Tammy was a professional astronomy author, President Emeritus of Warren Rupp Observatory and retired Astronomical League Executive Secretary. She’s received a vast number of astronomy achievement and observing awards, including the Great Lakes Astronomy Achievement Award, RG Wright Service Award and the first woman astronomer to achieve Comet Hunter's Gold Status.
(Tammy passed away in early 2015... she will be missed)
In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of the then-known 48 constellations. His treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come. Thanks to the development of modern telescopes and astronomy, this list was amended by the early 20th century to include the 88 constellation that are recognized by the International Astronomical Union (IAU) today.
Of these, Andromeda is one of the oldest and most widely recognized. Located north of the celestial equator, this constellation is part of the family of Perseus, Cassiopeia, and Cepheus. Like many constellation that have come down to us from classical antiquity, the Andromeda constellation has deep roots, which may go all the way back to ancient Babylonian astronomy.
In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects in the night sky. In time, he would come to compile a list of approximately 100 of these objects, with the purpose of making sure that astronomers did not mistake them for comets. However, this list – known as the Messier Catalog – would go on to serve a more important function.
In addition to cataloging some of the most beautiful objects in the night sky, this list would come to be an important milestone in the discovery of Deep Sky Objects. The second object to make the list is known as Messier Object 2 (aka. M2 or NGC 7089), one of the largest globular cluster in the Milky Way, and which is located in the constellation Aquarius.
Description:
As one of the largest known globular clusters, Messier 2 is a rich, round concentration of gravitationally bound stars that orbits the galactic core. Located about 33,000 light years (10,000 parsecs) from our Solar System, this cluster measures some 175 light-years in diameter and is believed to contain about 150,000 stellar members – including 21 known variable stars. Its brightest stars are red and yellow giant stars.
Because its members are so tightly packed together, it has a density classification of II – which is reserved for clusters that are particularly rich and compact. And like most globular clusters, M2’s central region is highly compressed, measuring just 3.7 light years in diameter. It’s tidal influence, on the other hand, has a radius of 233 light years, beyond which members stars would escape due to the influence of the Milky Way’s tidal forces.
Positioned well beyond the galactic center, M2 is also noted for its elliptical shape, and is believed to be as much as 13 billion years old.
History of Observation:
M2 was first discovered by Jean-Dominique Maraldi in 1746 while observing a comet with Jacques Cassini. According to Cassini’s notes, which detail the discovery, the two believed it to be a “nebulous star” at the time:
“On September 11 I have observed another one [nebulous star] for which the right ascension is 320d 7′ 19″ [21h 20m 29s], and the declination 1d 55′ 38″ south, very near to the parallel where the Comet should be. This one is round, well terminated and brighter in the center, about 4′ or 5′ in extent and not a single star around it to a pretty large distance; none can be seen in the whole field of the telescope. This appears very singular to me, for most of the stars one calls nebulous are surrounded by many stars, making one think that the whiteness found there is an effect of the light of a mass of stars too small to be seen in the largest telescopes. I took, at first, this nebula for the comet.”
The object was independently recovered by Charles Messier in 1769, though he too mistook it for something else. In his notes, which were also taken on September 11th (fourteen years later), he described the object as a nebula:
“On September 11, 1760, I discovered in the head of Aquarius a beautiful nebula which doesn’t contain any star; I examined it with a good Gregorian telescope of 30 pouces focal length, which magnified hundred four [104] times; the center is brilliant, and the nebulosity which surrounds it is round; it resembles quite well the beautiful nebula which is located between the head and the bow of Sagittarius: It extends 4 minutes of arc in diameter; one can see it quite well in an ordinary telescope [refractor] of 2 feet [focal length]: I compared its passage of the meridian with that of Alpha Aquarii which is situated on the same parallel; its right ascension was derived at 320d 17′, and its declination at 1d 47′ south. In the night of June 26 and 27, 1764, I reviewed this nebula for a second time; it was the same, with the same appearances. This nebula can be found placed in the chart of the famous Comet of Halley, which I observed at its return in 1759 (b).”
Ultimately, it was William Herschel who finally resolved Messier 2 into the object we recognize today. This took in 1783, where – according to his notes – he was able to resolve individual stars:
“The scattered stars were brought to a good, well determined focus, from which it appears that the central condensed light is owing to a multitude of stars that appeared at various distances behind and near each other. I could actually see and distinguish the stars even in the central mass. The Rev. Mr. Vince, Plumian Professor of Astronomy at Cambridge, saw it in the same telescope as described.”
Locating Messier 2:
Messier 2 is located approximately 5 degrees (about 3 finger widths) north of Beta Aquarii, on the same declination as Alpha Aquarii. M2 is sufficiently bright enough to be seen in urban settings where light pollution is a factor, and can alternately be found by looking about 10 degrees (a fist width) south/southwest of Epsilon Pegasi (Enif).
Using binoculars, it will appear as a large, fuzzy ball with little or no resolution. To amateur astronomers using small telescopes, individual stars will be visible around the outer edges, with resolution improving significantly with aperture size of 6” or more. Those with large telescopes, and who are looking for a challenge, should look for a dark dust lane which crosses the north-east edge of this globular cluster.
Of course, John Herschel saw it as “It is like a heap of fine sand!” which is perhaps as apt an description as can be rendered. Through a large telescope, the globular cluster does resemble a glittering mass of sparkling granules.
And for your convenience, here are the vital statistics of this globular cluster:
Object Name: Messier 2 Alternative Designations: NGC 7089, GC 4678, Bode 70 Object Type: Class II Globular Cluster Constellation: Aquarius Right Ascension: 21 : 33.5 (h:m) Declination: -00 : 49 (deg:m) Distance: 33 (kly) Visual Brightness: 6.5 (mag) Apparent Dimension: 16.0 (arc min)
Good luck searching for this and other Deep Sky Objects!
What comes to mind when you look up at the night sky and spot the constellations? Is it a grand desire to explore deep into space? Is it the feeling of awe and wonder, that perhaps these shapes in the sky represent something? Or is the sense that, like countless generations of human beings who have come before you, you are staring into the heavens and seeing patterns? If the answer to any of the above is yes, then you are in good company!
While most people can name at least one constellation, very few know the story of where they came from. Who were the first people to spot them? Where do their names come from? And just how many constellations are there in the sky? Here are a few of the answers, followed by a list of every known constellation, and all the relevant information pertaining to them.
Definition:
A constellation is essentially a specific area of the celestial sphere, though the term is more often associated with a chance grouping of stars in the night sky. Technically, star groupings are known as asterisms, and the practice of locating and assigning names to them is known as asterism. This practice goes back thousands of years, possibly even to the Upper Paleolithic. In fact, archaeological studies have identified markings in the famous cave paintings at Lascaux in southern France (ca. 17,300 years old) that could be depictions of the Pleiades cluster and Orion’s Belt.
There are currently 88 officially recognized constellations in total, which together cover the entire sky. Hence, any given point in a celestial coordinate system can unambiguously be assigned to a constellation. It is also a common practice in modern astronomy, when locating objects in the sky, to indicate which constellation their coordinates place them in proximity to, thus conveying a rough idea of where they can be found.
The word constellation has its roots in the Late Latin term constellatio, which can be translated as “set of stars”. A more functional definition would be a recognizable pattern of stars whose appearance is associated with mythical characters, creatures, or certain characteristics. It’s also important to note that colloquial usage of the word “constellation” does not generally differentiate between an asterism and the area surrounding one.
Typically, stars in a constellation have only one thing in common – they appear near each other in the sky when viewed from Earth. In reality, these stars are often very distant from each other and only appear to line up based on their immense distance from Earth. Since stars also travel on their own orbits through the Milky Way, the star patterns of the constellations change slowly over time.
History of Observation:
It is believed that since the earliest humans walked the Earth, the tradition of looking up at the night sky and assigning names and characters to them existed. However, the earliest recorded evidence of asterism and constellation-naming comes to us from ancient Mesopotamia, and in the form of etchings on clay tablets that are dated to around ca. 3000 BCE.
However, the ancient Babylonians were the first to recognize that astronomical phenomena are periodic and can be calculated mathematically. It was during the middle Bronze Age (ca. 2100 – 1500 BCE) that the oldest Babylonian star catalogs were created, which would later come to be consulted by Greek, Roman and Hebrew scholars to create their own astronomical and astrological systems.
In ancient China, astronomical traditions can be traced back to the middle Shang Dynasty (ca. 13th century BCE), where oracle bones unearthed at Anyang were inscribed with the names of star. The parallels between these and earlier Sumerian star catalogs suggest they did no arise independently. Astronomical observations conducted in the Zhanguo period (5th century BCE) were later recorded by astronomers in the Han period (206 BCE – 220 CE), giving rise to the single system of classic Chinese astronomy.
In India, the earliest indications of an astronomical system being developed are attributed to the Indus Valley Civilization (3300–1300 BCE). However, the oldest recorded example of astronomy and astrology is the Vedanga Jyotisha, a study which is part of the wider Vedic literature (i.e. religious) of the time, and which is dated to 1400-1200 BCE.
By the 4th century BCE, the Greeks adopted the Babylonian system and added several more constellations to the mix. By the 2nd century CE, Claudius Ptolemaus (aka. Ptolemy) combined all 48 known constellations into a single system. His treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come.
Between the 8th and 15th centuries, the Islamic world experienced a burst of scientific development, reaching from the Al-Andus region (modern-day Spain and Portugal) to Central Asia and India. Advancements in astronomy and astrology closely paralleled those made in other fields, where ancient and classical knowledge was assimilated and expanded on.
In turn, Islamic astronomy later had a significant influence on Byzantine and European astronomy, as well as Chinese and West African astronomy (particularly in the Mali Empire). A significant number of stars in the sky, such as Aldebaran and Altair, and astronomical terms such as alidade, azimuth, and almucantar, are still referred to by their Arabic names.
From the end of the 16th century onward, the age of exploration gave rise to circumpolar navigation, which in turn led European astronomers to witness the constellations in the South Celestial Pole for the first time. Combined with expeditions that traveled to the Americas, Africa, Asia, and all other previously unexplored regions of the planet, modern star catalogs began to emerge.
IAU Constellations:
The International Astronomical Union (IAU) currently has a list of 88 accepted constellations. This is largely due to the work of Henry Norris Russell, who in 1922, aided the IAU in dividing the celestial sphere into 88 official sectors. In 1930, the boundaries between these constellations were devised by Eugène Delporte, along vertical and horizontal lines of right ascension and declination.
The IAU list is also based on the 48 constellations listed by Ptolemy in his Almagest, with early modern modifications and additions by subsequent astronomers – such as Petrus Plancius (1552 – 1622), Johannes Hevelius (1611 – 1687), and Nicolas Louis de Lacaille (1713 – 1762).
However, the data Delporte used was dated to the late 19th century, back when the suggestion was first made to designate boundaries in the celestial sphere. As a consequence, the precession of the equinoxes has already led the borders of the modern star map to become somewhat skewed, to the point that they are no longer vertical or horizontal. This effect will increase over the centuries and will require revision.
Not a single new constellation or constellation name has been postulated in centuries. When new stars are discovered, astronomers simply add them to the constellation they are closest to. So consider the information below, which lists all 88 constellations and provides information about each, to be up-to-date! We even threw in a few links about the zodiac, its meanings, and dates.
In the 18th century, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects in the night sky. Initially, he thought these were comets, which he was attempting to locate at the time. However, astronomers would later discover that these objects were in fact nebulae, galaxies and star clusters. Between the years of 1758 and 1782, Messier compiled a list of approximately 100 of these objects.
His intention was to ensure that other astronomers would not mistake these objects for comets. But in time, this list – known as the Messier Catalog – served a higher purpose. In addition to being a collection of some of the most beautiful objects in the night sky, the catalog was also an important milestone in the discovery and research of Deep Sky objects. The first item in the catalog is the famous Crab Nebula – hence its designation as Messier Object 1, or M1.
Description:
Messier 1 (aka. M1, NGC 1952, Sharpless 244, and the Crab Nebula) is a supernova remnant located in the Perseus Arm of the Milky Way Galaxy, roughly 6500 ± 1600 light years from Earth. Like all supernova remnants, it is an expanding cloud of gas that was created during the explosion of a star. This material is spread over a volume approximately 13 ± 3 ly in diameter, and is still expanding at a velocity of about 1,500 km/s (930 mi/s).
Based on its current rate of expansion, it is assumed that the overall deceleration of the nebula’s expansion must has decreased since the initial supernova. Essentially, after the explosion occurred, the nebula’s pulsar would have began to emit radiation that fed the nebula’s magnetic field, thus expanding it and forcing it outward.
In visible light, the Crab Nebula consists of an oval-shaped mass of filaments – whose spectral emission lines are split into both red and blue-shifted components – which surround a blue central region. The filament are leftover from the outer layers of the former star’s atmosphere, and consist primarily of hydrogen and helium, along with traces of carbon, oxygen, nitrogen and heavier elements. The filaments’ temperatures are typically between 11,000 and 18,000 K.
The blue region, meanwhile, is the result of highly polarized synchrotron radiation, which is emitted by high-energy electrons in a strong magnetic field. The curved path of these electrons is due to the strong magnetic field produced by the neutron star at the center of the nebula (see below). One of the many components of the Crab Nebula is a helium-rich torus which is visible as an east-west band crossing the pulsar region.
The torus accounts for about 25% of the nebula’s visible ejecta and is believed to be made up of 95% helium. As yet, there has been no plausible explanation for the structure of the torus. And while it is very difficult to gauge the total mass of the nebula, official estimates place it at 4.6 ± 1.8 Solar masses – i.e 5.5664 to 12.7232 × 1030 kg.
Crab Pulsar:
At the center of the Crab Nebula are two faint stars, one of which is its progenitor (i.e the one that created it). It is because of this star that M1 is a strong source of radio waves, X-rays and Gamma-ray radiation. The remnant of supernova SN 1054, which was widely observed on Earth in the year 1054, this star was discovered in 1968 and has since been designated as a radio pulsar.
Known as the Crab Pulsar (or NP0532), this rapidly rotating star is believed to be about 28–30 km (17–19 mi) in diameter and emits pulses of radiation – ranging from radio wave and X-ray – every 33 milliseconds. Like all isolated pulsars, its period is slowing very gradually, and the energy released as the pulsar slows down is enormous. The Crab Pulsar is also the source of the nebula’s synchrotron radiation, which has a total luminosity about 75,000 times greater than that of the Sun.
The pulsar’s extreme energy output also creates an unusually dynamic region at the center of the Crab Nebula. While most astronomical objects only show changes over timescales of many years, the inner parts of the Crab show changes over the course of only a few days. The most dynamic feature in the inner part of the nebula is the point where the pulsar’s equatorial wind slams into the bulk of the nebula, forming a shock front (see above image).
The Crab Pulsar is also surrounded by an expanding gas shell which encompasses its spectroscopic companion star, which in turn orbits the neutron star every 133 days. This pulsar was the first one which was also verified in the optical part of the spectrum.
History of Observation:
The very first recorded information on this supernova event reaches as far back as July 4, 1054 A.D. by Chinese astronomers who marked the presence of a “new star” visible in daylight for 23 days and 653 nights. The event may have also been recorded by the Anasazi, Navajo and Mimbres First Nations of North America in their artwork as well.
In more modern times, the nebula was cataloged as a discovery by British amateur astronomer John Bevis in 1731, and independently by Charles Messier on August 28th, 1758 while looking for the return of Comet Halley. Although Bevis had added it to his “Uranographia Britannica”, Messier recognized what he had located had no proper motion, and was therefore not a comet. However, Messier did credit Bevis’ discovery when he learned of it years later.
By September 12th, 1758, Messier hit upon the idea of compiling a catalog of objects that weren’t comets, in order to help other astronomers avoid similar mistakes. Considering M1’s position, only slightly more than a degree from the ecliptic plane, this was a very good idea. Especially since M1 was again confused with Halley’s Comet when it returned in 1835.
The name Crab Nebula was first suggested by William Parsons, the Third Earl of Rosse, who observed it while at Birr Castle in 1884. The name was apparently due to the drawing he made of it, which resembled a crab. When he observed it again in 1848 using a ]telescope with better resolution, he could not confirm the resemblance. But the name had become popular by this point and has stuck ever since.
All of the early observers – including Herschel, Bode, Messier and Lassell – apparently mistook the filamentary structures of the Nebula as an indication of stellar structure. As Messier himself described it:
“Nebula above the southern horn of Taurus, it doesn’t contain any star; it is a whitish light, elongated in the shape of a flame of a candle, discovered while observing the comet of 1758. See the chart of that comet, Mem. Acad. of the year 1759, page 188; observed by Dr. Bevis in about 1731. It is reported on the English Celestial Atlas.”
Sir Williams Herschel’s writing on the nebula appeared in the 74th volume of the Philosophical Transactions of the Royal Society of London, which was released in 1784. As he described it:
“To these may added the 1st [M1], 3d, 27, 33, 57, 79, 81, 82, 101 [of Messier’s catalog], which in my 7, 10, and 20-feet reflectors shewed a mottled kind of nebulosity, which I shall call resolvable; so that I expect my present telescope will, perhaps, render the stars visible of which I suppose them to be composed…”
But it was Parsons (aka. Lord Rosse) who first recognized M1 for what we know it as today. As he recorded when viewing it for the first time (in 1844):
“Fig. 81 is also a cluster; we perceive in this [36-inch telescope], however, a considerable change of appearance; it is no longer an oval resolvable [mottled] Nebula; we see resolvable filaments singularly disposed, springing principally from its southern extremity, and not, as is usual in clusters, irregularly in all directions. Probably greater power would bring out other filaments, and it would then assume the ordinary form of a cluster. It is stubbed with stars, mixed however with a nebulosity probably consisting of stars too minute to be recognized. It is an easy object, and I have shown it to many, and all have been at once struck with its remarkable aspect. Everything in the sketch can be seen under moderately favourable circumstances.”
Locating Messier 1:
The Crab Nebula is easily visible in the night sky near the Taurus constellation, whenever light pollution is not an issue. It can be located by identifying Zeta Tauri, a third magnitude star located east/northeast of Aldebaran. With dark sky conditions, it can be seen as a tiny, hazy patch with binoculars and small telescopes with low magnification. If sky conditions are bright, it may be harder to locate with modest equipment.
With a little more magnification, it is seen as a nebulous oval patch, surrounded by haze. In telescopes starting with 4-inch aperture, some detail in its shape becomes apparent, with some suggestion of mottled or streak structure in the inner part of the nebula. To the amateur astronomer, M1 does indeed look similar to a faint comet without a tail.
As Messier 1 is situated only 1 1/2 degrees from the ecliptic, there are frequent conjunctions and occasional transits of planets, as well as occultations by the Moon. And for the sake of simplicity, here are the vital statistics on this Messier Object:
A team of Australian astronomers has been busy utilizing some of the world’s leading radio telescopes located in both Australia and Chile to carve away at the layered remains of a relatively new supernova. Designated as SN1987A, the 28 year-old stellar cataclysm came to Southern Hemisphere observer’s attention when it sprang into action at the edge of the Large Magellanic Cloud some two and a half decades ago. Since then, it has provided researchers around the world with a ongoing source of information about one of the Universe’s “most extreme events”.
Representing the University of Western Australia node of the International Centre for Radio Astronomy Research, PhD Candidate Giovanna Zanardo led the team focusing on the supernova with the Australia Telescope Compact Array (ATCA) in New South Wales. Their observations took in the wavelengths spanning the radio to the far infrared.
“By combining observations from the two telescopes we’ve been able to distinguish radiation being emitted by the supernova’s expanding shock wave from the radiation caused by dust forming in the inner regions of the remnant,” said Giovanna Zanardo of the International Centre for Radio Astronomy Research (ICRAR) in Perth, Western Australia.
“This is important because it means we’re able to separate out the different types of emission we’re seeing and look for signs of a new object which may have formed when the star’s core collapsed. It’s like doing a forensic investigation into the death of a star.”
“Our observations with the ATCA and ALMA radio telescopes have shown signs of something never seen before, located at the centre or the remnant. It could be a pulsar wind nebula, driven by the spinning neutron star, or pulsar, which astronomers have been searching for since 1987. It’s amazing that only now, with large telescopes like ALMA and the upgraded ATCA, we can peek through the bulk of debris ejected when the star exploded and see what’s hiding underneath.”
A video compilation showing Supernova Remnant 1987A as seen by the Hubble Space Telescope in 2010, and by radio telescopes located in Australia and Chile in 2012. The piece ends with a computer generated visualization of the remnant showing the possible location of a Pulsar. Credit: Dr Toby Potter, ICRAR-UWA, Dr Rick Newton, ICRAR-UWA
But, there is more. Not long ago, researchers published another paper which appeared in the Astrophysical Journal. Here they made an effort to solve another unanswered riddle about SN1987A. Since 1992 the supernova appears to be “brighter” on one side than it does the other! Dr. Toby Potter, another researcher from ICRAR’s UWA node took on this curiosity by creating a three-dimensional simulation of the expanding supernova shockwave.
“By introducing asymmetry into the explosion and adjusting the gas properties of the surrounding environment, we were able to reproduce a number of observed features from the real supernova such as the persistent one-sidedness in the radio images”, said Dr. Toby Potter.
So what’s going on? By creating a model which spans over a length of time, researchers were able to emulate an expanding shock front along the eastern edge of the supernova remnant. This region moves away more quickly than its counterpart and generates more radio emissions. When it encounters the equatorial ring – as observed by the Hubble Space Telescope – the effect becomes even more pronounced.
A visualization showing how Supernova1987A evolves between May of 1989 and July of 2014. Credit: Dr Toby Potter, ICRAR-UWA, Dr Rick Newton, ICRAR-UWA
“Our simulation predicts that over time the faster shock will move beyond the ring first. When this happens, the lop-sidedness of radio asymmetry is expected to be reduced and may even swap sides.”
“The fact that the model matches the observations so well means that we now have a good handle on the physics of the expanding remnant and are beginning to understand the composition of the environment surrounding the supernova – which is a big piece of the puzzle solved in terms of how the remnant of SN1987A formed.”
In a test of its new high resolution capabilities, the Atacama Large Millimeter/submillimeter Array (ALMA) is happily sharing some family snapshots with us. Astronomers manning the cameras have captured one of the best images so far of a newly-forming planet system gathering itself around a recently ignited star. Located about 450 light years from us in the constellation of Taurus, young HL Tau gathers material around it to hatch its planets and fascinate researchers.
Thanks to ALMA images, scientists have been able to witness stages of planetary formation which have been suspected, but never visually confirmed. This very young star is surrounded by several concentric rings of material which have neatly defined spacings. Is it possible these clearly marked gaps in the solar rubble disc could be where planets have started to gel?
“These features are almost certainly the result of young planet-like bodies that are being formed in the disk. This is surprising since HL Tau is no more than a million years old and such young stars are not expected to have large planetary bodies capable of producing the structures we see in this image,” said ALMA Deputy Director Stuartt Corder.
“When we first saw this image we were astounded at the spectacular level of detail. HL Tauri is no more than a million years old, yet already its disc appears to be full of forming planets. This one image alone will revolutionize theories of planet formation,” explained Catherine Vlahakis, ALMA Deputy Program Scientist and Lead Program Scientist for the ALMA Long Baseline Campaign.
Let’s take a look at what we understand about solar system formation…
Through repeated research, astronomers suspect that all stars are created when clouds of dust and gas succumb to gravity and collapse on themselves. As the star begins to evolve, the dust binds together – turning into “solar system soup” consisting of an array of different sized sand and rocks. This rubble eventually congeals into a thin disc surrounding the parent star and becomes home to newly formed asteroids, comets, and planets. As the planets collect material into themselves, their gravity re-shapes to structure of the disc which formed them. Like dragging a lawn sweeper over fallen leaves, these planets clear a path in their orbit and form gaps. Eventually their progress pulls the gas and dust into an even tighter and more clearly defined structure. Now ALMA has shown us what was once only a computer model. Everything we thought we knew about planetary formation is true and ALMA has proven it.
“This new and unexpected result provides an incredible view of the process of planet formation. Such clarity is essential to understand how our own solar system came to be and how planets form throughout the universe,” said Tony Beasley, director of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, which manages ALMA operations for astronomers in North America.
“Most of what we know about planet formation today is based on theory. Images with this level of detail have up to now been relegated to computer simulations or artist’s impressions. This high resolution image of HL Tauri demonstrates what ALMA can achieve when it operates in its largest configuration and starts a new era in our exploration of the formation of stars and planets,” says Tim de Zeeuw, Director General of ESO.
The major reason astronomers have never seen this type of structure before is easy to envision. The very dust which creates the planetary disc around HL Tau also conceals it to visible light. Thanks to ALMA’s ability to “see” at much longer wavelengths, it can image what’s going on at the very heart of the cloud. “This is truly one of the most remarkable images ever seen at these wavelengths. The level of detail is so exquisite that it’s even more impressive than many optical images. The fact that we can see planets being born will help us understand not only how planets form around other stars but also the origin of our own solar system,” said NRAO astronomer Crystal Brogan.
How does ALMA do it? According to the research staff, its new high-resolution capabilities were achieved by spacing the antennas up to 15 kilometers apart. This baseline at millimeter wavelengths enabled a resolution of 35 milliarcseconds, which is equivalent to a penny as seen from more than 110 kilometers away. “Such a resolution can only be achieved with the long baseline capabilities of ALMA and provides astronomers with new information that is impossible to collect with any other facility, including the best optical observatories,” noted ALMA Director Pierre Cox.
The long baselines spell success for the ALMA observations and are a tribute to all the technology and engineering that went into its construction. Future observations at ALMA’s longest possible baseline of 16 kilometers will mean even more detailed images – and an opportunity to further expand our knowledge of the Cosmos and its workings. “This observation illustrates the dramatic and important results that come from NSF supporting world-class instrumentation such as ALMA,” said Fleming Crim, the National Science Foundation assistant director for Mathematical and Physical Sciences. “ALMA is delivering on its enormous potential for revealing the distant universe and is playing a unique and transformational role in astronomy.”
Pass them baby pictures our way, Mama ALMA… We’re delighted to take a look!
Deep within the Taurus Dark Cloud complex, one of the closest star-forming regions to Earth has just revealed one of its secrets – an umbilical cord of gas flowing from the expansive outer disc toward the interior of a binary star system known as GG Tau-A. According to the ESO press release, this never-before-seen feature may be responsible for sustaining a second, smaller disc of planet-forming material that otherwise would have disappeared long ago.
A research group led by Anne Dutrey from the Laboratory of Astrophysics of Bordeaux, France and CNRS used the Atacama Large
Millimeter/submillimeter Array (ALMA) to observe the distribution of
dust and gas in the unusual GG Tau-A system. Since at least half of
Sun-like stars are the product of binary star systems, these type of
findings may produce even more fertile grounds for discovering
exoplanets. However, the 450 light year distant GG Tau system is even more complex than previously thought. Through observations taken with the VLTI, astronomers have discovered its primary star – home to the inner disc – is part of a more involved multiple-star system. The secondary star is also a close binary!
“We may be witnessing these types of exoplanetary systems in the midst of formation,” said Jeffrey Bary, an astronomer at Colgate University in Hamilton, N.Y., and co-author of the paper. “In a sense, we are learning why these seemingly strange systems exist.”
Let’s take a look…
“Like a wheel in a wheel, GG Tau-A contains a large, outer disc
encircling the entire system as well as an inner disc around the main central star. This second inner disc has a mass roughly equivalent to that of Jupiter.” says the research team. “Its presence has been an intriguing mystery for astronomers since it is losing material to its central star at a rate that should have depleted it long ago.”
Thanks to studies done with ALMA, the researchers made an exciting discovery in these disc structures… gas clumps located between the two. This observation could mean that material is being fed from the outer disc to feed the inner. Previously observations done with ALMA show that a single star pulls its materials inward from the outer disc. Is it possible these gas pockets in the double disc GG Tau-A system are creating a sustaining lifeline between the two?
“Material flowing through the cavity was predicted by computer
simulations but has not been imaged before. Detecting these clumps
indicates that material is moving between the discs, allowing one to
feed off the other,” explains Dutrey. “These observations demonstrate that material from the outer disc can sustain the inner disc for a long time. This has major consequences for potential planet formation.”
As we know, planets are created from the materials leftover from
stellar ignition. However, the creation of a solar system occurs at a snail’s pace, meaning that a debris disc with longevity is required for planet formation. Thanks to these new “disc feeding” observations from ALMA, researchers can surmise that other multiple-star systems behave in a similar manner… creating even more possibilities for exoplanet formation.
“This means that multiple star systems have a way to form planets, despite their complicated dynamics. Given that we continue to find interesting planetary systems, our observations provide a glimpse of the mechanisms that enable such systems to form,” concludes Bary.
During the initial phase of planetary searches, the emphasis was placed on Sun-like, single-host stars. Later on, binary systems gave rise to giant Jupiter-sized planets – nearly large enough to be stars on their own. Now the focus has turned to pointing our planetary discovery efforts towards individual members of multiple-systems.
Emmanuel Di Folco, co-author of the paper, concludes: “Almost half the Sun-like stars were born in binary systems. This means that we have found a mechanism to sustain planet formation that applies to a significant number of stars in the Milky Way. Our observations are a big step forward in truly understanding planet formation.”
Between the years 2003 and 2011, the High Accuracy Radial velocity Planet Searcher – better known as HARPS – made more than a thousand observations of nearby star, Beta Pictoris. On board the ESO 3.6-metre telescope at the La Silla Observatory in Chile, the sensitive instrument normally combs the sky nightly in search of exoplanets, but lately it has contributed to another astounding discovery… exocomets!
Located about 63 light-years from the Sun, Beta Pictoris is a youthful star, estimated to be only around 20 million years old. Keeping it company in space is a vast disc of material. This swarm of gas and dust is the beginnings of an active planetary system and was likely created by the destruction of comets and collisions of rocky bodies like asteroids. Now a French team using HARPS has been able to create the most complete catalog of comets to date from this system. Researchers have found no less than five hundred comets belonging to Beta Pictoris and they divide in two unique branches of exocomets. Split into both old and new, these two active flows behave much like our own cometary groups… They have either made many trips around the parent star or are the product of a recent breakup of one or more objects.
Flavien Kiefer (IAP/CNRS/UPMC), lead author of the new study, sets the scene: “Beta Pictoris is a very exciting target! The detailed observations of its exocomets give us clues to help understand what processes occur in this kind of young planetary system.”
Just like discovering planets through the transit method, astronomers believe exocomets can cause a disturbance in the amount of light we can see from a given star. When these icy travelers exhaust themselves, their gas and dust tails could absorb a portion of the star light passing through them. For nearly three decades scientists had been aware of minute changes in the light from Beta Pictoris, but attributing it to comets was next to impossible to prove. Their tiny light was simply overpowered by the light of the star and could not be imaged from Earth.
Enter HARPS…
Using more than a thousand observations taken by this sensitive equipment, astronomers chose a sample of 493 exocomets unrelated to each other, but sharing in the Beta Pictoris system. Of these, some were dutifully followed for hours at several different times. The size and speed of the gas clouds produced were carefully measured. Researchers were even able to document the orbital properties of some of these exocomets – the size and shape of their passage paths in relation to the parent star allowing scientists to infer their distances.
Knowing that comets exist around other stars is very exciting – and knowing that solar systems around other stars work much like our own is downright rewarding. Through this study, we’re able to take a unique look at what might be several hundreds of exocomets connected to a solitary exo-planet system. What the research has revealed is two distinct branches of the comet family tree. One of these is old comets – their orbit dictated by a single, massive planet. The other half of the family fork belongs to comets that might have arisen from the destruction of a larger object.
The older group behaves in a predictable manner. These exocomets have differing orbital patterns, and their gas and dust production is greatly reduced. If they follow the same rules as the ones in our solar system, it’s typical behavior for a comet which has exhausted its volatiles during multiple trips around the parent star and is also being controlled by the system’s massive planet. This is exciting because it confirms the planet’s presence and distance!
“Moreover, the orbits of these comets (eccentricity and orientation) are exactly as predicted for comets trapped in orbital resonance with a massive planet.” says the science team. “The properties of the comets of the first family show that this planet in resonance must be at about 700 million kilometres from the star – close to where the planet Beta Pictoris b was discovered.”
The second group also behaves in a predictable manner. These exocomets have nearly identical orbits and their emissions are active and radical. Observations of this cometary type tell us they more than likely originated from the destruction of a larger body and the rubble is caught in a orbit which allows the fragments to graze Beta Pictoris. According to the research team: “This makes them similar to the comets of the Kreutz family in the Solar System, or the fragments of Comet Shoemaker-Levy 9, which impacted Jupiter in July 1994.”
Flavien Kiefer concludes: “For the first time a statistical study has determined the physics and orbits for a large number of exocomets. This work provides a remarkable look at the mechanisms that were at work in the Solar System just after its formation 4.5 billion years ago.”
Over two years ago, the Fermi-LAT Collaboration observed an “ear and eye opening” event – the exact location where a stellar explosion called a nova emitted one of the most energentic forms of electromagnetic waves… gamma rays. When it was first detected in 2012, it was something of a mystery, but the findings could very well point to what may cause gamma ray emissions.
“We not only found where the gamma rays came from, but also got a look at a previously-unseen scenario that may be common in other nova explosions,” said Laura Chomiuk, of Michigan State University.
A nova? According to the Fermi researchers, a classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. As it gathers in material, the thermonuclear event expels debris into surrounding space. However, astronomers didn’t expect this “normal” event to produce high energy gamma rays!
Explains the Fermi-LAT team: “The gamma-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic gamma-ray sources.”
While NASA’s Fermi spacecraft was busy watching a nova called V959 Mon, some 6500 light-years from Earth, other radio telescopes were also busy picking up on the gamma ray incidences. The Karl G. Jansky Very Large Array (VLA) was documenting radio waves coming from the nova. The source of these emissions could be subatomic particles moving at nearly the speed of light interacting with magnetic fields – a condition needed to help produce gamma rays. These findings were backed up by the extremely-sharp radio “vision” of the Very Long Baseline Array (VLBA) and the European VLBI network. They revealed two knots in the radio observations – knots which were moving away from each other. Additional studies were done with e-MERLIN in the UK, and another round of VLA observations in 2014. Now astronomers could begin to piece together the puzzle of how radio knots and gamma rays are produced.
According to the NRAO news release, the white dwarf and its companion give up some of their orbital energy to boost some of the explosion material, making the ejected material move outward faster in the plane of their orbit. Later, the white dwarf blows off a faster wind of particles moving mostly outward along the poles of the orbital plane. When the faster-moving polar flow hits the slower-moving material, the shock accelerates particles to the speeds needed to produce the gamma rays, and the knots of radio emission.
“By watching this system over time and seeing how the pattern of radio emission changed, then tracing the movements of the knots, we saw the exact behavior expected from this scenario,” Chomiuk said.
But the V959 Mon observations weren’t the end of the story. According to Fermi-LAT records, in 2012 and 2013, three novae were detected in gamma rays and stood in contrast to the first gamma-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient gamma-ray sources detected over 2-3 week durations.
“This mechanism may be common to such systems. The reason the gamma rays were first seen in V959 Mon is because it’s close,” Chomiuk said. Because the type of ejection seen in V959 Mon also is seen in other binary-star systems, the new insights may help astronomers understand how those systems develop. This “common envelope” phase occurs in all close binary stars, and is poorly understood. “We may be able to use novae as a ‘testbed’ for improving our understanding of this critical stage of binary evolution,” explains Chomiuk.
Original Story Source: Radio Telescopes Unravel Mystery of Nova Gamma Rays from National Radio Astronomy Observatory. Chomiuk worked with an international team of astronomers. The researchers reported their findings in the scientific journal “Nature”.
Only astronomers know for sure… Or do they? In this assembly of images taken with Hubble’s Advanced Camera for Surveys, scientists have utilized both visible and infrared light to survey a most unusual galaxy. When looking for a newly formed galaxy in our “cosmic neighborhood”, they spied DDO 68 (a.k.a. UGC 5340). Normally to witness galactic evolution, we have to look over great distances to see back in time… but this particular collection of gas and stars seems to break the rules!
Researching galactic evolution isn’t a new concept. Over the last few decades astronomers have increased our understanding of how galaxies change with time. One of the most crucial players in this game has been the NASA/ESA Hubble Space Telescope. Through its eyes, scientists can see over almost incomprehensible distances – studying light that has taken billions of years to reach us. We are essentially looking back in time.
While this is great news on its own, studying progressively younger galaxies can sometimes pose more questions than it answers. For example, all the newly created galaxies reside a huge distance from us and thereby appear small and faint when imaged. On the other side of the coin, galaxies which are close to us appear to be far more mature.
Loading player…
This video begins with a ground based view of the night sky, before zooming in on dwarf galaxy DDO 68 as the NASA/ESA Hubble Space Telescope sees it. This ragged collection of stars and gas clouds looks at first glance like a recently-formed galaxy in our own cosmic neighbourhood. But, is it really as young as it looks? Credit: NASA/ESA
DDO 68, imaged here by the NASA/ESA Hubble Space Telescope, would seem to be the best example of a nearby newly-formed galaxy. Just how nearby? Estimates place it at about 39 million light years distant. While this might seem like a very long way, it is still roughly 50 times closer than other galactic examples. Studying galaxies of different ages is important to our understanding of how the Universe works. Astronomers have discovered that young galaxies are quite different than those which have aged. In this case, DDO 68 gives off the appearance of being young. These findings come from examining its structure, appearance and composition. However, researchers question their findings. It is possible this galaxy may be considerably older than initial findings indicate.
“All of the available data are consistent with the fact that DDO 68 is a very rare candidate for young galaxies.” says S. A. Pustilnik (et al). “The bulk of its stars were formed during the recent (with the first encounter about 1 Gyr ago) merger of two very gas-rich disks.”
These common events – mergers and collisions – are part of galactic life and are generally responsible for older galaxies being more bulky. These “senior citizens” are normally laced with a wide variety of stellar types – young, old, large and small. The chemistry is also different, too. Very young galaxies are rich in hydrogen and helium, making them tantalizingly similar in composition to the primordial matter created by the Big Bang. Older galaxies have more experiences. Numerous stellar events have happened within them over their lifetimes, making them rich in heavy elements. This is what makes DDO 68 very exciting! It is the best local candidate found so far to be low in heavier elements.
“DDO 68 (UGC 5340) is the second most metal-poor star-forming galaxy,” explains Pustilnik. “Its peculiar optical morphology and its HI distribution and kinematics are indicative of a merger origin. We use the u, g, r, and i photometry based on the SDSS images of DDO 68 to estimate its stellar population ages.”
Step into the light? You bet. The Hubble observations were meant to examine the properties of this mysterious galaxy’s light – determine whether or not it contains any older stars. If they are discovered, which seems to be the case, this would disprove the theory that DDO 68 is singularly comprised of younger stars. If not, it will validate the unique nature of this nearby neighbor. While more computer modeling and studies are needed, we can still enjoy this incredible look at another cosmic enigma!