Large Hadron Collider Finishes 2011 Proton Run

A new loop will be added to CERN's Antiproton Decelerator in 2016 to increase antiproton production at low energies. Credit: CERN

[/caption]

The world’s largest and highest-energy particle accelerator has been busy. At 5:15 p.m. on October 30, 2011, the Large Hadron Collider in Geneva, Switzerland reached the end of its current proton run. It came after 180 consecutive days of operation and four hundred trillion proton collisions. For the second year, the LHC team has gone beyond its operational objectives – sending more experimental data at a higher rate. But just what has it done?

When this year’s project started, its goal was to produce a surplus of data known to physicists as one inverse femtobarn. While that might seem like a science fiction term, it’s a science fact. An inverse femtobarn is a measurement of particle collision events per femtobarn – which is equal to about 70 million million collisions. The first inverse femtobarn came on June 17th, and just in time to prepare the stage for major physics conferences requiring the data be moved up to five inverse femtobarns. The incredible number of collisions was reached on October 18, 2011 and then surpassed as almost six inverse femtobarns were delivered to each of the two general-purpose experiments – ATLAS and CMS.

“At the end of this year’s proton running, the LHC is reaching cruising speed,” said CERN’s Director for Accelerators and Technology, Steve Myers. “To put things in context, the present data production rate is a factor of 4 million higher than in the first run in 2010 and a factor of 30 higher than at the beginning of 2011.”

But that’s not all the LHC delivered this year. This year’s proton run also shut out the accessible hiding space for the highly prized Higgs boson and supersymmetric particles. This certainly put the Standard Model of particle physics and our understanding of the primordial Universe to the test!

“It has been a remarkable and exciting year for the whole LHC scientific community, in particular for our students and post-docs from all over the world. We have made a huge number of measurements of the Standard Model and accessed unexplored territory in searches for new physics. In particular, we have constrained the Higgs particle to the light end of its possible mass range, if it exists at all,” said ATLAS Spokesperson Fabiola Gianotti. “This is where both theory and experimental data expected it would be, but it’s the hardest mass range to study.”

“Looking back at this fantastic year I have the impression of living in a sort of a dream,” said CMS Spokesperson Guido Tonelli. “We have produced tens of new measurements and constrained significantly the space available for models of new physics and the best is still to come. As we speak hundreds of young scientists are still analysing the huge amount of data accumulated so far; we’ll soon have new results and, maybe, something important to say on the Standard Model Higgs Boson.”

“We’ve got from the LHC the amount of data we dreamt of at the beginning of the year and our results are putting the Standard Model of particle physics through a very tough test ” said LHCb Spokesperson Pierluigi Campana. “So far, it has come through with flying colours, but thanks to the great performance of the LHC, we are reaching levels of sensitivity where we can see beyond the Standard Model. The researchers, especially the young ones, are experiencing great excitement, looking forward to new physics.”

Over the next few weeks, the LHC will be further refining the 2011 data set with an eye to improving our understanding of physics. And, while it’s possible we’ll learn more from current findings, look for a leap to a full 10 inverse femtobarns which may yet be possible in 2011 and projected for 2012. Right now the LHC is being prepared for four weeks of lead-ion running… an “attempt to demonstrate that large can also be agile by colliding protons with lead ions in two dedicated periods of machine development.” If this new strand of LHC operation happens, science will soon be using protons to check out the internal machinations of much heftier structures – like lead ions. This directly relates to quark-gluon plasma, the surmised primordial conglomeration of ordinary matter particles from which the Universe evolved.

“Smashing lead ions together allows us to produce and study tiny pieces of primordial soup,” said ALICE Spokesperson Paolo Giubellino, “but as any good cook will tell you, to understand a recipe fully, it’s vital to understand the ingredients, and in the case of quark-gluon plasma, this is what proton-lead ion collisions could bring.”

Original Story Source: CERN Press Release.

3-D View From Subaru – Stephan’s Quintet

Composite tricolor images of Stephan's Quintet using H? filters with a recession velocity of 0 (left image) and a recession velocity of 4,200 miles per second (right image).

[/caption]

While this isn’t a true “cross eye” image, you can darn sure open the larger version, set it to screen size, cross your eyes and get a pretty astonishing result. If you don’t “get it”, then don’t worry. Just look at the pictures separately, because the Subaru Telescope has added a whole new dimension to a seasonal favorite – Stephen’s Quintet. Located in the constellation of Pegasus (RA 22 35 57.5 – Dec +33 57 36), this awesome little galaxy group also known as HIckson Compact Group 92 and Arp 319. In visual observation terms, there’s five – but only four are actually a compact group. The fifth is much closer…

While literally volumes could be written about this famous group, the focus of this article is on the latest observations done by the Subaru Telescope. Each time the “Quints” are observed, it would seem we get more and more information on them! By employing a variety of specialized filters with Subaru’s Prime Focus Camera (Suprime-Cam), the two above images reveal different types of star-formation activity between the closer galaxy – NGC7320 – and the more distant members. It captures Stephen’s Quintet in three dimensions.

So how is it done? Suprime-Cam has the capability of wide field imaging. By utilizing specialized filters, researchers can narrow the photographic process to specific goals. In this instance, they use narrowband filters to reveal star-forming regions within the grouping and their structures. These H-alpha filters are very specific – only allowing a particular wavelength of light to pass through – revealing the hydrogen emissions of starbirth. But here’s the tricky part. The images were taken with two different types of H-alpha filters – each one with a different recession velocity. With a setting of zero, we have an object which is moving away from the observer and close. The other has a greater recession velocity of 4200 miles (6,700 km) per second. This is an indicator of distant objects. For a color palette, red indicates the H-alpha emission lines while blue and green colors assigned to the images from the blue and red filters captured light so that the composite tricolor images aligned with human color perception in red, green, and blue.

When processed, we get the two different views of Stephen’s Quintet as seen above. Says the imaging team; “The image on the left shows the galaxies when the observers used the Ha filter with a recession velocity of 0 while the one on the right shows them when they used the Ha filter with a recession velocity of 4,200 miles per second. The left image shows Ha emissions that indicate an active star-forming region in the spiral arms of NGC7320 in the lower left quadrant but not in the other galaxies. The right image contrasts with the left and shows a region of H-alpha emissions in the upper three galaxies but none from NGC7320. Two (NGC7318A and NGC7318B) of the four galaxies are shedding gas because of a collision while a third (NGC7319) is crashing in, creating shock waves that trigger vigorous star formation.”

But that’s not all. In the figure below we can see the relationship of the galaxies. “Gas stripped from these three galaxies during galactic collisions is ionized by two mechanisms: shock waves and strong ultraviolet light emanating from the newborn stars.” reports the Subaru team. “This ionized gas emits bright light, which the H-alpha filter reveals. Thus the researchers believe that NGC7319 as well as NGC7318A/B are driving the star-forming regions in the Ha emitting region around NGC7318A/B.”

A diagram of the member galaxies of Stephan's Quintet. NGC7320 is a closer galaxy and has a recession velocity of 0. The remaining four are a group of more distant galaxies 300 million light years away. The researchers believe that the merging of NGC7318A/B and NGC7319's crashing into them are responsible for the active star formation regions in the Ha emitting region around NGC7318A/B.

But star-forming activity isn’t all you can derive from these images – they are also an indicator of distance. By exposing opposing recession velocities in the same image, observers are able to deduce where objects are located at different distances, yet close to each other. “The contrasting images show that NGC7320 is closer than the other galaxies, which show active star formation at a significantly higher recession velocity (4,200 miles per second) than NGC7320 (0).” explains the team. “NGC7320 is about 50 million light years away while the other four galaxies are about 300 million light years away. This explains the intriguing arrangement of the galaxies in Stephan’s Quintet.”

Now is a great time to observe this cool cluster of galaxies for yourself… Before the Moon interferes again!

Original Story Source: Subaru Telescope Press Release.

Determining The Galaxy Collision Rate

Galactic Wrecks Far from Earth: These images from NASA's Hubble Space Telescope's ACS in 2004 and 2005 show four examples of interacting galaxies far away from Earth. The galaxies, beginning at far left, are shown at various stages of the merger process. The top row displays merging galaxies found in different regions of a large survey known as the AEGIS. More detailed views are in the bottom row of images. (Credit: NASA; ESA; J. Lotz, STScI; M. Davis, University of California, Berkeley; and A. Koekemoer, STScI)

[/caption]

Big galaxies… Little galaxies… But how often do they meet? Thanks to information from some of the latest Hubble surveys, astronomers have been able to more closely estimate galaxy collision rates than ever before. Apparently those that have happened within the last eight to nine billion years have occurred somewhere in-between previous estimates.

When it comes to galaxy evolution, the collision rate is an indicator of how individual galaxies accumulated mass over time. While it’s pretty much a standard measurement, there’s a large margin with no information of how often it might have occurred in the very distant past. By taking a look at in deep-field surveys made by NASA’s Hubble Space Telescope, astronomers were able to get a general look – one that showed a merger rate of anywhere from 5 percent to 25 percent of those studied.

The science team, led by Jennifer Lotz of the Space Telescope Science Institute in Baltimore, Maryland, took a close look at galaxy interactions spaced over vast distances. This allowed the group to essentially study mergers which occurred at different times. What they found was larger galaxies had a merger rate of once every nine billion years, while smaller ones crashed up more often. When taking a look a dwarf galaxies compared to massive ones, the team found it happened three times more often than the rate for large galaxies.

“Having an accurate value for the merger rate is critical because galactic collisions may be a key process that drives galaxy assembly, rapid star formation at early times, and the accretion of gas onto central supermassive black holes at the centers of galaxies,” Lotz explains.

While there were past studies of galaxy mergers done with Hubble information, astronomers used a different method and came up with different results. “These different techniques probe mergers at different ‘snapshots’ in time along the merger process,” Lotz says. “It is a little bit like trying to count car crashes by taking snapshots. If you look for cars on a collision course, you will only see a few of them. If you count up the number of wrecked cars you see afterwards, you will see many more. Studies that looked for close pairs of galaxies that appeared ready to collide gave much lower numbers of mergers than those that searched for galaxies with disturbed shapes, evidence that they’re in smashups.”

To help determine how often the merger rate occurred with time, Lotz and her team had to know how long an encountered galaxy would appear disrupted. In order to get a good working model, the team used computer simulations and then mapped them compared to Hubble images of galaxy interactions. While this effort took a great deal of time, the team did their best to create every possible scenario – from a pair of galaxies with equal mass to disparate ones. They also took into account orbits, collisional events and even orientation. Of these studies, 57 different situations and 10 viewing angles were accounted for. “Viewing the simulations was akin to watching a slow-motion car crash,” Lotz says. These computer created scenarios followed the galaxies for 2 billion to 3 billion years, starting at the merger beginning and ending a billion years later when completed. “Our simulations offer a realistic picture of mergers between galaxies,” explains Lotz.

While it was easy enough to see what happens with a giant galaxy, it was a bit more difficult to observe what happens with diminutive ones. Observing a dwarf merger is far more difficult simply because they are so much more dim – but plentiful. “Dwarf galaxies are the most common galaxy in the universe,” Lotz says. “They may have contributed to the buildup of large galaxies. In fact, our own Milky Way galaxy had several such mergers with small galaxies in its recent past, which helped to build up the outer regions of its halo. This study provides the first quantitative understanding of how the number of galaxies disturbed by these minor mergers changed with time.”

However, studies of this type just don’t happen with a handful of photos. Lotz and the team had to compare the simulations with literally thousands of galaxy images taken from some of Hubble’s largest surveys, including the All-Wavelength Extended Groth Strip International Survey (AEGIS), the Cosmological Evolution Survey (COSMOS), and the Great Observatories Origins Deep Survey (GOODS), as well as mergers identified by the DEEP2 survey with the W.M. Keck Observatory in Hawaii. At the beginning they found a wide variety of merger rates, but ended up with about a thousand merger candidates. “When we applied what we learned from the simulations to the Hubble surveys in our study, we derived much more consistent results,” Lotz says.

What’s next for Lotz and her team? It’s time to take a look at galaxy interactions that happened about 11 billion years ago. Their goal is to check out when star formation across the Universe reached its greatest as compared to the merger rate. Perhaps there might be a correlation between encounters and rapid star birth!

Original Story Source: Hubble Space Telescope News.

PacMan Nebula Takes A “Bite” Out Of Space

n visible light, the star-forming cloud catalogued as NGC 281 in the constellation of Cassiopeia appears to be chomping through the cosmos, earning it the nickname the "Pacman" nebula after the famous Pac-Man video game of the 1980s. Image Credit: NASA/JPL-Caltech/UCLA

[/caption]

If you have a large telescope and an appetite for nebulae, then you’ve probably seen the Pac Man Nebula. Located 9,200 light years away in the constellation Cassiopeia, NGC 281 (RA 00 52 59.3 – Dec +56 37 19) is a seasonal favorite… and in this new image it’s showing a real “Halloween” face!

Discovered in August 1883 by E. E. Barnard, this diffuse HII region is home to open cluster IC 1590, the multiple star HD 5005, and several Bok globules. To the eye of the amateur telescope, it’s a soft, round region with a distinctive notch that makes it resemble the PacMan of video game fame. However, when seen in infrared light by NASA’s Wide-field Infrared Survey Explorer, or WISE, the PacMan appears to have “teeth”!

Of course, astronomers know these fanciful fangs are actually pillars where new stars are forming. They are created when stellar winds and radiation from the accompanying cluster blow away the gas and dust, revealing the dense star dough. If you see small red sprinkles in this cosmic cookie, then you’re looking at what could be very young stars in the process of springing to life.

According to JPL News, this image was made from observations by all four infrared detectors aboard WISE. Blue and cyan (blue-green) represent infrared light at wavelengths of 3.4 and 4.6 microns, respectively, which is primarily from stars, the hottest objects pictured. Green and red represent light at 12 and 22 microns, respectively, which is primarily from warm dust (with the green dust being warmer than the red dust).

It’s a great trick… or “treat”!

Original Story Source: JPL News.

Asteroid Lutetia May Have A Molten Core

Several images have been combined into a map of the asteroid. This image represents the total area viewed by the spacecraft during the flyby, which amounted to more than 50% of Lutetia’s surface. Credits: ESA 2011 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

[/caption]

Way out in space, 282 million miles from home, the intrepid ESA Rosetta spacecraft is still busy, but had time to send us an unprecedented view of ancient asteroid Lutetia. On July 10, 2010, Rosetta flew past Lutetia and the results of the imaging revealed surface features which point to an astonishing history. This particular asteroid might not have a “heart of gold”, but it may very well have – or had – a molten interior.

Buzzing by at a speed of 54 000 km/hr and a closest distance of 3170 km, Rosetta took a series of high resolution images and returned them to an international team of researchers from France, Germany, the Netherlands and the United States. By closely examining the craters, cracks and surface, the team was able to determine that Lutetia survived a multitude of impacts – yet retained much of its original structure.

Lutetia fly-by from Science News on Vimeo.

Benjamin Weiss, an associate professor of planetary sciences in MIT’s Department of Earth, Atmospheric and Planetary Sciences, reports Lutetia may have a molten core and this finding shows a “hidden diversity” for known structures within the greater asteroid belt.

“There might be many bodies that have cores and interesting interiors that we never noticed, because they’re covered by unmelted surfaces,” says Weiss, who is a co-author on both Science papers and lead author for the paper in PSS. “The asteroid belt may be more interesting than it seems on the surface.”

Although the encounter was brief, images from the OSIRIS camera revealed some surface features which are believed to be up to 3.6 billion years old – while others appear to be 50-80 million. These ages can be estimated through impact events and the amount and distribution of ejecta. Some of the areas on Lutetia are heavily cratered, implying greater age, while others appear to be landslide events perhaps caused by nearby fractures. While most asteroids are small, light, and have smooth surfaces – Lutetia is different. It appears to be dense, yet relatively porous… a finding that points toward a “dense metallic core, with a once melted interior underneath its fractured crust.”

“We don’t think Lutetia was born looking like this,” says Holger Sierks, of the Max-Planck-Institut für Sonnensystemforschung, Lindau, Germany. “It was probably round when it formed.”

You’ve got to hand it to Rosetta. By being able to study these images, the many teams of scientists now have evidence for a theory developed last year by Weiss, Elkins-Tanton and MIT’s Maria Zuber. By studying chondrite meteorites, they’ve speculated these strongly magnetized samples most likely occurred in an asteroid with a melted, metallic core. If this theory proves to be correct, the Lutetia simply managed to dodge the proverbial bullets and developed with a molten interior.

“The planets … don’t retain a record of these early differentiation processes,” Weiss says. “So this asteroid may be a relic of the first events of melting in a body.”

According to MIT news, Erik Asphaug, a professor of planetary science at the University of California at Santa Cruz, studies “hit-and-run” collisions between early planetary bodies. He says the work by Weiss and his colleagues is a solid step toward resolving how certain asteroids like Lutetia may have evolved.

“We’ve had decades of cartoon speculation, and here’s speculation that’s anchored in physical understanding of how the interiors of these bodies would evolve,” says Asphaug, who was not involved in the research. “It’s like getting through the first 100 pages of a novel, and you don’t know where it’s leading, but it feels like the beginnings of a coherent picture.”

Another Rosetta stone?

Original Story Sources: ESA News Release and MIT News Release.

Observing Alert: Bright Spot On Uranus Reported

The bright spot on Uranus observed with Gemini

[/caption]

There’s nothing like a dynamic solar system… and right now another planet is being heard from. According to various sources, a bright spot – possibly a developing storm – has been spotted on Uranus.

“Professional observers this morning (October 27) reported a very bright cloud on Uranus, using the Gemini telescope, and need amateur confirmation if possible, to obtain a rotation period.” says John H. Rogers, Jupiter Section Director, British Astronomical Association. “Near-infrared filters may have the best chance of detecting it. It was recorded in the 1.6 micron band, which is further into the IR than amateurs can reach, but your usual near-IR filters might be successful. I think that methane filters are not especially promising, as these clouds on Uranus are overlaid by a methane-rich layer of atmosphere, but would be worth trying anyway. Anyone who has a 1-micron filter should have a go too.”

At this point in time, information is limited, but professional images taken using the 8.1-metre Gemini Telescope North on Hawaii have recorded a region said to be ten times brighter than the planetary background. The bright spot is believed to be attributed to methane ice. ““This is an H-band image, centered at 1.6 microns, close to the wavelength of maximum contrast for such features. Its contrast will decrease with decreasing wavelength, and will likely not be detectable by amateur astronomers, except possibly at the longer CCD wavelengths where the Rayleigh scattering background can be suppressed.” says Larry Sromovsky, of the University of Wisconsin-Madison. “Looking with a methane band filters at 890 nm might be productive, especially if the feature continues to brighten.”

“The feature is not very large; instead its prominence is due to its high altitude, placing it above the intense absorption of methane in the deeper atmosphere. This is much higher than the 1.2-bar methane condensation level and thus it is expected to be predominantly composed of methane ice particles.”

Dr Sromovsky added: “The latitude of the feature is approximately 22.5° north planetocentric, which is a latitude nearly at rest with respect to the interior. So it should rotate around Uranus’ axis with nearly a 17.24-hour period. At the time of the image, the feature’s longitude was 351° West. That could change slowly in either direction.

“The low latitude is unusual. Previous exceptionally bright cloud features on Uranus were at close to 30° North, both in 1998 (Sromovsky et al. 2000, Icarus 146, 307-311) and in 2005 (Sromovsky et al. 2007, Icarus 192, 558-575). The 2005 feature oscillated ±1° about its mean latitude. The new feature might also oscillate in latitude, in which case its longitudinal drift rate might also vary with time.”

Hang in there, UT readers! Right now we have two of our best astrophotographers doing their best to give us an exclusive look! This page will be updated as more information becomes available.

Partial Quote Source: Skymania News Release.

Naturally Occuring Complex Organic Material Is The By-Product Of Stars

We might think of most of the Universe as a vast, cold, uncaring place where elements rule… But we’d be wrong. Astronomers are now reporting that organic compounds of high diversity exist throughout the Cosmos and aren’t the primary property of life. Are we all just “star stuff”? You bet. Complex organic materials can be produced by stars!

While these complex compounds bear a resemblance to our Earthly coal and petroleum, they’re out there. Professor Sun Kwok and Dr. Yong Zhang of the University of Hong Kong have found that organic compounds exists throughout the Universe. These stellar by-products are mixture of aromatic (ring-like) and aliphatic (chain-like) components that closely resemble fossil fuels – a remnant of life. Does this raise eyebrows? Darn right it does. It means that “complex organic compounds can be synthesized in space even when no life forms are present.”

How did the team discover these organic compounds? During research, they found a bit of mystery – a set of unidentified infrared emissions in stars, galaxies and even interstellar space. For the last twenty years, this spectral signature has been commonly accepted as being PAHs – polycyclic aromatic hydrocarbon molecules. By utilizing the Infrared Space Observatory and the Spitzer Space Telescope, Kwok and Zhang have shown there’s more there than just a PAH… it’s a lot more complex. Through infra-red emissions and spectral studies, the team has shown that a nova event can produce these compounds in a very short period of time. It can happen within weeks.

Not only are the stars producing complex organic materials, but they’re pumping them into interstellar space as well. And the idea isn’t new. Kwok had proposed stars as compound factories and this current research supports his vision. “Our work has shown that stars have no problem making complex organic compounds under near-vacuum conditions,” says Kwok. “Theoretically, this is impossible, but observationally we can see it happening.”

But that’s not all. These types of complex materials are also found in meteorites. This opens the door to the theory that the early solar nebula may have also been home to organic materials. Could this be the “space seed” that began life on Earth? Just asking…

Original Story Source: Space Ref News Release.

Galaxy Interactions Could Cause Overweight Black Holes

Two examples of galaxy pairs in the COSMOS survey (courtesy of the Chandra X-ray Center). The Hubble Space Telescope images show galaxies undergoing a close encounter (shown in gold). X-rays, as detected by Chandra, indicate which of the two galaxies hosts an AGN. In addition, diffuse X-ray emission from hot gas is present thus highlighting that such galaxy associations tend to reside in galaxy groups, an environment of rapid galaxy and black hole growth.

[/caption]

Yep. It’s true. Almost all galaxies are guilty of having a supermassive black hole in their centers. Some even tip the scales at millions – or even billions – of times more mass than the Sun. However, how they came to be so weighty is a true enigma. Thanks to research done by Dr. John Silverman (IPMU) and the international COSMOS team, the Chandra X-Ray Observatory and the European Southern Observatory’s Very Large Telescope have revealed that galaxy interactions may be responsible for the growth of supermassive black holes – and they’ve left behind some very important clues…

If you’re big – you’re big. As a general rule, supermassive black holes like to hang out in massive galaxies. Their mass is usually directly related to the central bulge. Now the consensus is that massive galaxies gained their girth (at least in part) by mergers and interactions with smaller galaxies. This act of cannibalism in galactic evolution has been postulated to explain how matter gathers toward the middle, eventually resulting in a supermassive black hole.

How do we determine this? One way is to take a closer look at galaxies currently in merger as compared to ones in isolation. While the concept is easy, carrying out the test hasn’t been. A supermassive black hole leaves visual observations “blinded by the light” while a quasar can effectively “outshine” an entire host galaxy, leaving an interactor almost impossible to detect. But, like a bulging waistline, such interactions should distort the overall contours of the galaxy.

Now the COSMOS team might have an answer to the riddle.. by assuming a galaxy is interacting if it has a nearby neighbor. It’s a test that can happen without needing to know if distortion is present in optical images. What makes it possible are accurate distance measurements of about 20,000 galaxies in the COSMOS field as provided by the zCOSMOS redshift survey with the European Southern Observatory’s Very Large Telescope. Isolated galaxies are used to give a comparison sample to lay the foundation as to whether an active galactic nucleus is common to interacting galaxies. With help from NASA’s Chandra Observatory, X-ray observations pinpoint galaxies which host an AGN. The X-ray emission signature dominates in growing SMBHs and X-rays are capable of cutting through the gas and dust of star-forming regions.

In their report to The Astrophysical Journal the team states that galaxies in close pairs are twice as likely to harbor AGNs as compared to galaxies in isolation. This answer may prove that beginning galaxy interactions can lead to “enhanced black hole growth”. Because it’s not a drastically common occcurrance, it means that only about 20% of SMBHs that break the scale happen via a merger event and that “final coalescence” might also play a role.

One thing we do know is that galaxies and their black holes, like people and their waistlines, all get a little heavier with time.

Original Story Source: Institute for Physics and Mathematics of the Univserse.

China’s Shenzhou-8 Mission Poised For Launch

Visualization of Chinese Space Station: Credit: Xinhua News Agency

[/caption]

What’s new in space flight? With only days to go, China is ready to launch an unmanned spacecraft that will attempt to dock with an experimental space station module – Tiangong 1. The Shenzhou 8 mission is the latest step in what will be a decade-long effort to place a manned permanent space station in orbit.

The official Xinhua News Agency announced the craft is ready to embark on a series of maneuvers to connect with the Tiangong 1 module. The orbiting craft was launched in the latter half of September and continuing to perform as expected. The unmanned craft and its modified Long March-2F launch rocket were transferred via a 20-meter-wide railway early Wednesday. Here they are poised to go at the launch pad located at Jiuquan space base on the edge of the Gobi desert in northern China. The launch pad is located a scant 1,500 meters away from the assembling and testing center and it took nearly two hours to complete the transfer.

“Technicians completed testing on the assembling of Shenzhou-8 and the rocket after they were delivered to the launch center at the end of August.” said Lu Jinrong, the launch center’s chief engineer. “In the next few days, the launch center will continue testing the spacecraft and the rocket, and inject propellent before the final launch in early November.”

According to spokeswoman Wu Ping: “The first space docking for China will be conducted when the Tiangong-1 drops from a 350-kilometer-high orbit to a 343-kilometer-high orbit to rendezvous with the Shenzhou-8. The Tiangong-1 and Shenzhou-8 will fly for about 12 days after the first docking, and will conduct another docking test at an appropriate time in flight, Wu said.0 After the two docking tests, the Shenzhou-8 will return to Earth’s surface and the Tiangong-1 will rise to its original orbit to wait for the next docking test.”

Rock on, China!

Original Story Source: Yahoo News.

The Galileoscope – Hands-On Learning For All Ages

For many of us, the northern nights are getting longer and our minds and hands need something to keep them occupied. Star parties and public education nights are becoming fewer, but school is back in session and so is the opportunity to teach. In the south, warmer nights are coming up and so is the chance to share your knowledge of the skies and astronomy equipment with friends and family. It’s just the right time of year to take a close look at a telescope that really serves a purpose – the Galileoscope.

My first experience with the Galileoscope was during the 2009 “Year Of Astronomy”. I purchased one to be used in conjunction with outreach programs that dealt with history. Nothing more. Nothing less. In other words, I struggled to put the thing together, used it once or twice, and pretty much put it back in the box and put it away. I was too “busy” to really pay too much attention to it.

And that was a real shame on my part.

A couple of months ago it came to my attention that the Galileoscope was now readily available. When it first came out, it was a long waiting list – but not anymore. Now these basic replica telescope kits can be purchased by the case and be in your hands within weeks. Just seeing this advertisement was enough to motivate me to go on a search mission in my astronomy “stuff” and re-locate my own. A few boxes here, a couple of shuffles there and next thing you know, there it is. Still assembled and still in perfect condition. Now I didn’t need to be afraid of it. If something happened? Hey! It could be replaced.

With the instructions missing from the box, the next step was to find out some very pertinent information – and personal thoughts – that I couldn’t find on-line. Time to contact one of the Galilescope’s designers, Rick Fienberg. As former Editor in Chief of Sky & Telescope magazine, he’s an expert on astronomy education and popularization and is intimately familiar with the amateur-astronomy community, a critical component in the success of the Galileoscope… and a really nice guy, besides. What I needed to know was if it could be repeatedly assembled and disassembled without ruining it. After all, just one blown O-ring brought down a shuttle…

“The Galileoscope is designed to be disassembled and reassembled repeatedly. This feature is essential for a product intended (at least in part) for classroom use — schools with limited funds are able to buy only a small supply of Galileoscopes and have to use them over and over again rather than let students take them home to keep.” said Dr. Fienberg. “We always hoped that the Galileoscope wouldn’t end up as a one-shot, short-term product that would die at the end of IYA2009. We created something that simply didn’t exist before and for which there is a huge education-and-outreach need. The need remains, and the Galileoscope continues to fulfill it.”

Feeling the outreach fire beginning to burn again, I carefully laid the scope out on the table and began the process of reverse engineering. Once apart, I walked away for awhile and came back nervous. However, I didn’t need to be. All I needed to do was go over the Galileoscope Assembly Instructions and watch the Galileoscope Assembly Video. What I found this time wasn’t what I was expecting. My first experience with the scope was hurry up, get it done, get it to a program… and not really use it. This time was different. This time I was really looking at the optics, understanding how to explain how they worked and impressed with the simplicity and quality of the kit as a whole. It made me think… Just as it made the people who designed it think.

“Advice on the design of the telescope came from a variety of people not connected with the project. Optical designers, amateur and professional astronomers, and educational developers all provided input on what makes an effective, yet inexpensive telescope kit. It was critical that the telescope kit be educationally useful as well as astronomically useful. Thus great consideration was given as to how the educational uses of the telescope could be maximized. However, before we embarked on a new telescope design we needed to understand the limitations of previous inexpensive telescopes.” explains Fienberg. “The key optical requirements of the Galileoscope centered on usability and image quality. Since price was clearly going to be an issue, we needed a trim, justifiable set of requirements. The key imaging requirement was to be able to to create a “Wow” experience for kids, from nearly any location in the world.”

While the Galileoscope team’s original “Wow” intentions were meant to be visual – and meant for a younger audience – the real “Wow” happened for me when I realized exactly what I was doing as I put it together. It’s more than just assembling a working model. It is a valuable lesson in optics. Of course, many of you are politely yawning behind your hand at this point, knowing this was also one of the original intentions behind the Galileoscope, but ask yourself this… Just how many of you have honestly put together a working eyepiece or examined how crown and flint works? Looking at a diagram of how an eyepiece design functions, or what makes a refractor telescope… well… refract is one thing. Holding a quality lens in your hands is another. It awakens a natural curiosity inside you and sparks a sense of wonder.

“Designs were made using both glass and plastic achromatic objectives. Although each would have worked well, we felt that the conservative manufacturing approach would be to use glass, even though it was considerably more expensive. We felt that we might jeopardize the overall system quality using plastic.” says the Galileoscope team. “Because of the low price we were trying to achieve, we often relied on manufacturing practices and standards rather than manufacturing to tolerances. In this case we felt that the very mature refracting telescope industry could be counted on to manufacture a high-quality objective. Our testing of department store telescopes convinced us of this.”

Galileoscope Design Courtesy of Merit Models

As I finished construction again, a lot of points were driven home to me that I had simply missed on the first go round. Thought and care had been given to internal baffling so the scope could be used near a bright light source, such as found in urban settings. Snap-type assembly features were not used so that they would not break after repeated assembly. The focal ratio, eyepiece design and even the inclusion of a barlow were carefully considered. The team even realized the display stand could be doubled as an optical bench where the tube is assembled in two halves, rather than in a nested design. In other words, the Galileoscope might be inexpensive, but it’s certainly not cheap.

So how does it perform?

Well, at my age I have enough problem steadying a pair of 10X50 binoculars without assistance, so only the most brief of glimpses can had through using it in “hand-held” mode. Of course, the team had also taken this into account and the assembly comes with a quarter twenty fixture that allows it to be easily connected to any photo/video tripod. However, if you don’t have – or can’t afford – a tripod, it’s an easy problem to solve. Somewhere at some point in time I had run across a clever idea where a person had used a sturdy Galileoscope Cardboard Box Mount as a simple alt-az configuration. Just weigh down the bottom of the box and pass the quarter twenty bolt through the side near the top. Sandwich the bolt on either side with a washer, and place a nut on the inside to hold it. By loosening and tightening the nut, you can control the up and down motion, and just turn the box for side to side. Aiming is acquired through a reflex “notch”, much like a gun sight.

Simulated views of the Moon, Pleiades and Jupiter as seen through a Galileoscope. Created with Starry Nights and additional images by Rick Fienberg

Once steadied, the view surpasses that of a “toy” telescope. While the Galileoscope isn’t going to perform like a Takahashi refractor, it gives very suitable views of the Moon, does indeed reveal the rings of Saturn and brings the four primary satellites of Jupiter out to play. I found it gave very acceptable images of bright, easy to aim at objects like M8, M44, M6, M7 and – later in the year – the Andromeda Galaxy, the Double Cluster, M42 and M44. With some coaxing and patience, other deep space objects can be found, but aren’t particularly impressive at this aperture. Here it’s not the quality that’s at fault, but image size and limited resolution. Mechanically, the Galileoscope is well crafted for a kit scope. While focusing is a “push – pull” arrangement, I found it easy to find good focus by twisting it slightly similar to using a helical focuser, while moving it in and out. The supplied 20mm eyepiece is also quite sufficient, with enough eye relief at 16mm to be comfortable and the included barlow lens is a lesson in itself!

All in all, the Galileoscope is a great experience. Through partnership programs like Galileo’s Classroom and Teaching With Telescopes, the educator can find a wealth of resources just waiting to be used. There’s even a Galileoscope Observing Guide! So where do you get the kits for your personal exploration or for your organization? At this point in time, the Galileoscope can be ordered through the Galileoscope Organization or through OPT as the Galileoscope Telescope Kit.

As for me, I can see future programs at the Observatory. On one side of the coin, I envision sharing how a telescope is made and what makes it work with children… On the other side I see an intimate group of adults, each working with their own Galileoscope and learning the principles behind the equipment they use in their hobby. After all, we weren’t born with this knowledge spurting out of our ears.

We gotta’ learn it some where.

My many thanks to Rick Fienberg of Galileoscope.org for patiently answering my questions and providing images and additional information for this article. When the original IYA project was in full swing, many Galileoscopes were donated to various classrooms around the world and it has been my pleasure to speak with some of those recipients over the months, ship them additional educational materials and watch their interest grow. When you have a moment, please check out Kodali AnilKumar:India: Astronomy Observation, where both students and teachers made great use of the Galileoscope!