Carbon Impacts Planetary Atmospheric Formation

Early on, Mars had giant active volcanoes, which would have released significant methane. Because of methane’s high greenhouse potential, even a thin atmosphere might have supported liquid water. Credit: NASA

It might be common, but carbon could have a huge impact in the formation and evolution of a planet’s atmosphere. As it moves from the interior to the surface, carbon’s role is important. According to a new study in Proceedings of the National Academy of Sciences, if Mars let go of its majority of carbon supply as methane, it probably would have been temperate enough to caused liquid water to form. Just how captive carbon escapes via iron-rich magma is offering us vital clues as to the role it plays in “early atmospheric evolution on Mars and other terrestrial bodies”.

While the atmosphere of a planet is its outer layer, it has its beginnings far below. During the formation of a planet, the mantle – a layer between a planet’s core and upper crust – latches on to subsurface carbon when it melts to create magma. When the viscous magma rises upwards to the surface, the pressure lessens and the captive carbon is released as gas. As an example, Earth’s captive carbon is encapsulated in magma as carbonate and its released gas is carbon dioxide. As we are aware, carbon dioxide is a “greenhouse gas” which enables our planet to absorb heat from the Sun. However, the release process for captive carbon on other planets – and its subsequent greenhouse effects – isn’t well understood..

“We know carbon goes from the solid mantle to the liquid magma, from liquid to gas and then out,” said Alberto Saal, professor of geological sciences at Brown and one of the study’s authors. “We want to understand how the different carbon species that are formed in the conditions that are relevant to the planet affect the transfer.”

Thanks to the new study, which also included researchers from Northwestern University and the Carnegie Institution of Washington, we’re able to take a closer look at the release processes for other terrestrial mantles, such as those found on the Moon, Mars and similar bodies. Here the captive carbon in the magma is formed as iron carbonyl – then escapes as methane and carbon monoxide. Like carbon dioxide, both of these gases have a huge potential as greenhouse.

The team, along with Malcolm Rutherford from Brown, Steven Jacobsen from Northwestern and Erik Hauri from the Carnegie Institution, came to some significant conclusions about the early volcanic history of Mars. If it followed the captive carbon theory, it might have very well released enough methane gas to have kept the Red Planet warm and cozy. However, it didn’t happen in an “Earth-like” manner. Here our mantel supports a condition known as “oxygen fugacity” – the volume of free oxygen available to react with other elements. While we have a high rate, bodies like early Mars and the Moon are poor in comparison.

Now the real science part comes into play. In order to discover how a lower oxygen fugacity impacts “carbon transfer”, the researchers experimented with volcanic basalt which closely match those located on both Mars and the Moon. Through various pressures, temperatures and oxygen fugacities, the volcanic rock was melted and studied with a spectrometer. This allowed the scientists to determine just how much carbon was absorbed and what form it took. Their findings? At low oxygen fugacities, captive carbon took the form of iron carbonyl and at low pressure the iron carbonyl released as carbon monoxide and methane.

“We found that you can dissolve in the magma more carbon at low oxygen fugacity than what was previously thought,” said Diane Wetzel, a Brown graduate student and the study’s lead author. “That plays a big role in the degassing of planetary interiors and in how that will then affect the evolution of atmospheres in different planetary bodies.”

As we know, Mars has a history of volcanism and studies such as this mean that large quantities of methane must have once been released via carbon transfer. Could this have triggered a greenhouse effect? It’s entirely possible. After all, methane in a early atmosphere may very well have supported conditions warm enough to have allowed liquid water to form on the surface.

Maybe even enough to pool…

Original Story Source: Brown University News Release.

Wrapping Around The Mystery Of Spiral Galaxy Arms

Credit: Thiago Ize & Chris Johnson (Scientific Computing and Imaging Institute)

How disk galaxies form their spiral arms have been puzzling astrophysicists for almost as long as they have been observing them. With time, they have come to two conclusions… either this structure is caused by differences in gravity sculpting the gas, dust and stars into this familiar shape, or its just a random occurrence which comes and goes with time.

Now researchers are beginning to wrap their conclusions around findings based on new supercomputer simulations – simulations which involve the motion of up to 100 million “stellar particles” that mimic gravitational and astrophysical forces which shape them into natural spiral structure. The research team from the University of Wisconsin-Madison and the Harvard-Smithsonian Center for Astrophysics are excited about these conclusions and report the simulations may hold the essential clues of how spiral arms are formed.

“We show for the first time that stellar spiral arms are not transient features, as claimed for several decades,” says UW-Madison astrophysicist Elena D’Onghia, who led the new research along with Harvard colleagues Mark Vogelsberger and Lars Hernquist.

“The spiral arms are self-perpetuating, persistent, and surprisingly long lived,” adds Vogelsberger.

When it comes to spiral structure, it’s probably the most widely occurring of universal shapes. Our own Milky Way galaxy is considered to be a spiral galaxy and around 70% of the galaxies near to us are also spiral structured. When we think in a broader sense, just how many things take on this common formation? Whisking up dust with a broom causes particles to swirl into a spiral shape… draining water invokes a swirling pattern… weather formations go spiral. It’s a universal happening and it happens for a reason. Apparently that reason is gravity and something to perturb it. In the case of a galaxy, it’s a giant molecular cloud – the star-forming regions. Introduced into the simulation, the clouds, says D’Onghia, a UW-Madison professor of astronomy, act as “perturbers” and are enough to not only initiate the formation of spiral arms but to sustain them indefinitely.

“We find they are forming spiral arms,” explains D’Onghia. “Past theory held the arms would go away with the perturbations removed, but we see that (once formed) the arms self-perpetuate, even when the perturbations are removed. It proves that once the arms are generated through these clouds, they can exist on their own through (the influence of) gravity, even in the extreme when the perturbations are no longer there.”

So, what of companion galaxies? Can spiral structure be caused by proximity? The new research also takes that into account and models for “stand alone” galaxies as well. However, that’s not all the study included. According to Vogelsberger and Hernquist, the new computer-generated simulations are focusing on clarifying observational data. They are taking a closer look at the high-density molecular clouds and the “gravitationally induced holes in space” which act as ” the mechanisms that drive the formation of the characteristic arms of spiral galaxies.”

Until then, we know spiral structure isn’t just a chance happening and – to wrap things up – it’s probably the most common form of galaxy in our Universe.

Original Story Source: Harvard-Smithsonian Center for Astrophysics.

Hubble Uncovers Hidden Mysteries in Messier 77

The NASA/ESA Hubble Space Telescope has captured this vivid image of spiral galaxy Messier 77 — a galaxy in the constellation of Cetus, some 45 million light-years away from us. The streaks of red and blue in the image highlight pockets of star formation along the pinwheeling arms, with dark dust lanes stretching across the galaxy’s starry centre. The galaxy belongs to a class of galaxies known as Seyfert galaxies, which have highly ionised gas surrounding an intensely active centre. Credit: NASA, ESA & A. van der Hoeven

Discovered on October 29, 1780 by Pierre Mechain, this active Seyfert galaxy is magnificent to behold in amateur equipment and even more so in NASA/ESA Hubble Space Telescope photographs. Located in the constellation of Cetus and positioned about 45 million light years away, this spiral galaxy has a claim to fame not only for being strong in star formation, but as one of the most studied galaxies of its type. Cutting across its face are red hued pockets of gas where new suns are being born and dark dustlanes twist around its powerful nucleus.

When Mechain first observed this incredible visage, he mistook it for a nebula and Messier looked at it, but did not record it. (However, do not fault Messier for lack of interest at this time. His wife and newly born son had just died and he was mourning.) In 1783, Sir William Herschel saw it as an “Ill defined star surrounded by nebulousity.” but would change his tune some 8 years later when he reported: “A kind of much magnified stellar cluster; it contains some bright stars in the centre.” His son, John Herschel, would go on to catalog it – not being very descriptive either.

Loading player…

This video zooms in on spiral galaxy Messier 77. The sequence begins with a view of the night sky near the constellation of Cetus. It then zooms through observations from the Digitized Sky Survey 2, and ends with a view of the galaxy obtained by Hubble. Credit:NASA, ESA, Digitized Sky Survey 2. Acknowledgement: A. van der Hoeven

At almost double the size of the Milky Way, we now know it is a barred spiral galaxy. According to spectral analysis, Messier 77 has very broad emission lines, indicating that giant gas clouds are rapidly moving out of this galaxy’s core, at several hundreds of kilometers per second. This makes M77 a Seyfert Type II galaxy – one with an expanding core of starbirth. In itself, that’s quite unique considering the amount of energy needed to expand at that rate and further investigations found a 12 light-year diameter, point-like radio source at its core enveloped in a 100 light year swath of interstellar matter. A miniature quasar? Perhaps… But whatever it is has a measurement of 15 million solar masses!

Deep at its heart, Messier 77 is beating out huge amounts of radiation – radiation suspected to be from an intensely active black hole. Here the “galaxy stuff” is constantly being drawn towards the center, heating and lighting up the frequencies. Just this area alone can shine tens of thousands of times brighter than most galaxies… but is there anything else hiding there?

“Active galactic nuclei (AGNs) display many energetic phenomena—broad emission lines, X-rays, relativistic jets, radio lobes – originating from matter falling onto a supermassive black hole. It is widely accepted that orientation effects play a major role in explaining the observational appearance of AGNs.” says W. Jaffe (et al). “Seen from certain directions, circum-nuclear dust clouds would block our view of the central powerhouse. Indirect evidence suggests that the dust clouds form a parsec-sized torus-shaped distribution. This explanation, however, remains unproved, as even the largest telescopes have not been able to resolve the dust structures.”

Before you leave, look again. Clustered about Messier 77’s spiral arms are deep red pockets – a sign of newly forming stars. Inside the ruby regions, neophyte stars are ionising the gas. The dust lanes also appear crimson as well – a phenomenon called “reddening” – where the dust absorbs the blue light and highlights the ruddy color. A version of this image won second place in the Hubble’s Hidden Treasures Image Processing Competition, entered by contestant Andre van der Hoeven.

Twistin’ the night away…

Grand Spiral Galaxy Graced By Faded Supernova

One of the most lovely deep space objects to observe is the grand-design spiral galaxy and there are few so grand as NGC 1637. Located in the constellation of Eridanus and positioned approximately 35 million light years away, this twisted beauty was home to a radical supernova event just 14 years ago. Now astronomers are taking a close look at the resultant damage caused by the stellar explosion and giving us some pretty incredible views of the galaxy as well.

When viewing NGC 1637, it seems as if the galaxy itself is evenly distributed, but take a closer look. In this image you will notice the spiral arm to the top left is much more openly constructed and stretches out a bit further than the more concentrated and stubby spiral arm to its opposite side. You will also notice the more compact arm has the appearance of being cut through its mid-section. In whole, this particular appearance is what astronomers refer to as a “lopsided spiral galaxy”.

Now, let’s talk about what happened to disturb the peace…

In 1999, high atop Mt. Hamilton and near San Jose, California, the Lick Observatory was busy utilizing a telescope which specialized in searching for supernova events. Low and behold, they discovered one… a very bright one located in NGC 1637. Like all astronomical observations, the call went out immediately to other observatories to confirm their find and to gather support data. As with most dramatic events, SN 1999em was quickly and thoroughly researched by telescopes around the world – its magnitude carefully recorded and the resultant fading meticulously accounted for as the years have passed.

Better to burn out than to fade away? There are very few things in our natural world which can match the violent beauty of a supernova event. When a star ends its life in this way, it goes out with a bang, not a whimper. For their cosmic finale, they briefly outshine the combined light of all the stars contained within the host galaxy. Like snowflakes, each supernova is unique and the cataclysmic star within NGC 1637 was eight times more massive than our Sun.

Loading player…

This video sequence starts with a view of the bright constellation of Orion (The Hunter). As we zoom in, we focus on an adjacent region of the constellation of Eridanus (The River) and a faint glow appears. This is the spiral galaxy NGC 1637, which appears in all its glory in the final view from ESO’s Very Large Telescope. In 1999 scientists discovered a Type II supernova in this galaxy and followed its slow fading over the following years. Credit: ESO/Nick Risinger

Go ahead. Take another look. During the confirmation observing runs, astronomers also imaged SN 1999em with the VLT and this data was combined with the Lick Observatory information to give us the spectacular view above. Caught in the spiral arm are young stars singing the blues amidst ethereal gas clouds and veiling dust lanes. NGC 1637 isn’t alone, either… You’ll see line of sight stars and even more galaxies in the background.

No rust here…

Original Story Source: ESO News Release.

LOFAR Captures Giant Galaxy

Overlay of the new GRG (blue-white colors) on an optical image from the Digitized Sky survey. The inset shows the central galaxy triplet (image from Sloan Digital Sky Survey). The image is about 2 Mpc across.

Our Universe is full of surprises. Sometimes those surprises come in packages so overwhelmingly huge that it’s almost impossible for us to comprehend the size. Thus is the case of a newly discovered “giant galaxy”. It’s a galaxy which extends millions of light years across intergalactic space, covering an area as much as a half degree of sky. It’s a new class of monster – one called a Giant Radio Galaxy.

Thanks to the work of an international team of astronomers made up of about fifty members from various institutes and led by ASTRON astronomer, Dr. George Heald, there’s a new discovery which can be credited to the powerful International LOFAR Telescope (ILT). During a perpetual all-sky radio survey – the Multi-frequency Snapshot Sky Survey (MSSS) – the team captured some images which revealed a new radio source. This wasn’t just a weak signal that showed a new blotch. It was a source the size of the full Moon projected on the sky! The huge new radio emission appears to have originated up to hundreds of million of years ago from a single member of a interacting triple galaxy system and spread itself across a vast expanse of space.

Cataloged as UGC 09555, the parent galaxy system is located some 750 million light years from our solar system. Its central galaxy had been studied before and was known to have a flat radio spectrum – a signature of giant radio galaxies. Astronomers speculate when the trio interacted, material was released – spreading out over millions of light years and releasing very low radio frequencies. It’s a source that’s either very powerful, or it’s very old.

Enter LOFAR and the MSSS Survey…

As part of a well orchestrated attempt to image the expanse of the northern night sky at frequencies between 30 and 150 MHz, the radio researchers have taken a initial “shallow scan” image set. This new survey will allow astronomers to fashion an all-sky model which will eventually assist with much deeper observations. Thanks to LOFAR’s extreme sensitivity, ability to operate at low frequencies and suitability to observe old sources, the survey was able to reveal this gargantuan galaxy. Picture its size again in your mind. This Giant Radio Galaxy covers as much sky as the Moon, yet it’s 750 million light years away! As the MSSS Survey continues to scan the skies, who knows what may yet be discovered?

With capabilities as sensitive as some of the world’s greatest radio telescopes, such as the Very Large Array (VLA) in the USA, ASTRON’s Westerbork Synthesis Radio Telescope (WSRT), and the Giant Metrewave Radio Telescope (GMRT) in India, LOFAR will take discoveries such as Giant Radio Galaxies to the next level. It will reveal objects missed by previous surveys and the broad bandwidth coverage may show us even more cosmic wonders.

Really big ones…

Original News Source: Netherlands Institute for Radio Astronomy News Release.

ALMA Eyes Most Distant Star-forming Galaxy

This schematic image represents how light from a distant galaxy is distorted by the gravitational effects of a nearer foreground galaxy, which acts like a lens and makes the distant source appear distorted, but brighter, forming characteristic rings of light, known as Einstein rings. An analysis of the distortion has revealed that some of the distant star-forming galaxies are as bright as 40 trillion Suns, and have been magnified by the gravitational lens by up to 22 times. Credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

Let’s turn down the lights and set the stage… We’re moving off through space, looking not only at distant galaxies, but the incredibly distant past. Once upon a time astronomers assumed that star formation began in massive, bright galaxies as a concentrated surge. Now, new observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) are showing us that these deluges of stellar creation may have begun much earlier than they thought.

According to the latest research published in today’s edition of the journal, Nature, and in the Astrophysical Journal, researchers have revealed fascinating discoveries taken with the new international ALMA observatory – which celebrates its inauguration today. Among its many achievements, ALMA has given us a look even deeper into space – showing us ancient galaxies which may be billions of light years distant. The observations of these starburst galaxies show us that stars were created in a frenzy out of huge deposits of cosmic gas and dust.

Loading player…

“The more distant the galaxy, the further back in time one is looking, so by measuring their distances we can piece together a timeline of how vigorously the Universe was making new stars at different stages of its 13.7 billion year history,” said Joaquin Vieira (California Institute of Technology, USA), who led the team and is lead author of the paper in the journal Nature.

Just how did these observations come about? Before ALMA, an international team of researchers employed the US National Science Foundation’s 10-metre South Pole Telescope (SPT ) to locate these distant denizens and then homed in on them to take a closer look at the “stellar baby boom” during the Universe’s beginning epoch. What they found surprised them. Apparently star forming galaxies are even more distant than previously suspected… their onslaught of stellar creation beginning some 12 billion years ago. This time frame places the Universe at just under 2 billion years old and the star formation explosion occurring some billion years sooner than astronomers assumed. The ALMA observations included two galaxies – the “most distant of their kind ever seen” – that contained an additional revelation. Not only did their distance break astronomical records, but water molecules have been detected within them.

However, two galaxies aren’t the only score for ALMA. The research team took on 26 galaxies at wavelengths of around three millimetres. The extreme sensitivity of this cutting edge technology utilizes the measurement of light wavelengths – wavelengths produced by the galaxy’s gas molecules and stretched by the expansion of the Universe. By carefully measuring the “stretch”, astronomers are able to gauge the amount of time the light has taken to reach us and refine its point in time.

“ALMA’s sensitivity and wide wavelength range mean we could make our measurements in just a few minutes per galaxy – about one hundred times faster than before,” said Axel Weiss (Max-Planck-Institut für Radioastronomie in Bonn, Germany), who led the work to measure the distances to the galaxies. “Previously, a measurement like this would have been a laborious process of combining data from both visible-light and radio telescopes.”

For the most part, ALMA’s observations would be sufficient to determine the distance, but the team also included ALMA’s data with the Atacama Pathfinder Experiment (APEX) and ESO’s Very Large Telescope for a select few galaxies. At the present time, astronomers are only employing a small segment of ALMA’s capabilities – just 16 of the 66 massive antennae – and focusing on brighter galaxies. When ALMA is fully functional, it will be able to zero in on even fainter targets. However, the researchers weren’t about to miss any opportunities and utilized gravitational lensing to aid in their findings.

This montage combines data from ALMA with images from the NASA/ESA Hubble Space Telescope, for five distant galaxies. The ALMA images, represented in red, show the distant, background galaxies, being distorted by the gravitational lens effect produced by the galaxies in the foreground, depicted in the Hubble data in blue. The background galaxies appear warped into rings of light known as Einstein rings, which encircle the foreground galaxies. Credit:ALMA (ESO/NRAO/NAOJ), J. Vieira et al.
This montage combines data from ALMA with images from the NASA/ESA Hubble Space Telescope, for five distant galaxies. The ALMA images, represented in red, show the distant, background galaxies, being distorted by the gravitational lens effect produced by the galaxies in the foreground, depicted in the Hubble data in blue. The background galaxies appear warped into rings of light known as Einstein rings, which encircle the foreground galaxies. Credit:ALMA (ESO/NRAO/NAOJ), J. Vieira et al.

“These beautiful pictures from ALMA show the background galaxies warped into multiple arcs of light known as Einstein rings, which encircle the foreground galaxies,” said Yashar Hezaveh (McGill University, Montreal, Canada), who led the study of the gravitational lensing. “We are using the massive amounts of dark matter surrounding galaxies half-way across the Universe as cosmic telescopes to make even more distant galaxies appear bigger and brighter.”

Just how bright is bright? According to the news release, the analysis of the distortion has shown that a portion of these far-flung, star-forming galaxies could be as bright as 40 trillion Suns… then magnified up to 22 times more through the aid of gravitational lensing.

“Only a few gravitationally lensed galaxies have been found before at these submillimetre wavelengths, but now SPT and ALMA have uncovered dozens of them.” said Carlos De Breuck (ESO), a member of the team. “This kind of science was previously done mostly at visible-light wavelengths with the Hubble Space Telescope, but our results show that ALMA is a very powerful new player in the field.”

“This is an great example of astronomers from around the world collaborating to make an amazing discovery with a state-of-the-art facility,” said team member Daniel Marrone (University of Arizona, USA). “This is just the beginning for ALMA and for the study of these starburst galaxies. Our next step is to study these objects in greater detail and figure out exactly how and why they are forming stars at such prodigious rates.”

Bring the house lights back up, please. As ALMA peers ever further into the past, maybe one day we’ll catch our own selves… looking back.

Black Holes, Fermi Bubbles and the Milky Way

Deep at the heart of our galaxy lurks a black hole. This isn’t exciting news, but neither is it a very exciting place. Or is it? While all might be quiet on the western front now, there may be evidence that our galactic center was once home to some pretty impressive activity – activity which may have included multiple collision events and mergers of black holes as it gorged on a satellite galaxies. Thanks to new insights from a pair of assistant professors, Kelly Holley-Bockelmann at Vanderbilt and Tamara Bogdanovic at Georgia Institute of Technology, we have more evidence which points to the Milky Way’s incredibly active past.

“Tamara and I had just attended an astronomy conference in Aspen, Colorado, where several of these new observations were announced,” said Holley-Bockelmann. “It was January 2010 and a snow storm had closed the airport. We decided to rent a car to drive to Denver. As we drove through the storm, we pieced together the clues from the conference and realized that a single catastrophic event – the collision between two black holes about 10 million years ago – could explain all the new evidence.”

Now, imagine a night sky illuminated by a a huge nebula, one that covers half the celestial sphere. This isn’t a dream, it’s a reality. These massive lobes of high-energy radiation are known as Fermi bubbles and they cover a region some 30,000 light years on either side of the Milky Way’s core. While we can’t observe them directly in visible light, these particles are moving along at close to 186,000 miles per second and glowing in x-ray and gamma ray wavelengths.

According to Fulai Guo and William G. Mathews of the University of California at Santa Cruz: “The Fermi bubbles provide plausible evidence for a recent powerful AGN jet activity in our Galaxy, shedding new insights into the origin of the halo CR population and the channel through which massive black holes in disk galaxies release feedback energy during their growth.”

However, our galactic center is home to more than just some incredible bubbles – it’s the location of three of the most massive clusters of young stars within the Milky Way’s realm. Known as the Central, Arches and Quintuplet clusters, each grouping houses several hundred hot, young stars which dwarf the Sun. They will live short, bright, violent lives… burning out in a scant few million years. Because they live fast and die young, these cluster stars must have formed within recent years during a eruption of star formation near the galactic center – another clue to this cosmic puzzle.

“Because of their high mass, and apparent top-heavy IMF, the Galactic Center clusters contain some of the most massive stars in the Galaxy. This is important, as massive stars are key ingredients and probes of astrophysical phenomena on all size and distance scales, from individual star formation sites, such as Orion, to the early Universe during the age of reionization when the first stars were born. As ingredients, they control the dynamical and chemical evolution of their local environs and individual galaxies through their influence on the energetics and composition of the interstellar medium.” says Donald F. Figer. “They likely play an important role in the early evolution of the first galaxies, and there is evidence that they are the progenitors of the most energetic explosions in the Universe, seen as gamma ray bursts. As probes, they define the upper limits of the star formation process and their presence likely ends further formation of nearby lower mass stars. They are also prominent output products of galactic mergers, starburst galaxies, and active galactic nuclei.”

To deepen the mystery, take a closer look at our central black hole. It spans about 40 light seconds in diameter and weighs about four million solar masses. According to what we know, this should produce intensive gravitational tides – ones that should be sucking in the surroundings. So how is it that astronomers have uncovered groups of new, bright stars closer than 3 light years from the event horizon? Of course, they could be on their way to oblivion, but the data shows these stars seem to have formed there. That’s quite a feat considering it would require a molecular cloud 10,000 times more dense than the one located at our galactic center! Shouldn’t there also be old stars located there as well? The answer is yes, there should be… but there are far fewer than what we can observe and what current theoretical models predict.

Holley-Bockelmann wasn’t about to let the problem rest. When she returned home, she enlisted the aid of Vanderbilt graduate student Meagan Lang to help solve the riddle. Then they recruited Pau Amaro-Seoane from the Max Planck Institute for Gravitational Physics in Germany, Alberto Sesana from the Institut de Ciències de l’Espai in Spain, and Vanderbilt Research Assistant Professor Manodeep Sinha to help. With so many bright minds to help solve this riddle, they soon arrived at a plausible explanation – one which matches observations and allows for testable predictions.

According to their theory, a Milky Way satellite galaxy began migrating towards our core. As it merged with our galaxy, its mass was torn away, leaving only its black hole and a small collection of gravitationally bound stars. After several million years, this “leftover” eventually reached the galactic center and the black holes began to merge. As the smaller black hole was swirled around the larger, it plowed up huge furrows of gas and dust, pushing it into the larger black hole and created the Fermi bubbles. The dueling gravitational forces weren’t gentle… these intense tides were quite capable of compressing the molecular clouds surrounding the core into the density required to produce fresh, young stars. Perhaps the very young stars we now observe at the galactic center?

However, there’s more to the picture than meets the eye. This same plowing of the cosmic turf would have also pushed out existing older stars from the vicinity of the massive central black hole. It’s a scene which fits current models where a black hole merger flings stars out into the galaxy at hyper velocities… a scene which fits the observation of a lack of old stars at the boundaries of our supermassive black hole.

“The gravitational pull of the satellite galaxy’s black hole could have carved nearly 1,000 stars out of the galactic centre,” said Bogdanovic. “Those stars should still be racing through space, about 10,000 light years away from their original orbits.”

Can any of this be proved? The answer is yes. Thanks to large scale surveys like the Sloan Digital Sky Survey, we should be able to pinpoint stars moving at a higher velocity than stars which haven’t been subjected to a similar interaction. If astronomers like Holley-Bockelmann and Bogdanovic look at the hard evidence, they are likely to discover a credible number of high velocity stars which will validate their Milky Way merger model.

Or are they just blowing bubbles?

Greek Observatory Probes Ancient Star

An image of the enclosure of the new 2.3-m Aristarchos telescope, sited at Helmos Observatory. Credit: P. Boumis, National Observatory of Athens.

Some 2,500 years ago, a Greek astronomer named Aristarchus certainly made some very correct assumptions when he postulated the Sun to be at the center of our known Universe and that the Earth revolved around it. Through this, he also knew that the stars were incredibly far away and now his namesake telescope, the new 2.3 meter Aristarchos, is taking that distant look from the Helmos Observatory, high atop the Peloponnese Mountains in Greece. Its purpose is to determine the distance and evolution of a mysterious star system – one which is encased in an ethereal nebula.

While looking at the demise of a possible binary star system, researchers Panos Boumis of the National Observatory of Athens and John Meaburn of the University of Manchester, set out to photograph this enigmatic study with the narrowband imaging camera onboard the Aristarchos telescope. Their target designation is planetary nebula KjPn8, and it was originally discovered during the 1950’s Palomar Sky Survey. What makes it out of the ordinary is two huge lobes, measuring a quarter of a degree across, which surround the system. This artifact was researched by Mexican astronomers at the San Pedro Martir Observatory some four decades after its revelation, but it wasn’t until the year 2000 that the Hubble Space Telescope uncovered its central star.

An image of the giant lobes of the planetary nebula KjPn 8 in the light of the emission lines of hydrogen and singly ionised nitrogen, obtained with the narrowband camera on the new 2.3-m Aristarchos telescope. Detailed measurements of the lobes have allowed the determination of their expansion velocity, distance and ages. The results indicate their origin in a remarkable eruptive binary system. Credit: P. Boumis / J. Meaburn
An image of the giant lobes of the planetary nebula KjPn 8 in the light of the emission lines of hydrogen and singly ionised nitrogen, obtained with the narrowband camera on the new 2.3-m Aristarchos telescope. Detailed measurements of the lobes have allowed the determination of their expansion velocity, distance and ages. The results indicate their origin in a remarkable eruptive binary system. Credit: P. Boumis / J. Meaburn

Dr. Boumis and Prof. Meaburn began to study this ancient cosmic artifact, concentrating on measuring the expansion with utmost accuracy. Through their work, they were unable to uncover the system’s distance and trace the history of the lobes through time. What they discovered was KjPn8 is roughly 6,000 light years away and the lobes of material have three epochs: 3200, 7200 and 50,000 years. According to the research team: “The inner lobe of material is expanding at 334 km per second, suggesting it originates in an Intermediate Luminosity Optical Transient (ILOT) event. ILOTs are caused by the transfer of material from a massive star to its less massive companion, in turn creating jets that flow in different directions. We believe that the core of KjPn8 is therefore a binary system, where every so often ILOT events lead to the ejection of material at high speed.”

It is certainly a triumph for the Aristachos Telescope and the new Greek facility. Dr. Bournis is quite proud of the conclusive results gathered by telescope – especially when the object in question cries out for more research. He comments: “Greece is one of the global birthplaces of astronomy, so it is fitting that research into the wider universe continues in the 21st century. With the new telescope we expect to contribute to that global effort for many years to come.”

Original Story Source: Royal Astronomical Society News Release.

NuSTAR Puts New Spin On Supermassive Black Holes

A supermassive black hole has been found in an unusual spot: an isolated region of space where only small, dim galaxies reside. Image credit: NASA/JPL-Caltech
A team of astronomers from South Africa have noticed a series of supermassive black holes in distant galaxies that are all spinning in the same direction. Credit: NASA/JPL-Caltech

Checking out the spin rate on a supermassive black hole is a great way for astronomers to test Einstein’s theory under extreme conditions – and take a close look at how intense gravity distorts the fabric of space-time. Now, imagine a monster … one that has a mass of about 2 million times that of our Sun, measures 2 million miles in diameter and rotating so fast that it’s nearly breaking the speed of light.

A fantasy? Not hardly. It’s a supermassive black hole located at the center of spiral galaxy NGC 1365 – and it is about to teach us a whole lot more about how black holes and galaxies mature.

What makes researchers so confident they have finally taken definitive calculations of such an incredible spin rate in a distant galaxy? Thanks to data taken by the Nuclear Spectroscopic Telescope Array, or NuSTAR, and the European Space Agency’s XMM-Newton X-ray satellites, the team of scientists has peered into the heart of NGC 1365 with x-ray eyes – taking note of the location of the event horizon – the edge of the spinning hole where surrounding space begins to be dragged into the mouth of the beast.

“We can trace matter as it swirls into a black hole using X-rays emitted from regions very close to the black hole,” said the coauthor of a new study, NuSTAR principal investigator Fiona Harrison of the California Institute of Technology in Pasadena. “The radiation we see is warped and distorted by the motions of particles and the black hole’s incredibly strong gravity.”

However, the studies didn’t stop there, they advanced to the inner edge to encompass the location of the accretion disk. Here is the “Innermost Stable Circular Orbit” – the proverbial point of no return. This region is directly related to a black hole’s spin rate. Because space-time is distorted in this area, some of it can get even closer to the ISCO before being pulled in. What makes the current data so compelling is to see deeper into the black hole through a broader range of x-rays, allowing astronomers to see beyond veiling clouds of dust which only confused past readings. These new findings show us it isn’t the dust that distorts the x-rays – but the crushing gravity.

Scientists measure the spin rates of supermassive black holes by spreading the X-ray light into different colors. Image credit: NASA/JPL-Caltech
Scientists measure the spin rates of supermassive black holes by spreading the X-ray light into different colors. Image credit: NASA/JPL-Caltech

“This is the first time anyone has accurately measured the spin of a supermassive black hole,” said lead author Guido Risaliti of the Harvard-Smithsonian Center for Astrophysics (CfA) and INAF — Arcetri Observatory.

“If I could have added one instrument to XMM-Newton, it would have been a telescope like NuSTAR,” said Norbert Schartel, XMM-Newton Project Scientist at the European Space Astronomy Center in Madrid. “The high-energy X-rays provided an essential missing puzzle piece for solving this problem.”

Even though the central black hole in NGC 1365 is a monster now, it didn’t begin as one. Like all things, including the galaxy itself, it evolved with time. Over millions of years it gained in girth as it consumed stars and gas – possibly even merging with other black holes along the way.

“The black hole’s spin is a memory, a record, of the past history of the galaxy as a whole,” explained Risaliti.

“These monsters, with masses from millions to billions of times that of the sun, are formed as small seeds in the early universe and grow by swallowing stars and gas in their host galaxies, merging with other giant black holes when galaxies collide, or both,” said the study’s lead author, Guido Risaliti of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and the Italian National Institute for Astrophysics.

This new spin on black holes has shown us that a monster can emerge from “ordered accretion” – and not simply random multiple events. The team will continue their studies to see how factors other than black hole spin changes over time and continue to observe several other supermassive black holes with NuSTAR and XMM-Newton.

“This is hugely important to the field of black hole science,” said Lou Kaluzienski, NuSTAR program scientist at NASA Headquarters in Washington, D.C. “NASA and ESA telescopes tackled this problem together. In tandem with the lower-energy X-ray observations carried out with XMM-Newton, NuSTAR’s unprecedented capabilities for measuring the higher energy X-rays provided an essential, missing puzzle piece for unraveling this problem.”

Original Story Source: JPL/NASA News Release.

Milky Way Leftover Shell Stars Discovered In Galactic Halo

This illustration shows the disk of our Milky Way galaxy, surrounded by a faint, extended halo of old stars. Astronomers using the Hubble Space Telescope to observe the nearby Andromeda galaxy serendipitously identified a dozen foreground stars in the Milky Way halo. They measured the first sideways motions (represented by the arrows) for such distant halo stars. The motions indicate the possible presence of a shell in the halo, which may have formed from the accretion of a dwarf galaxy. This observation supports the view that the Milky Way has undergone continuing growth and evolution over its lifetime by consuming smaller galaxies. Illustration Credit: NASA, ESA, and A. Feild (STScI)

Like tantalizing tidbits stored in the vast recesses of one’s refrigerator, astronomers using NASA’s Hubble Space Telescope have evidence of a shell of stars left over from one of the Milky Way’s meals. In a study which will appear in an upcoming issue of the Astrophysical Journal researchers have revealed a group of stars moving sideways – a motion which points to the fact our galaxy may have consumed another during its evolution.

“Hubble’s unique capabilities are allowing astronomers to uncover clues to the galaxy’s remote past. The more distant regions of the galaxy have evolved more slowly than the inner sections. Objects in the outer regions still bear the signatures of events that happened long ago,” said Roeland van der Marel of the Space Telescope Science Institute (STScI) in Baltimore, Maryland.

As curious as this shell of stars is, they offer even more information by revealing a chance to study the mysterious hidden mass of Milky Way – dark matter. With more than a hundred billion galaxies spread over the Universe, what better place to get a closer look than right here at home? The team of astronomers led by Alis Deason of the University of California, Santa Cruz, and van der Marel studied the outer halo, a region roughly 80,000 light years from our galaxy’s center, and identified 13 stars which may have come to light at the very beginning of the Milky Way’s formation.

What’s so special about this group of geriatric suns? In this case, it’s their movement. Instead of cruising along in a radial orbit, these elderly stars show tangential motion – an unexpected observation. Normally halo stars travel towards the galactic center, only to return outwards again. What could cause this double handful of stars to move differently? The research team speculates there could be an “over-density” of stars at the 80,000 light year mark.

As intriguing as these stars are, this strange shell was discovered somewhat by accident. Deason and her team winnowed out the outer halo stars from a seven year study of archival images taken by the Hubble telescope of the Andromeda galaxy. While looking some twenty times further away at our neighboring galaxy’s stars, these strange moving stars came to light as foreground objects… objects that “cluttered” the images. While these halo stars were bad for that particular study, they were very good for Deason and the team. It gave them the chance to take a really close look at the motion of the Milky Way’s halo stars.

However, seeing these stars wasn’t easy. Thanks to Hubble’s incredible resolution and light gathering power, each image contained more than 100,000 individual stars. “We had to somehow find those few stars that actually belonged to the Milky Way halo,” van der Marel said. “It was like finding needles in a haystack.”

So how did the astronomers separate the shell stars from those that belonged to the outer fringes of the Andromeda? The initial observations picked the stars out based on their color, brightness and sideways motion. Thanks to parallax, our halo stars seem to move far faster simply because they are closer. Through the work of team member Tony Sohn of STSci, these revolutionary stars were identified and measured. Their tangential motion was observed and recorded with five percent precision. Not a speedy process when you consider these shell stars only move across the sky at a rate of about one milliarcsecond per year!

“Measurements of this accuracy are enabled by a combination of Hubble’s sharp view, the many years’ worth of observations, and the telescope’s stability. Hubble is located in the space environment, and it’s free of gravity, wind, atmosphere, and seismic perturbations,” van der Marel said.

What makes the team so confident in their findings? As we know, stars at home in our galaxy’s inner halo have highly radial orbits. When a comparison was made between the sideways motion of the outer halo stars with the inner motions, the researchers found equality. According to computer simulations of galaxy formation, outer stars should continue to have radial motion as they move outward into the halo, but these new findings prove opposite. What could cause it? A natural explanation would be an accretion event involving a satellite galaxy.

To further substantiate their findings, the team compared their results with data taken by the Sloan Digital Sky Survey involving halo stars. It was a eureka moment. The observations taken by the SDSS revealed a higher density of stars at roughly the same distance as the shell-shocked travelers. And the Milky Way isn’t alone. Other studies of halo stars involved in both the Triangulum and Andromeda show a large number of halo stars existing to a certain point – only to drop off. Deason realized this wasn’t just a weird coincidence. “What may be happening is that the stars are moving quite slowly because they are at the apocenter, the farthest point in their orbit about the hub of our Milky Way,” Deason explained. “The slowdown creates a pileup of stars as they loop around in their path and travel back towards the galaxy. So their in and out or radial motion decreases compared with their sideways or tangential motion.”

As exciting as these findings are, they aren’t news. Shell stars have been observed in the halos of other galaxies and were predicted to be part of the Milky Way. By nature, they should have been there – but they were simply to dim and too far-flung to make astronomers positive of their presence. Not any more. Now that astronomers know what to look for, they are even more anxious to dig into Hubble’s archives. “These unexpected results fuel our interest in looking for more stars to confirm that this is really happening,” Deason said. “At the moment we have quite a small sample. So we really can make it a lot more robust with getting more fields with Hubble.” The Andromeda observations only cover a very small “keyhole view” of the sky.

So what’s next? Now the team can paint an even more fine portrait of the Milky Way’s evolutionary history. By understanding the motions and orbits of the “shell” of stars in the halo, they might even by able to give us a accurate mass. “Until now, what we have been missing is the stars’ tangential motion, which is a key component. The tangential motion will allow us to better measure the total mass distribution of the galaxy, which is dominated by dark matter. By studying the mass distribution, we can see whether it follows the same distribution as predicted in theories of structure formation,” Deason said.

Until then we’ll enjoy the “leftovers”…

Original Story Source: HubbleSite News Release.