron stars of different masses can make a real mess when they collide”

Newly forming star has spiral arms like a tiny galaxy

Planets form by accreting material from a protoplanetary disk. New research suggests it can happen quickly, and that Earth may have formed in only a few million years. Credit: NASA/NASA/JPL-Caltech

Protoplanetary disks – where young stars are forming their families of planets – usually form concentric rings of gaps. But astronomers have recently spotted a surprising situation: an adolescent star surrounded by galaxy-like spiral arms.

Continue reading “Newly forming star has spiral arms like a tiny galaxy”

Mira-type variable stars are constantly throwing the key chemicals for life out into space

This image is from the SPHERE/ZIMPOL observations of R Aquarii, and shows the binary star itself, with the white dwarf feeding on material from the Mira variable, as well as the jets of material spewing from the stellar couple. Image Credit: ESO/Schmid et al.
This image is from the SPHERE/ZIMPOL observations of R Aquarii, and shows the binary star itself, with the white dwarf feeding on material from the Mira variable, as well as the jets of material spewing from the stellar couple. Image Credit: ESO/Schmid et al.

We know that the carbon in your bones was formed long ago in the heart of a star. But how did that carbon actually make its way to your bones? It’s a bit of a complicated puzzle, and recent observations with the SOFIA observatory show how Mira stars do the trick.

Continue reading “Mira-type variable stars are constantly throwing the key chemicals for life out into space”