Measuring Mercury’s Craters

Images of craters obtained by MDIS from orbit. Left: A simple, bowl-shaped crater 4.1 km in diameter crater located at 78.8ºN, 346.3ºE. Solar illumination is from the south. Right: A complex crater 51.5 km in diameter located at 2.3ºN, 121.4ºE. Illumination is from the east. Shadows cast on a crater interior can be used to estimate the depth of a crater floor below the surrounding rim.

[/caption]

Getting to know a planet well is getting to know its surface features. Through measuring impact craters, planetary scientists are able to disclose information such as the origin and evolution of Mercury’s surface. We know it’s a matter of numbers, but just exactly how is it done when you can’t physically be there?

Size, shape and structure of craters is the common bond that most solar system bodies share. By understanding the physics of how they were made, researchers are able to draw conclusions through modeling. Their laboratory impact experiments and numerical simulations make judging crater qualities doable on a planetary scale. To further refine their results, it is then compared against known data for new, as well as eroded, craters. This information then gives us a clearer idea of surface properties, such as mineral deposits, soil composition, ice deposits, proportions and more. Checking out shapes and sizes on Mercury with observations obtained by the MESSENGER spacecraft are just the beginning.

Why is a Mercury crater investigation so important? Maybe because its surface gravitational acceleration (3.7 m/s2) is nearly identical to that at Mars. In this case, gravity plays an important role as the “transition diameter” is affected. According to the study, “Simple craters tend to be bowl shaped, whereas complex craters have terraced walls and can contain a central peak. If gravity were the dominant factor controlling the transition diameter, one would expect that this diameter would be similar on Mercury and Mars.” These transition diameters observed on Mercury are important because they give us clues to the Martian crust. Their differences could mean a weaker surface due to near-surface water ice.

An example complex crater on Mercury, ~ 55 km in diameter and centered near 63.5°N, -139ºE, that has been imaged by MDIS (left) and profiled by MLA (right). A slightly larger complex crater lies along the MLA profile to the south.

The Mercury Laser Altimeter (MLA) and the Mercury Dual Imaging System (MDIS) are hard at work providing the photo data needed to study cratering. We’re now able to get an inside look at central peaks, walls, floors and slopes. In addition, we’re getting a concise measurement of diameters. As with the Moon, researchers can make assessments as to depth by measuring the shadows. While MLA cannot always be used for these types of measurements, these fresh insights are furthering our understanding of crater properties – both on Mercury and across all holey bodies in our solar system.

Original News Source: Messenger News.

Catch A Pulsar By The Tail

A pulsar located about 1,600 light years from Earth.

Originally discovered by the Fermi Gamma Ray Space Telescope in 2009, Pulsar PSR J0357 had a bit of a surprise for astronomers when NASA’s Chandra X-ray Observatory turned an eye its way. Even though it might be 1,600 light years from Earth and half a million years old, it would appear this object has a cosmic sense of humor. Stretching across 4.2 light years is an enormous tail…

Viewable only at X-ray wavelengths, this incredible cosmic contrail is the longest ever associated with a so-called “rotation- powered” pulsar. Unlike other pulsars, J0357 gets its power from energy depletion as the spin rate decreases. But where did the plumage come from? According to the Chandra data, it may be an emission from energetic particles in the pulsar wind produced while turning around magnetic field lines. While artifacts of this type have been noted before, they’re classed as bow-shocks generated by the supersonic motion of pulsars through space. From there, the wind pulls the particles along behind it as the pulsar passes through interstellar gas.

But Pulsar PSR J0357 isn’t exactly fitting into a neat a tidy category…

According to data taken from Fermi, J0357 is only losing a small amount of energy as its spin rate slows. This means it shouldn’t be producing a particle wind of such proportions. Another anachronism is the placement of the bright portions of the tail – not anywhere near where bow-shocks are associated with pulsars.

“Further observations with Chandra could help test this bow-shock interpretation.” says the Chandra team. “If the pulsar is seen moving in the opposite direction from that of the tail, this would support the bow-shock idea.”

Original News Source: Chandra News.

New Kids On The Block – The Brown Dwarfs

False-colour images of the two brown dwarf discoveries WISE J0254+0223 and WISE J1741+2553. (Credit: AIP, NASA/IPAC Infrared Science Archive)

[/caption]

When it comes to being close to “home”, there are not a lot of stars out there in our general neighborhood. Proxima Centauri is 4.2 light years away and Rigil Kentaurus is 4.3. There’s Barnard’s Star, Wolf 359, Lalande 21185, Luyten 726-8A and B and big, bright Sirius A and B. But what about a celestial neighbor that’s not quite so prominent? Try a pair of newly discovered brown dwarfs.

Scientists from the Leibniz Institute for Astrophysics Potsdam (AIP) using the NASA satellite WISE (Wide-field Infrared Survey Explorer) have discovered this unlikely duo just 15 and 18 light years from our solar system. “We have used the preliminary data release from WISE, selected bright candidates with colours typical of late-T dwarfs, tried to match them with faint 2MASS and SDSS objects, to determine their proper motions, and to follow-up them spectroscopically.” says RD Scholz, et al.

Named WISE J0254+0223 and WISE J1741+2553, the pair drew attention to themselves by their very disparity – one very bright in infrared and the other very faint in optical light. Even more attractive was the speed at which they’re moving – the proper motion changing drastically between observations. “The very large proper motions are a first hint that these objects should be very close to the Sun. Both objects are only detected in the SDSS z-band which is typical of nearby late-T dwarfs.” says Scholz.

Because the pair were optically visible at the time of the discovery, the team employed the Large Binocular Telescope (LBT) in Arizona to determine their spectral type and home in more accurately on their distance. They wanted to know more about the coolest representatives of T-type brown dwarf – the ultra-cool ones. Better known as failed stars because they lacked the mass to ignite nuclear fusion, the duo required study because their magnitude decreases sharply with time. Because they fade so quickly, there’s a strong possibility of a brown dwarf being much closer than we realize.

Like maybe next door…

Original News Source: Leibniz Institute for Astrophysics Potsdam News. For further reading: Cornell University Library – Two very nearby (d ~ 5 pc) ultracool brown dwarfs detected by their large proper motions from WISE, 2MASS, and SDSS data.

Are The Galaxies In Our Universe More Right-Handed… Or Left-Handed?

A new study found an excess of counter-clockwise rotating or "left-handed" spiral galaxies like this one, compared to their right-handed counterparts. This provides evidence that the universe does not have mirror symmetry. Credit: NASA, ESA

[/caption]

It’s called mirror symmetry and it has everything to do with a recent study done by physics professor Michael Longo and a team of five undergraduates from the University of Michigan. Their work encompasses the rotation direction of tens of thousands of spiral galaxies cataloged by the Sloan Digital Sky Survey. What they’re looking for is the shape of the Big Bang… and what they found is much more elaborate than they thought.

By utilizing SDSS images, the team began looking for mirror symmetry and evidence the early universe spun on an axis. “The mirror image of a counter-clockwise rotating galaxy would have clockwise rotation. More of one type than the other would be evidence for a breakdown of symmetry, or, in physics speak, a parity violation on cosmic scales.” Longo said. However, there seems to be a certain “spin preference” when it comes to spiral galaxies toward the north pole of the Milky Way. Here they found an abundance of left-handed, or counter-clockwise rotating, spirals – an effect which extended beyond an additional 600 million light years.

“The excess is small, about 7 percent, but the chance that it could be a cosmic accident is something like one in a million,” Longo said. “These results are extremely important because they appear to contradict the almost universally accepted notion that on sufficiently large scales the universe is isotropic, with no special direction.”

On the other hand, be it left or right, Galaxy Zoo has done some very interesting research into mirror symmetry as well. In conjunction with the Sloan Digital Sky Survey, the team also involved the public for their input – a total of 36 million classifications for 893,212 galaxies from 85,276 users. The GZ study is absolutely fascinating and took every variable into account.

“We wish to establish the large scale statistical properties of the galaxy spins. Although there is some level of uncertainty in the overall number counts, it is still possible to look for a dipole, for example, in the spin distributions.” says Kate Land, et al. “Curiously, the dipoles from these two analyses are in completely opposite directions. The samples cover different amounts and parts of the sky, with SDSS mainly in the Northern hemisphere and the sample of Sugai & Iye (1995) predominantly in the Southern hemisphere. In both cases the dipoles tend to point away from the majority of the data but neither analysis fits for a monopole or takes account of their partial sky coverage in assessing the dipole. With incomplete sky coverage the spherical harmonic decomposition is no longer orthogonal and for a sample covering less than half of the sky it is hard to tell the difference between a monopole (an excess of one type over the other) and a dipole (an asymmetry in the distribution).”

So what’s the end result? Well, chances are good that our universe was born spinning… but like any family, there isn’t much evidence one way or another that says most members have to be right – or left – handed. It’s more about how we, as humans, perceive them…

Original Story Source: University of Michigan New Service. For further information, read Galaxy Zoo: The large-scale spin statistics of spiral galaxies in the Sloan Digital Sky Survey.

Turning On A Supermassive Black Hole

A new study combining data from ESO’s Very Large Telescope and ESA’s XMM-Newton X-ray space observatory has turned up a surprise. Most of the huge black holes in the centres of galaxies in the past 11 billion years were not turned on by mergers between galaxies, as had been previously thought. Credit: CFHT/IAP/Terapix/CNRS/ESO

[/caption]

ESO’s Very Large Telescope and ESA’s XMM-Newton X-ray Space Observatory has just opened our eyes once again. While we thought that the massive black holes that lurk at the center of large galaxies (and they always lurk, don’t they? they never just lay about, lallygag, or loiter…) for the last 11 billion years were turned on by mergers, we’re finding out it just might not be so.

For all astronomers, we’re aware that galactic structure involves a mostly quiescent central black hole. But as we reach further out into the Universe, we’re finding that early, brighter galaxies have a middle monster – one which appears to be noshing on a material that emits intense radiation. So if a galaxy merger isn’t responsible, then where does the material originate to ignite a quiet black hole into an active galactic nucleus? Maybe the omni-present dark matter…

Viola Allevato (Max-Planck-Institut für Plasmaphysik; Excellence Cluster Universe, Garching, Germany) and an international team of scientists from the COSMOS collaboration have studied 600 active galaxies in an intensively mapped region called the COSMOS field. Spanning an area consisting of about five degrees of celestial real estate in the constellation of Sextans, the COSMOS field has been richly observed by multiple telescopes at multiple wavelengths. This gives astronomers a great “picture” from which to draw data.

What they found was pretty much what they had expected – most of the active galaxies in the past 11 billion years were only moderately bright. But what they weren’t prepared to understand is why the majority of these more common, less bright active galaxies weren’t triggered by mergers. It’s a problematic situation that had previously been tackled by the Hubble Space Telescope, but COSMOS is looking back even further in time and with greater detail – a three-dimensional map showing where the active galaxies reside. “It took more than five years, but we were able to provide one of the largest and most complete inventories of active galaxies in the X-ray sky,” said Marcella Brusa, one of the authors of the study.

These new charts could help further our understanding of distribution as the universe aged and further refine modeling techniques. The new information also points to active galactic nuclei being hosted in large galaxies with abundances of dark matter… against popular theory. “These new results give us a new insight into how supermassive black holes start their meals,” said Viola Allevato, who is lead author on the new paper. “They indicate that black holes are usually fed by processes within the galaxy itself, such as disc instabilities and starbursts, as opposed to galaxy collisions.”

Alexis Finoguenov, who supervised the work, concludes: “Even in the distant past, up to almost 11 billion years ago, galaxy collisions can only account for a small percentage of the moderately bright active galaxies. At that time galaxies were closer together so mergers were expected to be more frequent than in the more recent past, so the new results are all the more surprising.”

Original News Source: ESO Press Release.

Burned Out Stars Do A Deadly Last Dance

Two white dwarfs have been discovered on the brink of a merger. In just 900,000 years, material will start to stream from one star to the other (as shown in this artist's conception), beginning the process that may end with a spectacular supernova explosion. Watching these stars fall in will allow astronomers to test Einstein's general theory of relativity as well as the origin of a special class of supernovae. Credit: David A. Aguilar (CfA)

[/caption]

“Well, I don’t know, but I’ve been told… You never slow down, you never grow old.” Well, Tom Petty might not ever grow old, but stars do. In this case it’s a pair white dwarf stars and they’re locked in a death dance that has them spiraling around each other in just 13 minutes. Astronomers estimated that in about 900,000 years the pair will merge… and what a party that will be!

Traveling in an orbit that’s currently carrying them at 370 miles per second (600 km/s), these two burnt-out stellar cores are heading towards a supernova ending. Right now the brighter of the pair is about the size of Neptune and carries about one quarter of our Sun’s mass. Its companion contains twice as much mass and is about the size of Earth. What’s peculiar is the incredible speed at which they are converging.

“I nearly fell out of my chair at the telescope when I saw one star change its speed by a staggering 750 miles per second in just a few minutes,” said Smithsonian astronomer Warren Brown, lead author of the paper reporting the find.

Using the MMT telescope at the Whipple Observatory on Mt. Hopkins, Arizona, researchers have been looking for just such eclectic white dwarf pairings. Because of their close proximity, they can only be separated spectroscopically and their relative motions then determined. Fortunately, this unusual set are eclipsing, doing their two-step at a very predictable rate. “If there were aliens living on a planet around this star system, they would see one of their two suns disappear every 6 minutes – a fantastic light show.” said Smithsonian astronomer and co-author Mukremin Kilic.

What’s really cool about this observing project is its implications as related to Einstein’s theories. Their movements should create wrinkles in the fabric space-time. These gravitational waves pull away at the energy – allowing the pair to get closer at each pass and their orbits to accelerate.

“Though we have not yet directly measured gravitational waves with modern instruments, we can test their existence by measuring the change in the separation of these two stars,” said co-author J. J. Hermes, a graduate student at the University of Texas at Austin. “Because they don’t seem to be exchanging mass, this system is an exceptionally clean laboratory to perform such a test.”

Just as soon as the pair emerges from behind the Sun, observing will begin again. Some models predict merging white dwarf pairs of this type could be a rare class of unusually faint stellar explosions called underluminous supernovae – or just the source of many other kinds of supernovae. “If these systems are responsible for underluminous supernovae, we will detect these binary white dwarf systems with the same frequency that we see the supernovae. Our survey isn’t complete, but so far, the numbers agree,” said Brown.

What can we say besides, “Last dance with Mary Jane… One more time to kill the pain… I feel summer creepin’ in.”

Original Story Source: Harvard-Smithsonian Center for Astrophysics.

MAXI Peers Into Black Hole Binaries

X-ray all-sky image obtained by MAXI's first 10-month observation Bright X-ray sources (mainly binaries comprising neutron stars and black holes) exist in large numbers around the Galactic Center (in the direction of Sagittarius) and along the Galactic Plane (Milky Way) and change from day to day. Colors indicate the "hardness" of X-ray spectrum. More than 200 X-ray sources including weak ones have been identified. Credit: JAXA

[/caption]

The Monitor of All-sky X-ray Image, or MAXI for short, spends its time aboard the ISS conducting a full sky survey every 92 minutes. Its sole purpose is to monitor X-ray source activity and report. Unlike stars seen in visible light, X-ray sources aren’t evenly distributed and can exhibit some highly unusual behavior. What causes these erratic moments? Read on…

“Most visible stars shine with energies generated by nuclear fusion in their cores. In these stars, if the energy generated in their core increases more than usual, the whole object expands and eventually lowers the core temperature. In this way, negative feedback is activated to stabilize the nuclear reaction. For this reason, these stars shine very stably for most of their lifetime.” says Nobuyuki Kawai of the Tokoyo Institute of Technology. “On the other hand, the energy source of most intense X-ray sources is gravitational energy released when the gas surrounding extremely compact bodies like black holes and neutron stars is accreted onto them. The normal stars’ stabilizing mechanism does not work in this process, and accordingly, X-ray intensity fluctuates in response to changes in the supply of gas from the surrounding area.”

This means MAXI needs to keep a close watch on both known and unknown X-ray sources for activity. Catching it as it happens allows an alert to be posted to other observatories for monitoring and study. Right now the focus has been on MAXI’s 18 month study of black hole binaries – the most famous of which is Cygnus X-1. It is well-known this famous source shines brilliantly in the X-ray spectrum, but it switches between a “hard” and “soft” state. These periods of high and low energy may be directly related to the density of gas which surrounds it.

“We can get a clue to estimate the mass of a black hole by examining the X-ray intensity and radiation spectrum in the soft state. As a result of analysis of the motion of the companion star rotating the center of gravity of the binary system, we found that Cygnus X-1 is a remarkably smaller object than normal stars, with an X-ray source mass about 10 times the solar mass but which emits hardly any visible light.” says Professor Kawai. “If applying star theory, such an object must be a black hole.”

Right now astronomers are studying gas properties and estimate there are about 20 binary X-ray sources other than Cygnus X-1. Most of these black hole binaries are considered to be “X-ray nova” – showing activity anywhere from every few years to only once in the four decades we’ve been studying them in this light. With the help of MAXI’s sensitive all-sky monitoring, researchers now stand a chance of being able to monitor activity from beginning to end. Has it been successful? You bet. When black hole binary, XTE J1752-223, was discovered by the routine patrol of RXTE, MAXI also detected the emergence of this new X-ray nova and was able to observe all the activities until it disappeared in April 2010. On September 25, 2010 MAXI and the Swift satellite discovered black hole binary MAXI J1659-152 almost simultaneously allowing it to be observed by researchers and amateur astronomers around the world.

“In addition to these black hole binaries, MAXI has achieved many interesting observations including: detection of the largest flare from active galactic nuclei in X-ray observation history; discovery of a new binary X-ray pulsar, MAXI J1409-619; and detection of a number of intense star flares.” says Kawai. “As long as the ISS is operating, we will use MAXI to monitor the X-ray sky, which changes restlessly and violently.”

Original Story Source: Japan Aerospace Exploration Agency.

Happy Anniversary, Neptune!

Neptune photographed by Voyage. Image credit: NASA/JPL
Neptune photographed by Voyager 2. Image credit: NASA/JPL

Today, July 11, 2011 marks the first full orbit of the planet Neptune since its discovery on the night of September 23-24, 1846. But there’s a lot more to learn about this anniversary than just the date. Step inside and let’s find out…

Pinpointing Neptune is a wonderful story. For many years we’ve been taught that the discovery of Neptune was done by mathematical calculations. This came about in 1821 when Alexis Bouvard was publishing his findings for Uranus and noticed a gravitational perturbation. This led him to hypothesize an unknown body was crossing the path. Enter miscommunications, politics and astronomer John Adams…

“It is more likely that Adams realised that his proposed orbits were moving ever closer to a “forbidden” zone of resonance.” says Brian Sheen of Roseland Observatory. “Uranus orbits in 84 years, Neptune in 165, nearly a 2:1 resonance, this brings about much greater perturbations than were being measured. In fact the mid 19th century is a quiet period and much bigger swings are evident now.”

In 1843 John Couch Adams used the data Bouvard proposed to begin working on a proposed orbit, but it would be several years later before Urbain Le Verrier verified its existence through physical observation – at the same time as Johann Gottfried Galle. Says Sheen; “It is often said that Adams never published his results. In fact a published paper was printed by November 1846 and appeared in the 1851 Nautical Almanack published in 1847.”

Unknown to both at the time – and in a great twist of irony – Galileo had actually observed Neptune on December 28, 1612, and again on January 27, 1613, but didn’t realize it was a planet. Small wonder he thought it was a fixed star, because as luck would have it, Neptune turned retrograde at the same time as his first observation! But Galileo was a great observer and made drawings of his find. Given all that we know today, it’s pretty astonishing his limited equipment was able to perceive the blue planet, let alone realize its minor movement against the ecliptic meant something. After all, the very concept of the ecliptic plane was new!

“It has been known for several decades that this unknown star was actually the planet Neptune,” says University of Melbourne physicist, David Jamieson. “Computer simulations show the precision of his observations revealing that Neptune would have looked just like a faint star almost exactly where Galileo observed it.”

But we digress…

Today, July 11 would be the anniversary of Neptune’s first full barycentric orbit – a celebration that has taken us 164.79 years of waiting to celebrate. Tomorrow, July 12 is the anniversary of Neptune’s heliocentric completion. However, don’t expect Neptune to be in the exact same position in relation to the celestial sphere as it was on either date. While over 150 years is but a wink in the cosmic eye, it is certainly more than enough time for our solar system to have shifted That having been over simply said, what will happen at 21:48 and 24.6 seconds UT on July 11 is that Neptune will return to its exact longitudinal position in respect to the invariable plane. Is it close to its discovery point? Well, in a sense, yes. It will be within 1.5 arc seconds of its 1846 location relative to the barycentre. In visual terms, that’s just a whisker.

Is Neptune observable right now? You betcha’. But it’s not going to be easy… You’ll find it at RA 22h 11m 14s – Dec 11 47′ 1″ at its longitudinal anniversary time. Need a map? Here you go…

As you can see, it’s going to be quite late at night before Neptune has well cleared the horizon – but what an opportunity! Because of its small size, I recommend using a telescope for stability and printing a map from a planetarium program for more detailed star fields. It’s certainly not going to look like the Voyager image above, but you can expect to see a slightly blue colored disk that averages about magnitude 8 (well within reach of smaller scopes). If you have never seen Neptune before, compare it in your mind’s eye to one of Jupiter’s moons and you’ll be able to pick it out of starry background much easier.

Good luck, clear skies and happy anniversary Neptune!

Many thanks to Brian Sheen of Roseland Observatory!

3552 Don Quixote… Leaving Our Solar System?

In this artist's concept, a narrow asteroid belt filled with rocks and dusty debris orbits a star similar to our own sun. Image credit: NASA/JPL-Caltec

[/caption]

“Tell me thy company, and I’ll tell thee what thou art…” In this case it is Asteroid 3552 Don Quixote – one of the most well-known of Near Earth Asteroids. You may know its name, but did you know it has possible cometary origin? It may very well be one of the Jupiter-Family Comets just waiting for its turn to be ejected from our own solar system.

Asteroid 3552 Don Quixote was discovered by Paul Wild, on September 26, 1983 and has recently been part of a study where it has been virtually cloned one hundred times into hypothetical asteroids to further understand orbital evolution of bodies of its type. It is commonly assumed that NEAs like Quixote may have originated from a parent body between Mars and Jupiter, where they smashed into existence due to the larger planet’s gravity. From there the rocky debris took up positions at libration points – some pieces becoming Trojan asteroids and others Main Belt. However, current theory points to evidence that bodies like 3552 may have been small conglomerates from the solar nebula, unable to form into a larger mass due to Jupiter’s influence. Like past models, these asteroids collided numerous times from planetary perturbation to become what and where they are today.

“The numbers and masses of protoplanets and the time required to grow a protoplanet depend strongly on the initial conditions of the disk. The elasticity of the collision, does not significantly affect planetesimal growth over longtime scale. Most of the asteroids move between Mars and Jupiter and collisions occur frequently.” says Suryadi Siregar. “These collisional destructions occurred so often during the lifetime of the Solar System, that practically all the asteroids we now see are fragments of their original parent bodies. Some may be found in unstable zone like those of the Kirkwood gaps, in which they became the sources of Apollo-Amor-Aten asteroids (AAAs). This group is the main reference in the classification of NEAs.”

What makes Don Quixote, well… a little bit different? In this case it’s albedo and spectral signature. Its physical characteristics don’t quite fit in with our current understanding of cometary nuclei, as well as its orbital evolution in comparison with our solar system motion. Physically it is an asteroid but dynamically it is a comet…. A body in search of a collision on a grand scale. Through the use of theoretical models, the study has found that a percentage of Quixote clones will eventually find their way into the Sun, but with a bit of luck, asteroid 3552 will escape a fiery ending.

According to planetary astrophysicist Suryadi Siregar: “Asteroid 3552 Don Quixote is a clear example of the complexity of motion that can be exhibited by purely gravitating bodies in the Solar System. All planets have key roles to play in the evolution of 3552 Don Quixote. This asteroid also serves as an example of behavior chaotic that can cause asteroid to migrate outward, and may be followed by escaping from the Solar System.”

What can we say besides, “One man scorned and covered with scars still strove with his last ounce of courage to reach the unreachable stars; and the world was better for this…”

Original Story Source: Cornell University Library.

Milky Way Sparkles In The Eyes Of Gaia

Gaia Camera Array - Credit: Astrium / ESA

[/caption]

Here on Earth we play around with CCD cameras that boast a million pixels. But, can you imagine what a billion pixels could do? That’s the plan for ESA’s Galaxy-mapping Gaia mission. One hundred six electronic plates are being carefully integrated together to add up to the largest digital camera ever built for space… and its mission is to chart the Milky Way.

Beginning in 2013, Gaia’s five year mission will be to photograph a billion stars within our own galaxy – determining magnitude, spectral characteristics, proper motion and dimensional positioning. This information will be gathered by its charge coupled device (CCD) sensor array. Each of the 106 detectors are smaller than a normal credit card and thinner than a human hair. Put simplistically, each plate holds its own array of light-sensitive cells called photosites. Each photosite is its own pixel – just one tiny cell in the whole body of a photograph that could contain hundreds of thousands of pixels! When incoming light strikes the photosite, the photoelectric effect occurs and creates electrons for as long as exposure occurs. The electrons are then kept “stored” in their individual cells until a computer unloads the array, counts the electrons and reassembles them into the “big picture”.

And what a picture it will be…

In a period of a month, technicians managed to delicately assemble the CCD plates onto the support structure, leaving only a 1 mm gap between them. “The mounting and precise alignment of the 106 CCDs is a key step in the assembly of the flight model focal plane assembly,” said Philippe Garé, ESA’s Gaia payload manager. Upon completion, there will be seven rows of CCD composites with a main bank of 102 strictly dedicated to star detection. The remaining four will monitor image quality of each telescope and the stability of the 106.5º angle between the two telescopes that Gaia uses to obtain stereo views of stars. And, just like cooling a smaller CCD camera, the temperature needs to be maintained at -110ºC to keep up the sensitivity.

Gaia might be heavy on imaging capabilities, but she’s light on weight. The majority of the spacecraft, including the support structure is crafted from a ceramic-like material called silicon carbide. Resistant to warping in extreme temperature conditions, the whole support structure with its detectors weighs in at only 20 kg. She’ll sail out to Lagrange Point L2 – 1.5 million kilometers behind the Earth – where twin telescopes will capture perhaps 1% of our galaxy’s stellar population. While that may seem like a small amount, the information that Gaia’s three-dimensional star map will provide can reveal much more than we already know about the composition, formation and evolution of the Milky Way.

Original Story Source: ESA News.