Are we Ready for Contact?

Credit: José Antonio Peñas/Sinc

A common criticism of science is its quick decision to experiment, without thinking about whether or not it should. While many argue that philosophical implications do not belong within the realm of science, others argue that scientists should absolutely consider the broader implications of their results.

Now, neuro-psychologist Gabriel G. de la Torre from the University of Cádiz is questioning whether or not astronomers, who have previously only looked for signs of extraterrestrial life, should actively send messages from Earth.

The idea that we might not be alone in the universe has been around since at least the fifth century B.C., when the Greek philosopher Democritus posited innumerable worlds, none of which were devoid of life.

With the founding of NASA and other space agencies in the 20th century, human beings began to explore the solar system and actively search for alien life. The most ambitious search began in 1960, when astronomer Frank Drake pointed a radio telescope at two stars similar to our Sun and listened for a signature of intelligence.

Drake’s work inspired the Search for ExtraTerrestrial Intelligence (SETI) project, an initiative that began in the 70s with funding from NASA, but has now evolved toward the collaboration of millions of Internet users for the processing of data from the Arecibo Observatory.

But then there is “Active SETI — also known as METI (Messaging to Extra-Terrestrial Intelligence) — which is the attempt to send messages to potential ETs via radio signals. Some astrophysicists, such as Stephen Hawking, have already warned against the risk this implies for humanity. It would favor the arrival of beings with more advanced technology and unknown intentions.

So “can such a decision be taken on behalf of the whole planet?” asked De la Torre. “What would happen if it was successful and ‘someone’ received our signal? Are we prepared for this type of contact?”

To answer these questions, De la Torre surveyed 116 American, Italian and Spanish university students. The questionnaire assessed their knowledge of astronomy, their religious beliefs, and their beliefs on the likelihood of contact with extraterrestrial intelligent life.

The results indicate that as a species, humanity is still not ready to actively contact a supposed extraterrestrial civilization. The students lacked awareness on many astronomical aspects, despite the enormous progress of science and technology. It also revealed that they lack preparation and would instead rely on political and religious figures.

De la Torre encourages SETI researchers to look for alternative strategies until society can better prepare itself. “This pilot study demonstrates that the knowledge of the general public of a certain education level about the cosmos and our place within it is still poor,” said De la Torre. “Therefore, a cosmic awareness must be further promoted – where our mind is increasingly conscious of the global reality that surrounds us – using the best tool available to us: education.”

The paper has been published in the journal Acta Astronautica.

The Rise of Carbon Dioxide in a Single Video

Screenshot from the video showing the variations in the amount of CO2 in Earth atmosphere for the last 800,000 years.

I’m always amazed by the power of data visualization. In this case a video shrinks the rising levels of carbon dioxide over the course of 800,000 years to just under two minutes.

The motivation is simple: April set a carbon dioxide milestone by averaging 400 parts per million for the entire month. That’s uncharted territory over the course of human history.

The levels of carbon dioxide in the atmosphere are monitored from a site atop Hawaii’s Mauna Loa volcano, where they have been measured continuously since 1958. Previous to this date scientists measure ice cores, which contain air bubbles and therefore snapshots of carbon dioxide levels.

This animation from the Cooperative Institute for Research in Environmental Sciences makes clear that while there have been some variations over time, the current rise is unparalleled by geological scales.

Prior to the Industrial Revolution CO2 levels stayed roughly around 280 ppm. But then with the kickstart of carbon emissions, levels were driven exponentially higher. They soared past 350 ppm — the level scientist James Hansen said was the safe upper limit of CO2 — in October 1989.

The first measurement in excess of 400 ppm was made on May 9, 2013. This year, the level rose above that mark two months earlier, and has remained above 400 ppm steadily since the beginning of April. Levels will peak in May and then drop back down throughout the summer months as trees and plants soak up some CO2.

Once the northern hemisphere spins into fall, the instrument on Mauna Loa will again read higher CO2 levels. Next year will probably see an even earlier onset of levels above 400 ppm. It likely won’t be long before levels never drop lower than 400 ppm, even throughout the summer months.

Also, today the U.S. Global Change Research Program released a report that has been five years in the making, providing an overview of observed and projected climate change. It’s a lengthy document, but you can see an overview here. In sum, the report shows how the world is already experiencing the effects of climate change and the impacts are playing out before our eyes.

“We’ve seen a lot in the last five years,” said Andrew Rosenberg of the Union of Concerned Scientists, one of the lead authors on the report’s oceans chapter, in a press release from The Daily Climate. “So what we’ve tried to do is be quite comprehensive on what our observations have been, as opposed to just modeling projections.”

“Five years ago, ocean acidification and species movement was already happening, but the observational record wasn’t as clear,” Rosenberg said. “Now it really is quite clear. It’s not theory-based or model-based.”

Global temperatures measured by decades since the 1880's. The period from 2001-2012 was the warmest on record globally. Every year was warmer than the 1990s average. Credit: U.S. Global Change Research Program.
Global temperatures measured by decades since the 1880’s. The period from 2001-2012 was the warmest on record globally. Every year was warmer than the 1990s average. Credit: U.S. Global Change Research Program.

This report is unique in that it not only includes data from scientists, but also has input from local groups and industries facing climate impacts. Corn producers in Iowa, oyster growers in Washington, and maple syrup producers in Vermont are all experiencing climate-related issues. So, too, are coastal planners in Florida, water managers in the Southwest, and Native Peoples on tribal lands from Louisiana to Alaska.

Human beings are already being impacted by climate change.

Unprecedented Images of the Intergalactic Medium

Comparison of Lyman alpha blob observed with Cosmic Web Imager and a simulation of the cosmic web based on theoretical predictions. Credit: Christopher Martin, Robert Hurt - See more at: http://www.caltech.edu/content/intergalactic-medium-unveiled-caltechs-cosmic-web-imager-directly-observes-dim-matter#sthash.3bs0Xl3d.dpuf

An international team of astronomers has taken unprecedented images of intergalactic space — the diffuse and often invisible gas that connects and feeds galaxies throughout the Universe.

Until now, the structure of intergalactic space has mostly been a matter for theoretical speculation. Advanced computer simulations predict that primordial gas from the Big Bang is distributed in a vast cosmic web — a network of filaments that span galaxies and flow between them.

This vast network is impossible to see alone. In the past astronomers have looked at distant quasars — supermassive black holes at the centers of galaxies which are rapidly accreting material and shining brightly — to indicate the otherwise invisible matter along their lines of sight.

While distant quasars may reveal the otherwise invisible gas, there’s no information about how that gas is distributed across space. New images, however, from the Cosmic Web Imager are revealing the webs’ filaments directly, allowing them to be seen across space.

The first filaments observed by the Cosmic Web Imager are in the vicinity of two ancient but bright objects: the quasar QSO 1549+19 and a so-called Lyman alpha blob (yes, this is a technical term for a huge concentration of hydrogen gas) in the emerging galaxy cluster SSA22. These objects are bright, lighting up the intervening galactic space and boosting the detectable signal.

Image of quasar (QSO 1549+19) taken with Caltech's Cosmic Web Imager, showing surrounding gas (in blue) and direction of filamentary gas inflow. Credit: Christopher Martin, Robert Hurt - See more at: http://www.caltech.edu/content/intergalactic-medium-unveiled-caltechs-cosmic-web-imager-directly-observes-dim-matter#sthash.3bs0Xl3d.dpuf
Image of quasar (QSO 1549+19) taken with Caltech’s Cosmic Web Imager, showing surrounding gas (in blue) and direction of filamentary gas inflow.
Image Credit: Christopher Martin, Robert Hurt

Both objects date back to two billion years after the Big Bang, in a time of rapid star formation in galaxies. Observations show a narrow filament, about one million light-years across flowing into the quasar, which is likely fueling the growth of the host galaxy.

There are three filaments flowing into the Lyman alpha blob. “I think we’re looking at a giant protogalactic disk,” said lead author Christopher Martin from the California Institute of Technology in a press release. “It’s almost 300,000 light-years in diameter, three times the size of the Milky Way.”

The Cosmic Web Imager on board the Hale 200 inch telescope is a spectrographic imager, taking pictures at many different wavelengths simultaneously. This allows astronomers to learn about objects’ composition, mass and velocity.

“The gaseous filaments and structures we see around the quasar and the Lyman alpha blob are unusually bright,” said Martin. “Our goal is to eventually be able to see the average intergalactic medium everywhere. It’s harder, but we’ll get there.”

Both papers (“Intergalactic Medium Observations with the Cosmic Web Imager: I. The Circum-QSO Medium of QSO 1549+19 and Evidence for a Filamentary Gas Inflow” and “Intergalactic Medium Observations with the Cosmic Web Imager: II. Discovery of Extended, Kinematically-linked Emission around SSA22 Ly-alpha Blob 2”) have been published in the Astrophysical Journal.

NASA Seeks Ideas for Mission to Europa

Jupiter's icy moon: Europa. Image Credit: NASA

Europa — a moon of Jupiter first discovered by Galileo — never ceases to surprise and amaze astronomers and amateurs alike.

Last December astronomers announced water plumes erupting 100 miles high from the moon’s icy south pole. It was the best evidence yet that Europa, heated internally by the powerful tidal forces generated by Jupiter’s gravity, has a deep subsurface ocean. It caused the search for life in the outer solar system to take quite a turn.

Now, NASA has issued a Request for Information (RFI) to science and engineering communities for ideas for a mission to the enigmatic moon. Any ideas need to address fundamental questions about the subsurface ocean and the search for life beyond Earth.

“This is an opportunity to hear from those creative teams that have ideas on how we can achieve the most science at minimum cost,” said John Grunsfeld, associate administrator for the NASA Science Mission Directorate, in a press release.

The RFI’s focus is for concepts for a mission that costs less than $1 billion.

“Europa is one of the most interesting sites in our solar system in the search for life beyond Earth,” said Grunsfield. “The drive to explore Europa has stimulated not only scientific interest but also the ingenuity of engineers and scientists with innovative concepts.”

The Decadal Survey deemed a mission to Europa as an extremely high priority for scientific pursuits by NASA. It lists five key science objectives that are necessary to improve our understanding of this potentially habitable moon. Primarily, the mission will need to:

— Characterize the extent of the ocean and its relation to the deeper interior

— Characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange

— Determine global surface, compositions and chemistry, especially as related to habitability

— Understand the formation of surface features, including sites of recent or current activity, identify and characterize candidate sites for future detailed exploration

— Understand Europa’s space environment and interaction with the magnetosphere.

Although Europa has been visited by spacecraft and imaged distantly by Hubble, more detailed research is necessary to understand the complexities of this moon and its potential for life. NASA’s Galileo spacecraft, launched in 1989 was the only mission to visit Europa, passing close by the moon fewer than a dozen times.

What are your ideas for a mission to the icy moon? Comment below.

“Fossil Galaxy” Discovered From the Early Universe

According to new research, life as we know it might have emerged earlier than other intelligent life. Credit: ESO

A small galaxy circling the Milky Way may be a fossil left over from the early Universe.

The stars in the galaxy, known as Segue 1, are virtually pure with fewer heavy elements than those of any other galaxy known. Such few stars (roughly 1,000 compared to the Milky Way’s 100 billion) with such small amounts of heavy elements imply the dwarf galaxy may have stopped evolving almost 13 billion years ago.

If true, Segue 1 could offer a window into the early universe, revealing new evolutionary pathways among galaxies in the early Universe.

Only hydrogen, helium, and a small trace of lithium emerged from the Big Bang nearly 13.8 billion years ago, leaving a young universe that was virtually pure.  Over time the cycle of star birth and death produced and dispersed more heavy elements (often referred to as “metals” in astronomical circles), planting the seeds necessary for rocky planets and intelligent life.

The older a star is, the less contaminated it was at birth, and the fewer metals lacing the star’s surface today. Thus the elements detectible in a star’s spectrum provide a key to understanding the generations of stars, which preceded the star’s birth.

The Sun, for example, is metal-rich, with roughly 1.4% of its mass composed of elements heavier than hydrogen and helium. It formed only 4.6 billion years ago — two thirds of the way from the Big Bang to now — and sprung from multiple generations of earlier stars.

But three stars visible in Segue 1 have an iron abundance that is roughly 3,000 times less than the Sun’s iron. Or to use the proper jargon, these three stars have metallicities below [Fe/H] = -3.5.

Researchers led by Anna Frebel of the Massachusetts Institute of Technology report that Segue 1 “may be a surviving first galaxy that experienced only one burst of star formation” in the Astrophysical Journal.

Not only do the low chemical abundances suggest this galaxy is composed of extremely old stars, but they provide tantalizing hints about the types of supernovae explosions that helped create these stars. When high-mass stars explode they disperse a mix of elements; But when low-mass stars explode they almost exclusively disperse iron.

The lack of iron suggests the stars in Segue 1 are the products of high mass stars, which explode much more quickly than low mass stars. It appears that Segue 1 underwent a rapid burst of star formation shortly after the formation of the galaxy in the early universe.

Additionally, six stars observed show some of the lowest levels of neutron-capture elements ever found, with roughly 16,000 fewer elements than those seen in the Sun. These elements are created within stars when an atomic nucleus grabs an extra neutron. So a low level indicates a lack of repeated star formation.

Segue 1 burned through its first generation of stars quickly. But after the young galaxy produced a second generation of stars it completely shut off star formation, remaining a relic of the early universe.

The findings here suggest there may be a greater diversity of evolutionary pathways among galaxies in the early universe than had previously been thought.

But before we can make any sweeping claims “we really need to find more of these systems,” said Frebel in a press release. Alternatively, “if we never find another one, it would tell us how rare it is that galaxies fail in their evolution. We just don’t know at this stage because this is the first of its kind.”

The paper will be published in the Astrophysical Journal and is available for download here.

‘Runaway’ Star Cluster Breaks Free from Distant Galaxy

This artist's illustration shows the hypervelocity star cluster HVGC-1 escaping from the supergiant elliptical galaxy M87. HVGC-1 is the first runaway star cluster discovered by astronomers. It is fated to drift through intergalactic space. David A. Aguilar (CfA)

We’ve discovered dozens of so-called “hypervelocity stars” — single stars that break the stellar speed limit. But today astronomers multiplied the number of these ‘runaway’ stars by hundreds of thousands. The Virgo Cluster galaxy, M87, has ejected an entire star cluster, throwing it toward us at more than two million miles per hour.

“Astronomers have found runaway stars before, but this is the first time we’ve found a runaway star cluster,” said lead author Nelson Caldwell of the Harvard-Smithsonian Center for Astrophysics, in a press release.

About one in a billion stars travel at a speed roughly three times greater than our Sun (which clocks in at 220 km/s with respect to the galactic center). At a speed that fast, these stars can easily escape the galaxy entirely, traveling rapidly throughout intergalactic space.

But this is the first time an entire star cluster has broken free.

What would cause an entire cluster — hundreds of thousands of stars packed together a million times more closely than in the neighborhood of our Sun — to reach such a tremendous speed?

Single hypervelocity stars have puzzled astronomers for years. But by observing their speed and direction, astronomers can trace these stars backward, finding that some began moving quickly in the Galactic Center. Here, an interaction with the supermassive black hole can kick a star away at an alarming speed. Another option is that a supernova explosion propelled a nearby star to a huge speed.

Caldwell and colleagues think M87 might have two supermassive black holes at its center. The star cluster wandered too close to the pair, which picked off many of the cluster’s outer stars while the inner core remained intact. The black holes then acted like a slingshot, flinging the cluster away at a tremendous speed.

The star cluster is moving so fast it should soon by sailing into intergalactic space. It may already be, but its distance remains unknown.

Velocity distribution of objects toward Virgo, includ- ing all confirmed GCs, all Hectospec velocities, and galaxies (from Rines & Geller 2008). The distinct stellar and GC distributions are clear, as is the broader galaxy distribution (dotted and shaded magenta). HVGC-1 is the marked extreme left outlier. Image Credit: Caldwell et al.
Velocities of stars, globular clusters and galaxies toward Virgo. HVGC-1 is the marked extreme left outlier.
Image Credit: Caldwell et al.

The team found the globular cluster — dubbed HVGC-1 — with a stroke of luck. They had been analyzing 2,500 globular cluster candidates for years. While a computer algorithm automatically calculated the speed of every cluster, any oddity was analyzed by hand.

Over 1,000 candidates have measured velocities between 500 and 3000 km/s. These speeds are typical for Virgo Cluster members. But HVGC-1 has a radial velocity of -1026 km/s. “This is the most negative, bulk velocity ever measured for an astronomical object not orbiting another object,” writes Caldwell.

“We didn’t expect to find anything moving that fast,” said coauthor Jay Strader of Michigan State University.

Future measurements pinpointing the exact distance to the globular cluster will help shed light on its exact origins.

The paper will be published in The Astrophysics Journal Letters and is available for download here.

It’s Freezing on the Surface of this Nearby Star-like Object

This artist's conception shows the object named WISE J085510.83-071442.5, the coldest known brown dwarf. Image credit: Penn State University/NASA/JPL-Caltech

Our stellar neighborhood just got a little busier … and a little colder.

A brown dwarf that’s as frosty as the Earth’s North Pole has been discovered lurking incredibly close to our Solar System. Astronomer Keven Luhman from Pennsylvania State University used NASA’s Wide-field Infrared Survey Explorer (WISE) and the Spitzer Space Telescope to pinpoint the object’s temperature and distance. This is the coldest brown dwarf found so far, and it’s a mere 7.2 light-years away, making it the seventh closest star-like object to the Sun.

“It is very exciting to discover a new neighbor of our Solar System that is so close,” said Luhman in a press release.

Brown dwarfs emerge when clouds of gas and dust collapse. But unlike stars, they never grow dense enough or burn hot enough to ignite nuclear fusion in their cores. They live their lives less massive than stars, but more massive than gas giants. So they burn hot at first, then cool over time. And this newly discovered brown dwarf is as cold as ice. Literally.

WISE surveyed the entire sky twice in its short 14-month lifetime, looking at cooler objects, which radiate in infrared light (but often remain invisible in visible light). It saw cold asteroids, dust clouds, proto-planetary disks, distant galaxies and hundreds of brown dwarfs.

But one of these objects — dubbed WISE J085510.83-071442.5 — was moving rapidly, suggesting it was extremely close to the Solar System. All stars orbit around the Milky Way, with apparent motions seen on the timescale of hundreds of years. Stars close to the Sun, however, can be seen to make the slightest of movements on the timescale of just a few years. This object appeared to move in just a few months.

 This animation shows the coldest brown dwarf yet seen, and the fourth closest system to our sun. Called WISE J085510.83-071442.5, this dim object was discovered through its rapid motion across the sky. It was first seen in two infrared images taken six months apart in 2010 by NASA's Wide-field Infrared Survey Explorer, or WISE (see orange triangles). Two additional images of the object were taken with NASA's Spitzer Space Telescope in 2013 and 2014 (green triangles). All four images were used to measure the distance to the object -- 7.2 light-years -- using the parallax effect. › See animation The Spitzer data were used to show that the body is as cold as the North Pole (or between minus 54 and 9 degrees Fahrenheit, which is minus 48 to minus 13 degrees Celsius). Image credit: NASA/JPL-Caltech/Penn State
Click on the image above to see an animation of WISE J085510.83-071442.5. It was first seen in two infrared images taken six months apart in 2010 by WISE (see orange triangles). Two additional images of the object were taken with NASA’s Spitzer Space Telescope in 2013 and 2014 (green triangles). Image credit: NASA/JPL-Caltech/Penn State

After first spotting this wacky object in the WISE data, Luhman analyzed additional images taken with the Spitzer Space Telescope and the Gemini South Pole Telescope in Chile. The combined detections taken from different positions around the Sun enabled the measurement of the objects parallax — the apparent position of the object against a background set of stars as seen along multiple lines of sight — allowing Luhman to determine the objects distance.

Spitzer’s additional observations helped pin down the objects chilly temperature, which can be determined based on how much light it gives off in different colors. Like a flame, the hottest part is blue, while the coldest part is red. Luhman found the brown dwarfs temperature to be between –54° and 9° Fahrenheit (–48° to –13° Celsius). Previous record-holders for the coldest brown dwarfs were about room temperature.

“It is remarkable that even after many decades of studying the sky, we still do not have a complete inventory of the Sun’s nearest neighbors,” said Michael Werner from NASA’s Jet Propulsion Laboratory. “This exciting new result demonstrates the power of exploring the universe using new tools, such as the infrared eyes of WISE and Spitzer.”

With a stretch of the imagination and advanced technology, it’s possible that other cooler objects, be them brown dwarfs of even rogue exoplanets, are yet closer to the Sun.

The paper will be published in the Astrophysics Journal and is available for download here.

Why Inflation Didn’t Get the Same Hype as the Higgs

Shown here are the actual B-mode polarization patterns provided by the BICEP2 Telescope. Image Credit: Harvard-Smithsonian Center for Astrophysics

Last month astronomers provided evidence that the universe underwent a brief but stupendous expansion at the very beginning of time. It was a landmark discovery. And while the media worldwide gleamed with fantastical headlines, I’m left overwhelmed with the feeling that it didn’t quite get the spotlight it deserves.

The day of the announcement was ablaze with excitement. When I first started to cover the news, I told my mother I was writing on something that was bigger than the Higgs boson. That was the best way I could explain the significance of this monumental discovery to someone with very little physics knowledge in a text message.

But inflation didn’t get the same hype as the Higgs. Why?

Scientific results are mostly tangible. The Higgs boson was created in a 27-kilometer ring of superconducting magnets designed to boost the energy of particles — marking the world’s largest and most powerful particle accelerator. There’s something about this experiment that we can wrap our minds around, even when the particle itself remains elusive. The $10 billion effort has 6,000 researchers working hard to control the system.

But we can’t control the universe. We can’t ask two galaxies to collide; We can’t speed up stellar evolution; And we can’t pull a nearby star a little closer to take a peek at its circling exoplanet. Instead we stand on our cosmic platform and wait for the light from various happenings to reach us. Once it does, we dig through that light — collecting photons in different filters or spreading them across a spectrum of wavelengths — reaping every last bit of knowledge possible.

Astronomical research is complex and abstract. But it’s what we love about it.

The vast cosmic arena — with its unimaginable vistas of time and space — is laid out in the small specks of light on the celestial sphere. By collecting this light we have placed ourselves within the cosmos. We know the universe began with the Big Bang nearly 13.8 billion years ago. We know that dark matter binds massive galaxy clusters together and that dark energy is causing the universe to accelerate rapidly. It’s truly phenomenal that so much can be learned from the study of light.

Still, there’s a fundamental difference between observing the direct light emitted from distant stars and galaxies and observing a slight polarization pattern on the cosmic microwave background — the radiation released 380,000 years after the Big Bang when photons were able to travel freely across the cosmos.

The result threw open a new window on the birth of the universe. To be more precise, it let us peer back at the moment that took place a mere trillionth of a trillionth of a trillionth of a second after the Big Bang. But it takes so many steps (potentially as many steps as seconds from then until now) to grasp this hazy and mind-boggling concept. It will stretch your ideas of space and time to their limits.

Not only does this result succeed in showing the universe in its infancy, explaining the origin of cosmic structure and providing evidence for the last untested prediction of Albert Einstein’s General Theory of Relativity (gravity comes in discrete packets like light), but it makes an even wilder prediction.

The model likely produces not just one universe, but rather an ensemble of universes: an endless series of big bangs that continue to pop up eternally. Our universe may just be one bubble out of a vast cosmic ocean of others.

Astronomy is moving further toward the abstract. Both in how we collect data and the scientific results we carefully and slowly unearth from that data.

I find this awe-inspiring. But while astronomers are finding ingenious and creative methods to further understand the phenomenal universe in which we live, science journalists and educators are going to have to follow suit. We need to act not as translators but as guides who map scientific knowledge, finding paths through vast amounts of abstract information and analyzing key points along the way. Only then will inflation trump the Higgs and the abstract become tangible.

But honestly I’m still ruminating on this question so all additional thoughts are welcome.

Why Universe Today Writes on Climate Change

n this rare image taken on July 19, 2013, the wide-angle camera on NASA's Cassini spacecraft has captured Saturn's rings and Earth in the same frame. Image Credit: NASA/JPL-Caltech/Space Science Institute

Online science reporting is difficult. Never mind the incredible amount of work each story requires from interviewing scientists to meticulously choosing the words you will use to describe a tough subject. That’s the fun part. It’s just after you hit the blue publish button, when the story goes live, that things get rough. Your readers will tear you apart. They will comment on any misplaced commas, a number with one too many significant figures, and an added space in between sentences. They will criticize and not compliment.

Now I’m not saying this isn’t welcome. By all means if I have misspoken, do let me know. I need to be on top of my game 100% of the time and readers’ comments help make that happen. They can improve an article tremendously, allowing readers to carry on the conversation and provide a richer context. Thought-provoking commenters always bring a smile to my face.

But then there’s online environmental reporting. From day one, reader comments made me realize that I needed to develop a thicker skin. I won’t go into the nasty details here, but in my most recent article, readers asked why Universe Today — an astronomy and space news site — would report on the science and even the politics regarding climate change. Well dear readers, I have heard you, and here is the answer to your question.

Universe Today is a dedicated space and astronomy news site. And I am proud to be a part of the team bringing readers up-to-date with the ongoings in our local universe. But that definition covers a wide variety of subjects, some might even say an infinite number of subjects.

On any given day authors from our team might write about subjects from planets within our solar system to distant galaxies. We want to better understand these celestial objects by focusing on their origin, evolution and fate. And in doing so we will discuss research that utilizes physics or chemistry, biology or astronomy. We might even write about politics, especially if NASA’s budget is involved.

I argue that writing about the Earth falls into the above category. After all, we do live on a planet that circles the Sun. And unlike Venus, where thick skies of carbon dioxide and even clouds of sulfuric acid make the surface incredibly difficult to see, we can directly study our surface, even run our fingers through the sand.

Intensive geologic surveys of the Earth below your feet help astronomers to understand the geology of other environments, including our nearest neighbor Venus and distant moons. We now know Enceladus has an ocean because of its combination of two compensating mass anomalies — an effect we see here on Earth. Perhaps one day this research will even help us understand geologic features on distant exoplanets.

Any study, which helps us better understand our home planet, whether it looks at plate tectonics or the sobering effects of global warming, exists under the encompassing umbrella of astronomy.

Now for my second, philosophical, argument. On the darkest of nights, thousands of stars compose the celestial sphere above us. The universe is boundless. It is infinite. We stand on but one out of 100 billion (if not more) planets in the Milky Way galaxy alone, which in turn, is but one out of 100 billion galaxies in the observable universe. We live in complete isolation. It’s both humbling and awe-inspiring.

Carl Sagan was the first to coin the phrase “pale blue dot” and in his words:

“Our posturings, our imagined self-importance, the delusion that we have some privileged position in the Universe, are challenged by this point of pale light. Our planet is a lonely speck in the great enveloping cosmic dark. In our obscurity, in all this vastness, there is no hint that help will come from elsewhere to save us from ourselves.

The Earth is the only world known so far to harbor life. There is nowhere else, at least in the near future, to which our species could migrate. Visit, yes. Settle, not yet. Like it or not, for the moment the Earth is where we make our stand.

It has been said that astronomy is a humbling and character-building experience. There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world. To me, it underscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we’ve ever known.”

Sagan argues that we have the moral duty to protect our home planet. This sense of obligation stems from the humble lessons gained from astronomy. So if Universe Today is not the appropriate platform to write about climate change I’m not sure what is.

All comments welcome.

Sobering IPCC Report: “Warming is Unequivocal”

IPCC report

Climate change is now affecting every continent and ocean says the latest report by the Intergovernmental Panel on Climate Change (IPCC), an international collaboration of more than 2,500 experts. If we don’t act soon to bring greenhouse gas emissions under control, the problems will only grow substantially worse. This isn’t a casual statement from a few fringe scientists: nearly 500 people had to sign off on the exact wording of the summary, including 66 expert authors, 271 officials from 115 countries, and 57 observers.

The report is the second of three installments of the IPCC’s fifth assessment of climate change. The first installment, released last year, covered the physical science of climate change. It stated with certainty that climate change is very real and that we are the cause. The new report focuses on the impacts of climate change and how to adapt to them. The third installment, which will come out in April, will focus on cutting greenhouse emissions.

Ice in the Arctic is collapsing, the oceans are rising, coral reefs are dying, fresh water supplies are diminishing, and the oceans are becoming more acidic, which is killing certain creatures and stunting the growth of others. Heat waves and heavy rains are escalating, food crops are being damaged, disease is spreading, human beings will be displaced due to flooding, animals are migrating toward the poles or going extinct, and the worst is yet to come.

The evidence the world is warming is indubitable.

And yet climate change deniers are still represented the world over. Most notably, the Heartland Institute weighed in on the report by focusing on the benefits of climate change. The group’s take on the matter reads like a crude April Fool’s joke.

A Wall Street Journal op-ed by Matt Ridley has also gained quite a bit of attention. An article in Climate Science Watch refers to his piece as “a laundry list of IPCC misrepresentations.” Ridley fails to cite the data presented in the latest report and even tries to claim that global warming will have net benefits.

From the sweeping opinion articles to the simple comments posted below online articles, the IPCC report is being tragically misinterpreted. One need only take a quick glance at the data to see that the world is warming and catastrophic effects are already occurring.

Climate change is global. It will not only affect the poorest nations but the world. “Nobody on this planet is going to be untouched by the impacts of climate change,” said Rajendra K. Pachauri, chairman of the IPCC in a news conference presenting the report.

Yes this report is sobering. But it also provides an opportunity. We have the power, the intelligence, and the moral duty to protect our home planet. We cannot reverse the damage. We might not even be able to stop it. But we can minimize it. There is still time.

We can act across all scales — local to global — to help reduce greenhouse gas emissions. But first we must learn to adapt to a changing environment. Many governments are well past the state of acknowledging climate change and are in fact starting to find solutions.

“I think that dealing effectively with climate change is just going to be something great nations do,” said Christopher Field, co-chairman of the working group that wrote the report and an earth scientist at the Carnegie Institution for Science in Stanford.

The state of New York recently ordered an electric utility serving Manhattan and its surrounding suburbs, to spend $1 billion upgrading its system to prevent future damage from flooding and other weather disruptions. In a reaction to the blackouts caused by Hurricane Sandy and the acceptance that more extreme weather is to come, the company will raise flood walls, bury vital equipment and determine whether or not emerging climate risks will demand different actions.

Utility regulators across the States are discussing whether to follow New York’s lead.

While greenhouse gas emissions have begun to decline slightly in many countries, including the United States, those gains are being swamped by emissions from other countries such as China and India. We must make greater efforts to adapt or the warming planet will be inevitable.

“There is no question that we live in a world already altered by climate change,” said Field. The time for action is now.