HiRISE Clocks Hurricane Speed Winds In Martian Dust Devils

Dust storm on Mars. Image credits: NASA/JPL-Caltech/MSSS

[/caption]

“It’s early morning and the Sun comes out…” And from no where a huge Martian dust devil shakes its way across the red sands, flinging debris up into the atmosphere. While planetary scientists have been able to determine how fast these whirling, swirling storms travel across the arid landscape, they’ve never quite been able to tell just how fast the winds within them move. Until now…

Thanks to the work of David Choi, a postdoc at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, we’re now able to reasonably record wind speeds through the use of high resolution images taken from HiRISE onboard the Mars Reconnaissance Orbiter. When lucky, the camera captures the storms as a “work in progress” – detailing small features. By pinpointing these signature marks, Choi was able to determine the wind speeds by knowing the timing between frames.

According to the news release, the winds are traveling at about 45 meters each second — what we Earthlings would consider “hurricane-force,” or above 33 meters per second. However, at other times the winds would slow to between 20 and 30 meters per second. These new findings were then compiled and Choi presented his results October 3 in Nantes, France, at the joint meeting of the European Planetary Science Congress and the American Astronomical Society’s Division for Planetary Sciences.

“As a whole, they’re not like a hurricane, but there are pockets or gusts that exceed hurricane-force,” Choi says.

These storms generally appeared around 3:00 Mars Local Time and measured about 30 meters to 250 meters in diameter, and stretched upwards between 150 meters and 700 meters. Wow… “Here I am… Rock you like a hurricane!”

Original Story Source: Science News Release.

Special Relativity May Answer Faster-than-Light Neutrino Mystery

The relativistic motion of clocks on board GPS satellites exactly accounts for the superluminal effect, says physicist. Credit: axirv

[/caption]

Oh, yeah. Moving faster than the speed of light has been the hot topic in the news and OPERA has been the key player. In case you didn’t know, the experiment unleashed some particles at CERN, close to Geneva. It wasn’t the production that caused the buzz, it was the revelation they arrived at the Gran Sasso Laboratory in Italy around 60 nanoseconds sooner than they should have. Sooner than the speed of light allows!

Since the announcement, the physics world has been on fire, producing more than 80 papers – each with their own opinion. While some tried to explain the effect, others discredited it. The overpowering concensus was the OPERA team simply must have forgotten one critical element. On October 14, 2011, Ronald van Elburg at the University of Groningen in the Netherlands put forth his own statement – one that provides a persuasive point that he may have found the error in the calculations.

To get a clearer picture, the distance the neutrinos traveled is straightforward. They began in CERN and were measured via global positioning systems. However, the Gran Sasso Laboratory is located beneath the Earth under a kilometre-high mountain. Regardless, the OPERA team took this into account and provided an accurate distance measurement of 730 km to within tolerances of 20 cm. The neutrino flight time is then measured by using clocks at the opposing ends, with the team knowing exactly when the particles left and when they landed.

But were the clocks perfectly synchronized?

Keeping time is again the domain of the GPS satellites which each broadcasting a highly accurate time signal from orbit some 20,000km overhead. But is it possible the team overlooked the amount of time it took for the satellite signals to return to Earth? In his statement, van Elburg says there is one effect that the OPERA team seems to have overlooked: the relativistic motion of the GPS clocks.

Sure, radio waves travel at the speed of light, so what difference does the satellite position make? The truth is, it doesn’t.. but the time of flight does. Here we have a scenario where one clock is on the ground while the other is orbiting. If they are moving relative to one another, this calculation needs to be included in the findings. The orbiting probes are positioned from West to East in a plane inclined at 55 degrees to the equator… almost directly in line with the neutrino flight path. This means the clock on the GPS is seeing the neutrino source and detector as changing.

“From the perspective of the clock, the detector is moving towards the source and consequently the distance travelled by the particles as observed from the clock is shorter,” says van Elburg.

According to the news source, he means shorter than the distance measured in the reference frame on the ground and the OPERA team overlooks this because it thinks of the clocks as on the ground not in orbit. Van Elburg calculates that it should cause the neutrinos to arrive 32 nanoseconds early. But this must be doubled because the same error occurs at each end of the experiment. So the total correction is 64 nanoseconds, almost exactly what the OPERA team observes.

Is this the final answer for traveling faster than the speed of light? No. It’s just another possible answer to explain a new riddle… and a confirmation of a new revelation.

Original Story Source: Technology Review News Release. For Further Reading: Can apparent superluminal neutrino speeds be explained as a quantum weak measurement?.

ESA Issues Invitation To Russia To Partner ExoMars Mission

Jean-Jacques Dordain. Credit: ESA photo by S. Corvaja

[/caption]

What’s new in the avenue of space exploration? Right now the European Space Agency (ESA) has issued a formal invitation to Russia to join the U.S.-European Mars exploration program in a last-ditch attempt to save the project from being cut in half, ESA Director-General Jean-Jacques Dordain said October 13th.

The appeal to Russia, which came in the form of a letter to the head of the Russian space agency, Roscosmos, is likely ESA’s only hope of saving the full U.S.-European Mars exploration project, which Europe calls ExoMars, Dordain said in an interview. At this point in time, the agency is hoping for a solid answer by the beginning of 2012. This will allow for planning for a two-launch mission of the ExoMars program and lead to a full partnership between the Russian Space Agency and NASA. What’s more, this partnership could mean additional support for the U.S.-European program and even incorporate a Proton rocket launch carrying a jointly-build Mars telecommunications orbiter and an entry, descent and landing system in 2016.

By cutting NASA’s budget, the U.S. contribution to world-wide space programs looks bleak… even with the planned 2018 launch, aboard a NASA-provided Atlas 5 rocket, of the Euro-American Mars rover. This lack of funds hurts everyone – including ESA – dashing hopes of of purchasing its own Ariane 5 rocket for the 2016 mission. Even though NASA appears to be committed at this point, there’s always the uncertainty of the U.S. economic picture.

“At this point I am becoming a Doubting Thomas in that I believe only what I can see,” Dordain said. “But NASA has said nothing that would lead me to believe the 2018 mission is not going forward. At this point I have only two options: Keep the mission as we would like it by finding an additional partner, or reduce the mission.”

This doesn’t mean that ESA isn’t trying. Even by cutting the budget to a single-launch isn’t totally the answer. By making such drastic changes in the middle of an already planned scenario means changing tactics when design teams are already on a tight schedule. Cutting the budget also means cutting jobs – and that’s a problem in its own right. At this point, ESA is even willing to release nations from their commitments to keep the program, with modifications, intact.

Dordain said his approach to Roscosmos is not simply a request for an in-kind contribution of a Proton rocket for the 2016 launch. He said he would like Russia involved in ExoMars as a full third participant with NASA and ESA, and that the Russian role could include provision of experiments. “This could end up being an even grander mission than it would have with a full Russian participation,” Dordain said. “It’s not simply a matter of asking the Russians, ‘Please provide us a launcher.’”

Dordain briefed ESA’s ruling council on the ExoMars situation October 13 and will give an update at the council’s mid-December meeting. The current ExoMars contract for the 2016 mission, which had already been extended while ESA waited for a NASA commitment that never came, runs through December and can be extended to January, Dordain said.

It will be a waiting game from here. With luck, the Russians will answer by January 2012 and NASA will have a clearer picture of its own financial responsibilities by February 2012. Let’s hope the ExoMars Mission doesn’t have to pay the price.

Original Story Source: Space News Release.

Amateur Captures Coronal Mass Ejection

Full DisK H-Alpha Solar Image on October 13, 2011 - Credit: Joe Brimacombe

While you can’t exactly call Joe Brimacombe an amateur astrophotographer, he’s managed to capture an elusive solar event on film… a coronal mass ejection!

A huge, conical-shaped magnetic prominence had been lingering for days and calling attention to itself. On the morning of October 13, 2011 – it delivered.

According to SpaceWeather, much of the prominence fell back to the solar surface, but some of the structure did fly into space, producing a coronal mass ejection. SOHO coronagraphs of the CME show that it is propagating up and out of the plane of the solar system and chances are good that no planet will be hit by the expanding cloud.

But that’s professional instruments! Imagine the excitement between 0200 and 0345 UT at Coral Towers Observatory when Joe was using either a Takahashi Sky 90 or Astrophysics 130 telescope to capture the action! Both telescopes operate at a focal ratio of F/5 and he was using a Coronado Solar Filter and various Skynyx cameras.

Doing what space telescopes do!

Many thanks to Joe Brimacombe for sharing his work – and passion – with us!

New Dark Matter Census – The Hubble Survey

This image of galaxy cluster MACS J1206.2-0847 is part of a broad survey with NASA's Hubble Space Telescope. Credit: NASA, ESA, M. Postman (STScI), and the CLASH Team

[/caption]

Way off in the constellation of Virgo, galaxy cluster MACS J1206.2-0847 -or MACS 1206 for short – is making news as the forerunner of a brand new Hubble Space Telescope survey. What’s new for the aging telescope? Now astronomers are able to assemble a highly detailed dark matter map… one that involves more galaxy clusters than ever before.

These “dark matter” maps are proving their worth by allowing astronomers to test some theories. In this case, it’s some unusual findings which suggest dark matter is more densely packed inside galaxy clusters than some models predict. If this holds true, it may point to evidence that galaxy clusters pulled together sooner than once predicted. The multiwavelength survey, called the Cluster Lensing And Supernova survey with Hubble (CLASH), takes an unprecedented look at the distribution of dark matter in 25 massive clusters of galaxies.

“The era when the first clusters formed is not precisely known, but is estimated to be at least 9 billion years ago and possibly as far back as 12 billion years ago.” says the Hubble team. “If most of the clusters in the CLASH survey are found to have excessively high accumulations of dark matter in their central cores, then it may yield new clues to the early stages in the origin of structure in the universe.”

To date, the CLASH team has finished their observations of six of the 25 clusters. Of these, MACS 1206 has a distance of about 4.5 billion light-years and was photographed with Hubble’s Advanced Camera for Surveys and the Wide Field Camera 3 in April 2011 through July 2011. What are the strange shapes? These “distortions” are where the light is bent by the extreme gravitation of dark matter.

“Lensing effects can also produce multiple images of the same distant object, as evident in this Hubble picture. In particular, the apparent numbers and shapes of distant galaxies far beyond a galaxy cluster become distorted as the light passes through, yielding a visible measurement of how much mass is in the intervening cluster and how it is distributed.” says the team. “The substantial lensing distortions seen are proof that the dominant component of clusters is dark matter. The distortions would be far weaker if the clusters’ gravity came only from the visible galaxies in the clusters.”

Original Story Source: Hubble News Release.

Taking Mars’ Temperature – The ALH84001 Meteorite

This photograph shows globules of orange-colored carbonate minerals found in the Martian meteorite dubbed ALH84001. The origin of the carbonate minerals has long puzzled scientists, but by determining that the carbonate formed at about 18 degrees Celsius, Caltech researchers say they might have an answer. The mild temperature is also consistent with the theory that Mars was once warmer and wetter than it is today. Credit: NASA

[/caption]

It might be four billion years old, but this meteorite which may have originated near the surface of Mars has a story to tell… one about a warmer and wetter history. Researchers at the California Institute of Technology (Caltech) have been analyzing the carbonate minerals contained within the Martian meteorite – ALH84001- and piecing together a climate history which showed the minerals formed at about 18 degrees Celsius (64 degrees Fahrenheit).

“The thing that’s really cool is that 18 degrees is not particularly cold nor particularly hot,” says Woody Fischer, assistant professor of geobiology and coauthor of the paper, published online in the Proceedings of the National Academy of Sciences (PNAS) on October 3. “It’s kind of a remarkable result.”

All recent studies, from rovers to spectroscopy, point to Mars having once had a much more temperate climate than its current average temperature of -63 degrees Celsius. Missions have photographed dry river beds, deltas, extinct lakes and more. Up until now, the one crucial point has been the lack of physical evidence. “There are all these ideas that have been developed about a warmer, wetter early Mars,” Fischer says. “But there’s precious little data that actually bears on it.” That is, until now.

Of course, this mineralogical evidence is strictly one point – but it’s one point closer to knowing the full score. “It’s proof that early in the history of Mars, at least one place on the planet was capable of keeping an Earth-like climate for at least a few hours to a few days,” says John Eiler, the Robert P. Sharp Professor of Geology and professor of geochemistry, and a coauthor of the paper. The first author is Itay Halevy, a former postdoctoral scholar who’s now at the Weizmann Institute of Science in Israel.

Where did this new evidence come from? Try ALH84001, a Martian meteorite discovered in 1984 in the Allan Hills of Antarctica. While scientists cannot definitely prove where it came from, ALH84001 is theorized to have once originated several hundred feet below the Martian surface and was blown Earthward during an impact event. The Martian meteorite made headlines in 1996 when little inclusions that appeared to be fossilized bacteria were discovered. Even though the thought of simple life forms were quickly shot down, the pockets which contained carbonate minerals remained an enigma.

“It’s been devilishly difficult to work out the process that generated the carbonate minerals in the first place,” Eiler says. But there have been countless hypotheses, he adds, and they all depend on the temperature in which the carbonates formed. Some scientists say the minerals formed when carbonate-rich magma cooled and crystallized. Others have suggested that the carbonates grew from chemical reactions in hydrothermal processes. Another idea is that the carbonates precipitated out of saline solutions. The temperatures required for all these processes range from above 700 degrees Celsius in the first case to below freezing in the last. “All of these ideas have merit,” Eiler says.

Deducing the temperature may help scientists to understand how the carbonates came to be, so a form of modeling called clumped-isotope thermometry was employed to help. It’s so sensitive it’s able to determine a dinosaur’s body temperature in relation to Earth’s climate history. In this case, the team measured concentrations of the rare isotopes oxygen-18 and carbon-13 contained in the carbonate samples. Carbonate is made out of carbon and oxygen, and as it forms, the two rare isotopes may bond to each other – clumping together, as Eiler calls it. As the temperature progressively lowers, the isotopes do their thing and clump. The degree to which this happens is directly related to temperature. The temperature the researchers measured – 18 ± 4 degrees Celsius – rules out many carbonate-formation hypotheses. “A lot of ideas that were out there are gone,” Eiler says. For one, the mild temperature means that the carbonate must have formed in liquid water. “You can’t grow carbonate minerals at 18 degrees other than from an aqueous solution,” he explains.

Through this new information, it is also hypothesized the minerals may have come into existence inside the cavities of rock while it was below ground. “As the water evaporated, the rock outgassed carbon dioxide, and the solutes in the water became more concentrated. The minerals then combined with dissolved carbonate ions to produce carbonate minerals, which were left behind as the water continued to evaporate.” A vessel for life? Well, chances aren’t good since any liquid water would have lasted for only a brief time – but it is a great indicator that this precious life-giver was once a part of Mars’ history.

Original Story Source: Caltech News Release.

Early Galaxies – Clearing The “Cosmic Fog”

Scientists have used ESO’s Very Large Telescope to probe the early Universe at several different times as it was becoming transparent to ultraviolet light. This brief but dramatic phase in cosmic history — known as reionisation — occurred around 13 billion years ago. By carefully studying some of the most distant galaxies ever detected, the team has been able to establish a timeline for reionisation for the first time. They have also demonstrated that this phase must have happened quicker than astronomers previously thought.

[/caption]

The seasons are changing for both hemispheres and it’s not uncommon to wake up to wonderful, mysterious swirls of fog. What we experience here on Earth is water vapor, but the Universe was once filled with a fog of hydrogen gas. As the hours progress, the Sun slowly burns it off – quietly revealing trees, houses and the road ahead. In time after expansion began, the electrically neutral hydrogen gas was slowly swept away by the light of ultraviolet radiation from early galaxies…

Using the Very Large Telescope (VLT) like a “time machine”, a team of astronomers cut through the cosmic cloud layer to view some of the most distant galaxies recorded so far – a look back between 780 million and a billion years after the Big Bang. These antediluvian galaxies excited the gas, making it electrically charged (ionised), it gradually became transparent to ultraviolet light. While you may argue this process is technically known as reionization, there is theorized to be a brief timeline when hydrogen was also ionised.

“Archaeologists can reconstruct a timeline of the past from the artifacts they find in different layers of soil. Astronomers can go one better: we can look directly into the remote past and observe the faint light from different galaxies at different stages in cosmic evolution,” explains Adriano Fontana, of INAF Rome Astronomical Observatory who led this project. “The differences between the galaxies tell us about the changing conditions in the Universe over this important period, and how quickly these changes were occurring.”

As we know from spectroscopy, each element has its own signature – the emission lines – and the strongest in ultraviolet is the Lyman-alpha line generated from hydrogen. This bold spectral signature is easily recognizable – even at a vast distance. By observing the Lyman-alpha line for five very remote galaxies, the team was able to establish two critical factors: their distance through redshift and how soon they could be detected. Through this process, the astronomers were then able to establish how much the Lyman-alpha emission was reabsorbed by the neutral hydrogen fog and create a timeline… A whole lot like recording what minute each landmark reappears when terrestrial fog clears and seeing the long road ahead.

“We see a dramatic difference in the amount of ultraviolet light that was blocked between the earliest and latest galaxies in our sample,” says lead author Laura Pentericci of INAF Rome Astronomical Observatory. “When the Universe was only 780 million years old this neutral hydrogen was quite abundant, filling from 10 to 50% of the Universe’ volume. But only 200 million years later the amount of neutral hydrogen had dropped to a very low level, similar to what we see today. It seems that reionization must have happened quicker than astronomers previously thought.”

As always, there’s a bit more to the story. In this case, by understanding the rate at which the ancient absorbent obstruction began fading, scientists could also deduce the source of the powerful ultraviolet radiation. Could it be first generation stars – or even the work of primeval black holes?

“The detailed analysis of the faint light from two of the most distant galaxies we found suggests that the very first generation of stars may have contributed to the energy output observed,” says Eros Vanzella of the INAF Trieste Observatory, a member of the research team. “These would have been very young and massive stars, about five thousand times younger and one hundred times more massive than the Sun, and they may have been able to dissolve the primordial fog and make it transparent.”

To prove anything, it’s going to take a lot more research and some very accurate measurements – ones that are already in the planning stage for the future ESO European Extremely Large Telescope. But, in the meantime, the team used the great light-gathering power of the 8.2-metre VLT to carry out spectroscopic observations, targeting galaxies first identified by the NASA/ESA Hubble Space Telescope and in deep images from the VLT.

Original Story Source: ESO Press Release. For Further Reading: Probing The Earliest Galaxies And The Epoch Of Reionization.

Free Range Brown Dwarfs

Brown dwarfs in the young star cluster NGC 1333. This photograph combines optical and infrared images taken with the Subaru Telescope. Brown dwarfs newly identified by the SONYC Survey are circled in yellow, while previously known brown dwarfs are circled in white. The arrow points to the least massive brown dwarf known in NGC 1333; it is only about six times heftier than Jupiter. Credit: SONYC Team/Subaru Telescope

[/caption]

Using two of the world’s largest optical-infrared telescopes, the Subaru Telescope in Hawaii and the Very Large Telescope (VLT) in Chile, an international team of astronomers has discovered more than two dozen brown dwarf stars floating around in two galactic clusters. During the Substellar Objects in Nearby Young Clusters (SONYC) survey, these “failed stars” came to their attention by showing up in extremely deep images of the NGC 1333 and rho Ophiuchi star clusters at both optical and infrared wavelengths. To make the findings even more exciting, these stellar curiosities outnumbered the “normal” stars in one cluster!

“Our findings suggest once again that objects not much bigger than Jupiter could form the same way as stars do. In other words, nature appears to have more than one trick up its sleeve for producing planetary mass objects,” says Professor Ray Jayawardhana, Canada Research Chair in Observational Astrophysics at the University of Toronto and leader of the international team. Their discovery will be published in two upcoming papers in the Astrophysical Journal and will be presented this week at a scientific conference in Garching, Germany.

Spectra of several brown dwarfs in the young star cluster NGC1333, taken with the FMOS instrument on the Subaru Telescope. The spectra show a characteristic peak around 1670nm. Water steam in a brown dwarf's atmosphere absorbs radiation on both sides of the peak. The plot shows that the strength of the water absorption increases in cooler objects (from 3000 to 2200K). FMOS allows astronomers to take spectra for many objects simultaneously, a crucial advantage for the SONYC Survey. Credit: SONYC Team/Subaru Telescope

Using spectroscopy, the researchers were able to separate candidate brown dwarfs by their red color. But there’s more to the story than just hues. In this case, it’s the identification of one that’s only about six times more massive than Jupiter. Located in NGC 1333, it is the smallest known free-floating object to date. What does that mean? “Its mass is comparable to those of giant planets, yet it doesn’t circle a star. How it formed is a mystery,” said Aleks Scholz of the Dublin Institute for Advanced Studies in Ireland, lead author of the first paper.

Brown dwarfs are indeed unusual. They walk a fine line between planet and star – and may have once been in stellar orbit, only to be ejected at some point in time. But in this circumstance, all of the brown dwarfs found in this particular cluster have very low mass – only about twenty times that of Jupiter. “Brown dwarfs seem to be more common in NGC 1333 than in other young star clusters. That difference may be hinting at how different environmental conditions affect their formation,” said Koraljka Muzic of the University of Toronto in Canada, lead author of the second paper.

“We could not have made these exciting discoveries if not for the remarkable capabilities of Subaru and the VLT. Instruments that can image large patches of the sky and take hundreds of spectra at once are key to our success,” said Motohide Tamura of the National Astronomical Observatory of Japan.

Free-range brown dwarfs? I’ll take mine over easy…

Original Story Source: Subaru Telescope News.

Life In A Slice Of Ice

Image of the Harding Ice Field on Alaska’s Kenai Peninsula. Credit: US Fish and Wildlife Service

[/caption]

Thanks to a grant from the National Science Foundation, a University of Washington doctoral student named Adam Campbell has been conducting a research on photosynthetic algae. While this simple, light-loving form of life might not seem very important, it very well could have survived the global ice age by hiding in an area similar to the Red Sea.

“Under those frigid conditions, there are not a lot of places where you would expect liquid water and light to occur in the same area, and you need both of those things for photosynthetic algae to survive,” said Campbell.

How could this slice of ice endure against the massive force of a glacier? If there was a thin body of water about six and half times longer than it was wide, it would be possible for it to create enough physical resistance to stop a moving ice sheet. Chances are good that the ice would vaporize before it reached the end of the sea. This means at least enough open water for algae to survive.

“The initial results have shown pretty well that these kinds of channels could remain relatively free of thick glacial ice during a ‘snowball Earth’ event,” Campbell elucidates.

Through the use of an analytical model that simulates environmental conditions theorized to exist somewhere between 800 million and 550 million years ago, Campbell and his team of Edwin Waddington and Stephen Warren, UW professors of Earth and space sciences, were able to simulate ten million years of deep freeze. Their timeline began before the Cambrian explosion about 530 million years ago when Earth quickly changed tactics and became more heterogeneous. However, simple photosynthetic plankton have made their presence known in the records both before and after this studied time period… a presence which made scientists wonder how it could happen if the Earth had been totally covered in ice.

Campbell said it is assumed the algae survived these episodes, “unless they re-evolved each time, which creates a whole different problem for evolutionary biology.”

Why chose the Red Sea as an example? Quite simply put, because it’s perfect. It formed from a tectonic process called continental rifting, existed in the right time line and was correctly globally positioned. Campbell also noted that in a snowball Earth event, the exposed sea would have quickly evaporated if there weren’t a method of refill – such as created by a dam of glacial ice. Just a small amount… like enough to last 10 million years for the algae to take hold.

“Over 10 million years, you could evaporate the deepest lake in the world,” Campbell said. “If you’re in a desert, you’d have to have a supply of sea water.”

Original Story Source: University of Washington News.

Welcome To The Heart Of The Milky Way…

The galactic core, observed using infrared light and X-ray light. Credit: NASA, ESA, SSC, CXC, and STScI

[/caption]

When it comes to my job, I see a lot of astrophotography. I’ve contemplated innumerable nebulae, viewed myriad galaxies and dreamed over abounding star clusters. Each photo is a work of art in its own right – where the palette is a computer program and the canvas is a screen. These creations are stunning, showing us the true nature of what lay just beyond the visible perception of human sight. However, there are very few that when printed seem to have life of their own. This snapshot in time is one of them…

When this image was originally revealed on November 10, 2009, it was meant to commemorate Galileo’s 400th anniversary of turning a telescope towards the heavens. At the time, 150 prints were released to libraries, schools, planetariums, nature centers and observatories across the country. These massive six feet by three feet prints are a composite of a near-infrared view from the Hubble Space Telescope, an infrared view from the Spitzer Space Telescope and an X-ray view from the Chandra X-ray Observatory into one multi-wavelength picture.

What no one could prepare you for is the emotional impact such an image could have on you… If only you let it.

In this revelation of the heart of the Milky Way you’ll witness star birth – and death. You’ll travel along the effects of a supermassive black hole nearly four million times more massive than our Sun. You’ll walk into a complex web weaved from glowing gas clouds, dripping with globules, filaments and dark, dusty cocoons where neophyte stars await their turn to emerge. You’ll be swept away on the glowing blue stellar winds of X-ray light and dropped into the well of infra-red. You’ll feel yourself uplifted… Pulled into the “pillars of creation”. You’ll fly along hundreds of thousands of stars that could never be seen in visible light.

In short, you can’t walk away untouched.

Each telescope's contribution is presented in a different color: Yellow represents the near-infrared observations of Hubble. They outline the energetic regions where stars are being born as well as reveal hundreds of thousands of stars. Red represents the infrared observations of Spitzer. The radiation and winds from stars create glowing dust clouds that exhibit complex structures from compact, spherical globules to long, stringy filaments. Blue and violet represent the X-ray observations of Chandra. X-rays are emitted by gas heated to millions of degrees by stellar explosions and by outflows from the supermassive black hole in the galaxy's center. The bright blue blob on the left side is emission from a double star system containing either a neutron star or a black hole. Credit: NASA, ESA, SSC, CXC, and STScI

To see the full size image here on your screen is one thing, to see it accompanied by the individuals that make up the three by four feet composite is nice… But it’s the difference between looking up an image of the Mona Lisa and looking at the Mona Lisa as it hangs in the art gallery. I strongly urge you to investigate these NASA’s Great Observatories – Galactic Center Image Locations and take the time to visit in person.

You won’t regret the experience.

My many thanks go to Rich Ruggles of Astronomy 1 On 1 for opening my eyes to all the joy, wonder and mystery all over again.