Carbon Monoxide Reveals Distant Milky Way Arm

The Milky Way's basic structure is believed to involve two main spiral arms emanating from opposite ends of an elongated central bar. But only parts of the arms can be seen - gray segments indicate portions not yet detected. Other known spiral arm segments--including the Sun's own spur--are omitted for clarity. Credit: T. Dame

[/caption]

Our Milky Way Galaxy’s elemental form is hypothesized to be a barred structure – made up of two major spiral arms originating at both poles of the central bar. But from our vantage point, we can only see portions of those arms. Because of huge amounts of dust literally blocking our view, we can’t be as confident of our structure as other galaxies we can study as a whole. However, by “sniffing our galaxy’s tailpipe”, we’re able to judge our structure just a little bit better.

We’re all aware of theoretical models of the Milky Way… a sprawling, pinwheel-like structure with sweeping, grandiose arms loaded with stars, gases and dust. We’re also aware our Solar System is lodged in a spur of those arms, slowly orbiting and located about 25,000 light-years from the center. But hard and fast details of our Galaxy haven’t been possible until now. Thanks to the use of radio waves, we’re able to cut through the murk and see wavelengths that give us clues. These architectural hints are coming to us in the forms of molecules like carbon monoxide – a great tracer of our galactic format.

Using a small 1.2-meter radio telescope on the roof of their science building in Cambridge, CfA astronomers Tom Dame and Pat Thaddeus used carbon monoxide emissions to ferret out proof there is more spiral structure located in the most distant parts of our galactic home. What they uncovered was a previously reported new spiral arm at the far end of the Scutum-Centaurus Arm – but how they did it was by verifying vast, dense concentrations of this molecular gas.

Where does it come from? Try the “exhaust” of carbon stars. These late-type stars have an atmosphere which is higher in carbon than oxygen. When the two combine in the upper layers of the star they create carbon monoxide. It also happens in “normal” stars like our Sun, too. It’s richer in oxygen than carbon, but still cool enough to form carbon monoxide. “After preliminary Galactic surveys in the mid-1970’s revealed the vast extent of CO emission on the sky,” says Dame, “It became clear that even with the relatively large beams of the 1.2 meter telescopes a sensitive, well-sampled survey of the entire Galaxy would require many years.”

And its time has come…

Original Story Source: Smithsonian Astrophysical Observatory.

Coming Up… June 15th Total Lunar Eclipse LIVE

Total lunar eclipse captured January 20-21, 2000. (Courtesy of Mr. Eclipse/Fred Espenak)

[/caption]

Don’t say we didn’t warn you ahead of time! The upcoming total lunar eclipse will happen on June 15, 2011… and it’s a rare one. This time the Moon will pass directly through the center of the Earth’s shadow cone – an event that hasn’t happened in 11 years and won’t happen again until 2018. The eclipse visibility path will be over Africa, and Central Asia, visible rising over South America, western Africa, and Europe, and setting over eastern Asia. In western Asia, Australia and the Philippines – visible just before sunrise. But before you just read on to another article because you can’t see it from where you live, remember I’ve got a few tricks up my sleeve…

Thanks to this fantastic magic we call the Internet, all you need to do is tune into our friends around the world! The first listing of our live eclipse broadcasters will be Astronomylive.com. Coordinating the eclipse project and different activities for this year is Mohan Sanjeevan, a science and science fiction writer from India. Since May 2011, Mohan volunteers as the Event & Broadcast Organizer of AstronomyLive covering his country. But Mohan is more than just a coordinater, he’s also involved in other venues like writing poetry – including science poems (freelance science writing for more than twenty years; writer of nano science and tech articles for Nano Digest, a monthly magazine from India), popularization of science and creating awareness on global warming, alternative sources of energy and making the planet a more livable place. Space and astronomy are his natural areas of interest. To top it off, Sanjeevan is also a researcher – full of implementable ideas for space and future technologies.

AstronomyLive is a center for LIVE astronomy and you can participate, too! Host your broadcasts of various types on this free service. Amateur astronomers, professional astronomers, observatories, astronomy associations and more are all very welcome. The current team consists of Sander Klieverik, Voskuh and Dennis from the Netherlands, LesD from the United States, Mohan Sanjeevan, Aakanksha, Prof. M. Jothi Rajan, Jhon Kennedy, Bhaskar, Abhilasha and Sanyam Kumar Shrivastava from India. All of these great people came together to share the view with you!

And there’s more…

A free, live webcast from Bareket Observatory in Israel will also feature the total lunar eclipse on June 15, 2011. How do you get there? Simply click on this link for the Bareket Observatory Live Eclipse Broadcast! The hardworking group in Israel invite you to discover the Moon during the eclipse using hands-on eclipse activities. Conduct your own science projects using the live lunar eclipse feed! What a great opportunity for your students, family and friends!

The great folks at Bareket Observatory have expanded tremendously over the years and now they’re pleased to announce the launch of the Astro-Edu Network, a free state-of-the-art astronomy education database for teachers, students and the general public. Among the goals of AStro-Edu is increased communication and understanding within the population of the Middle East using astronomy as the catalyst. Astro-Edu net can be translated to more than 60 different languages using the integrated translation module (move your cursor over the flag in the upper left to translate the materials).

Lunar Eclipse Timing Chart

So don’t sit out the total lunar eclipse on June 15, 2011 – 17.00 – 23.00 UTC (GMT). Be sure to enjoy the event with our friends around the world!

Tagish Lake Meteorite Delivers Different Composition

This is one of the Tagish Lake meteorite fragments. Credit: Michael Holly, Creative Services, University of Alberta

[/caption]

We’re all familiar with the hypothesis of panspermia – that life can be “seeded” from the contents of asteroids, comets and planetoids vis-a-vis meteorite impacts – but so far no direct evidence has been found. So why should we even consider meteorites to be potential parents? The truth is out there – they contain the essentials – right down to amino acids. Up until now, what we’ve recovered has been considered structured. Then along came Tagish Lake…

In January, 2000, a large meteoroid exploded in Earth’s atmosphere over northern British Columbia, Canada, resulting in a debris fall over frozen Tagish Lake. It was a rare observed fall, and the meteorites were meticulously gathered, documented and preserved in their frozen state. The reason was twofold: to preserve the integrity of the space stones and to ensure no contamination could occur either to Earth or to the specimens.

“The Tagish Lake meteorite fell on a frozen lake in the middle of winter and was collected in a way to make it the best preserved meteorite in the world,” said Dr. Christopher Herd of the University of Alberta, Edmonton, Canada, lead author of a paper about the analysis of the meteorite fragments published June 10 in the journal Science.

For meteorite collectors, we’re well aware of the value of an observed fall and equally aware of the documentation needed to make a meteorite valuable both to market and scientific study. It’s more than just writing down the date and time of the observation and where the fragments were collected. To be done properly, the field needs to be measured. Each fragment needs to be photographed in the position in which it was found. The depth measured and more. Nothing is left to speculation.

“The first Tagish Lake samples – the ones we used in our study that were collected within days of the fall – are the closest we have to an asteroid sample return mission in terms of cleanliness,” adds Dr. Michael Callahan of NASA’s Goddard Space Flight Center in Greenbelt, Md., a co-author on the paper.

What the scientists found was the Tagish Lake meteorites are rich in carbon – and contain an assortment of organic matter including amino acids. While these “building blocks of life” aren’t new to meteoritic structure, what was out of the ordinary was different pieces had greatly differing amounts of amino acids. This varies way off the beaten path.

“We see that some pieces have 10 to 100 times the amount of specific amino acids than other pieces,” said Dr. Daniel Glavin of NASA Goddard, also a co-author on the Science paper. “We’ve never seen this kind of variability from a single parent asteroid before. Only one other meteorite fall, called Almahata Sitta, matches Tagish Lake in terms of diversity, but it came from an asteroid that appears to be a mash-up of many different asteroids.”

The team set to work on the recovered fragments – identifying different minerals present in each meteorite. What they were looking for was to see how much each had been changed by the presence of water. What they found was the different fragments each had a different water signature not accounted for from their landing on Earth. Some had more interaction and others less. This alteration may explain the diversity in amino acid production.

“Our research provides new insights into the role that water plays in the modification of pre-biotic molecules on asteroids,” said Herd. “Our results provide perhaps the first clear evidence that water percolating through the asteroid parent body caused some molecules to be formed and others destroyed. The Tagish Lake meteorite provides a unique window into what was happening to organic molecules on asteroids four-and-a-half billion years ago, and the pre-biotic chemistry involved.”

How does this change the way we look at the panspermia theory? If future falls continue to show this widespread variability, scientists are going to have to be a bit more reserved in their judgements about whether or not meteorites could deliver enough bio-molecules to make the hypothesis viable.

“Biochemical reactions are concentration dependent,” says Callahan. “If you’re below the limit, you’re toast, but if you’re above it, you’re OK. One meteorite might have levels below the limit, but the diversity in Tagish Lake shows that collecting just one fragment might not be enough to get the whole story.”

While the Tagish Lake samples are undoubtedly some of the most carefully preserved specimens collected so far, there is still a possibility of contamination from both Earth atmosphere and their lake landing. But don’t simply write off these new findings just yet. In one fragment, the amino acid abundances were high enough to show they were made in space by analyzing their isotopes. These versions of elements with different masses can tell us a lot more about the story. For example, the carbon 13 found in the Tagish Lake samples is a much heavier, and less common, variety of carbon. Because amino acids prefer lighter forms of carbon, the enriched and heavier carbon 13 deposits were most likely created in space.

“We found that the amino acids in a fragment of Tagish Lake were enriched in carbon 13, indicating they were probably created by non-biological processes in the parent asteroid,” said Dr. Jamie Elsila of NASA Goddard, a co-author on the paper who performed the isotopic analysis.

The team compared their results with researchers at the Goddard Astrobiology Analytical Lab for their expertise with the difficult analysis. “We specialize in extraterrestrial amino acid and organic matter analysis,” said Dr. Jason Dworkin, a co-author on the paper who leads the Goddard laboratory. “We have top-flight, extremely sensitive equipment and the meticulous techniques necessary to make such precise measurements. We plan to refine our techniques with additional challenging assignments so we can apply them to the OSIRIS-REx asteroid sample return mission.”

We look forward to their findings!

Original Story Source: NASA / Goddard Spaceflight News.

Bigelow Space Hotel – Reservations Coming Soon!

Robert Bigelow - Credit: Jared McMillen

[/caption]Back in 2009, Cirque du Soleil founder Guy Laliberte fired up the imaginations of would-be astronauts the world round when he paid an estimated $35 million dollars to spend 12 days aboard the International Space Station How many of us who are too large, too small or too out of physical shape to be a space traveller cheered when a rather “ordinary” human took place in space? Well, get in line for the next adventure… because just a mere $28,750,000 might buy you a ticket for a 30-day stay in Earth orbit.

Away from the glitz of Las Vegas, real estate developer Robert Bigelow is making use of the quiet Mojave Desert setting to solidify plans which border on the down-right incredible. His Bigelow Aerospace company owns 50 acres of barren land with buildings that aren’t much different than neighboring contractors – with the exception of high security. So why would these unassuming structures need armed security guards with futuristic alien patches on their uniforms?

Because he’s building the first space hotel.

These high-tech, low-cost inflatable space stations may very well be our future. As Bigelow believes, we’ll need a place to stay if we’re to further our studies in space – so why not in affordable accommodations? Bigelow has amassed his terrestrial wealth over his lifetime by providing rooms here, and the last 15 years have seen him invest approximately $210 million of his own money towards futuristic plans. In the long run, he’s willing to put forward up to $500 million to see his project through. His goal is to prove that space is a safe place for those willing to make the jump.

“We have a way of building stations that are far less expensive, far more safe and can be built more quickly,” says Bigelow. “And the timing is right.”

According the the entrepreneur, he’s engaging more than a dozen nations and has “memorandums of understanding” from countries including Japan, the Netherlands, Singapore, Sweden, Australia and the United Kingdom. In February NASA Deputy Administrator Lori Garver visited Bigelow Aerospace’s plant in North Las Vegas, and the agency is currently evaluating the company’s expandable modules for use as expansions to the International Space Station.

While it would be easy to write off such grand schemes as another of Bigelow’s “big” adventures, these inflatable space habitats are founded in solid technology. Bigelow’s prototypes have been orbiting Earth since 2006. His expansion of the desert plant will provide at least double the amount of work space, allowing him to construct a a scale model of the Sundancer, the first habitat he plans to launch into space. And when that’s done, he’ll build a model of its big brother, the BA330: At 11,600 cubic feet, it has nearly as much volume as the entire ISS!

When can we expect to book a room with a real view? Bigelow expects to have a fully functioning station in orbit by 2016 and to begin charging rent for it. While a little less than a million dollars a night isn’t going to exactly threaten Super 8 rates, one thing we can look forward to is knowing exactly what lights they’ll leave on…

Original Story Source: Forbes.

A Chang’e-2 Space…

Chang'e 2 satellite artist realization

[/caption]

On June 9, Chang’e-2, China’s second Moon orbiter, left our nearest astronomical neighborhood and headed out into the solar system. It had successfully completed its missions by April 1 and, thanks to its longevity, had enough fuel in reserve to continue exploring. According to China’s State Administration of Science,Technology and Industry for National Defence (SASTIND), making the trip into outer space from the Moon’s orbit is the major step from five remaining tasks assigned to the diminutive satellite.

“It’s the first time in the world for a satellite to be set off from the Moon in remote outer space,” said Zhou Jianliang, deputy chief engineer of the Chang’e-2 measure and control system of the Beijing Aerospace Control Center (BACC).

China’s technological developments are leaping ahead. While controlling a mission to the Moon 400,000 km away from the Earth is challenging enough, attempting to command a spacecraft from 1.5 million km presents a huge milestone in measure and control, telecommunications, data transaction and orbit design.

Before flying away, Chang’e-2 finished two additional tasks as of May 23. Its first was to take snapshots of the lunar northern and southern pole and the second was to descend into perilune orbit, about 15 km away from the surface. This time to take high-resolution images of the Sinus Iridum – the proposed landing ground for future Moon missions. The completion of satellite’s tasks has Chinese scientists smiling and hoping things continue well towards the end of next year.

“We are developing outer space measure and control stations in outer space and they will be capable to carry out tasks by the end of the second half next year,” said an SASTIND scientist, who declined to be named. “At that time, the satellite can be used to test the two stations’ functions.”

But the road ahead for Chang’e-2 isn’t going to be an easy one, simply because the satellite wasn’t designed to do what it is now doing. Extended distances mean unexpected problems with communication and control, but the little “Moon Goddess” just may be up to the task.

Original Story Source: China News.

Mathematics Explain Dynamics of Superfluid

A 2001 photo from the space shuttle shows a phenomenon called von Karman vortices in clouds downwind from Rashiri Island in the northern Sea of Japan. The vortices are similar to those that form in superfluids. Credit: NASA

[/caption]

At nearly the coldest temperature possible – mercury (with the aid of liquid helium) – forms a state called superconductivity. At the extreme, electrons flow unencumbered through what is known as a superfluid. But the hows and whys of superfluid behavior defied explanation. Until now…

When taken to within a few degrees of absolute zero on the Kelvin scale (minus 273 Celsius or minus 460 Fahrenheit), liquid helium-4 turns into the remarkable superfluid state. It swirls, it curls, and it’s lack of body has been baffling scientists for nearly a century. Now a team led by a University of Washington physicist, using the most powerful supercomputer available for open science, has cooked up a theoretical picture which explains the real-time behavior of superfluid. Just who is the responsible party here? Try subatomic particles called fermions.

Femions are a much a part of the natural equation as electrons, protons and neutrons… just as superfluids are part of neutron stars. Rotating between one and 1,000 times a second, neutron stars – or pulsars – superfluid surface acts much differently than its counterpart here on Earth. As the speed increases, it forms a series of small vortices which group in a triangular pattern… which in turn forms a braid within the superfluid structure. “When you reach the correct speed, you’ll create one vortex in the middle,” Bulgac said. “And as you increase the speed, you will increase the number of vortices. But it always occurs in steps.”

Can science recreate it? Yes. Laboratory models utilizing a vacuum chamber and a laser beam to create a high-intensity electrical field have managed to chill a small sample, perhaps 1 million atoms, to temperatures near absolute zero. Then a “laser spoon” is employed to stir the superfluid fast enough to create vortices.

“In trying to understand the odd behavior, scientists have attempted to devise descriptive equations, such as ones they might use to describe the swirling action in a cup of coffee as it is stirred.” Bulgac said. “But to describe the action in a superfluid made of fermions, a nearly limitless number of equations is needed. Each describes what happens if just one variable – such as velocity, temperature or density – is changed. Because the variables are linked, if one changes others will change as well.”

One of the major challenges in formulating a mathematical hypothesis is the amount of computing power it would take to work through a problem with a number of variable changes that reached 1 trillion or more. So how did they do it? The team used the JaguarPF computer at Oak Ridge National Laboratory in Tennessee, one of the largest supercomputers in the world, for the equivalent of 70 million hours, which would require almost 8,000 years on a single-core personal computer (JaguarPF has nearly a quarter-million cores). Just try to cool that!

“This tells you the complexity of these calculations and how difficult this is,” Bulgac said. To make matters even more complex, the faster the superfluid is stirred causes it to lose its properties – but not as fast as hypothesized. “The work means that researchers can ‘to some extent’ study the properties of a neutron star using computer simulations.” Bulgac said. .”It also opens new directions of research in cold-atom physics.”

And more homework on our part.

Original Story Source: University of Washington.

Rosetta… Stoned Again

Left: Comet Churyumov-Gerasimenko is hidden within this sector of space, a crowded star field in the constellation Scorpius that is towards the center of our galaxy. The image was taken by OSIRIS's wide-angle camera. Middle: The narrow-angle camera allows for a closer look, and shows many background stars. Right: After refined steps of data processing the comet becomes visible. (Credits: ESA 2011 MPS for OSIRIS-Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA)

[/caption]

About 163 million kilometers and three more years separate brave little ESA spacecraft – Rosetta – from comet Churyumov-Gerasimenko. But this seemingly huge distance isn’t stopping determined scientists from the Max Planck Institute for Solar System Research (MPS) in Germany. Their target might be a million times fainter than the faintest star we can see here on Earth with our eyes, but Rosetta has them covered. It has succeeded in imaging the distant comet and it’s right on target.

Using the onboard camera system OSIRIS, Rosetta took its snapshots during testing over the last couple of weeks in preparation for its three year hibernation period. These first images of the tiny, flying space stone only covered a few pixels; “But the pictures already give us a good idea of where we are headed”, says Dr. Holger Sierks from MPS, OSIRIS Lead Investigator. “In addition, they are a remarkable proof of the camera’s performance. We had not expected to be able to create first images from so far away”.

Credits: ESA 2011 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA and Yuri Beletsky / ESO
Right on? You bet. Here on Earth we’re only able to follow Comet Churyumov-Gerasimenko with the aid of the European Southern Observatory’s Very Large Telescope in Chile, one of the world’s most powerful telescopes with a main mirror diameter of eight meters. By comparison, Rosetta’s OSIRIS camera mirror measures only approximately ten centimeters in diameter. Just like our terrestrial astrophotos, OSIRIS also needed to make a long exposure time as well – to the tune of 13 hours. “All in all, we took 52 images with OSIRIS, each exposed for 15 minutes”, explains Dr. Colin Snodgrass from MPS, responsible for data processing. Once the images were obtained, they were then “stacked” to correct for the comet’s movement against the background stars. This gave researchers their first glimpse of their final destination.

But now it’s going to be a long wait until Rosetta spots the stone again…

Operations manager Andrea Accomazzo gestures happily in the Rosetta control room at ESOC today, just moments after the final command was sent to Rosetta to trigger a 31-month hibernation until January 2014. Credits: ESA
The final command to put Rosetta into sleep mode was sent at 08:00 UT on June 8, 2011. The systems are now shut down for 31 months until the intrepid spacecraft nears its destination in 2014. Its instruments and control systems might be silent for awhile, but its 10 year voyage has been a huge success thus far. “With flybys of asteroids Steins in 2008 and Lutetia in 2010, Rosetta has already delivered excellent scientific results,” says Paolo Ferri, Head of ESOC’s Solar and Planetary Mission Operations Division. Rosetta is simply conserving its solar power until it reaches rendezvous with 67-P/Churyumov-Gerasimenko. But, it’s not entirely silent. The on-board computers and a few heaters are still ticking away – keeping time until its orbit takes it from 660 million km from Sol.

“We sent the command via NASA’s 70 m Deep Space Network station in Canberra, Australia, ensuring the signal was transmitted with enough power to reach Rosetta, which is now 549 million km from Earth,” said ESA’s Spacecraft Operations Manager Andrea Accomazzo. “We’ll monitor via ESA’s 35 m station at New Norcia in Australia for a few days to see if any problems occur, but we expect to receive no radio signal until 2014. Rosetta’s on her own now.”

Is there a handsome prince waiting in Rosetta’s future? Yes, in the form of a timer which will wake the slumbering spacecraft princess. When the moment arrives a signal will be transmitted back to Earth and mission control will then take command. Over a period of weeks Rosetta will “warm up” again in preparation for its landmark arrival at the distant, icy space stone. “Hibernation is a necessary step to reach the final target.” says Ferri. “We are now looking forward to 2014, when Rosetta becomes the first spacecraft to track the life of a comet as it arcs in toward the Sun.”

Rosetta? Rock on!

Original Story Sources: Max Planck Institute for Solar System Research and ESA Space Science.

Young Supernova Has Bright Future

This HST image of SN 1987A shows the brightening ring of supernova debris. The closest supernova explosion seen in almost 400 years, it is located in the Large Magellanic Cloud. Credit: Pete Challis (CfA)

[/caption]

Way back in 1987 we received a present from our neighboring galaxy, the Large Magellanic Cloud. It was an unprecedented event and the most exciting thing astronomers had seen in nearly four hundred years. It was a chance to study stellar evolution first-hand – with details allowed by modern equipment. Just what was it? The closest supernova explosion to date…

On June 8, 2011 a team of astronomers announced the supernova debris of SN 1987A, which has dimmed with time, is brightening again. The observations conclude a different power source is igniting the debris – beginning the transition from a supernova to a supernova remnant. “Supernova 1987A has become the youngest supernova remnant visible to us,” said Robert Kirshner of the Harvard-Smithsonian Center for Astrophysics (CfA) and leader of the long-term SN 1987A study with NASA’s Hubble Space Telescope.

Supernova remnants are made up of material ejected from the parent exploding star and interstellar matter picked up along the way. Long before the cataclysmic event, a ring of material is ejected – spreading out about one light-year (6 trillion miles) across. Inside the circle, the inner workings of the host star are rushing out to form the expanding debris cloud. It is lit by radioactive decay and brightening points towards a new power source. “It’s only possible to see this brightening because SN 1987A is so close and Hubble has such sharp vision,” Kirshner said.

What can we expect in SN1987A’s future? Right now it’s able to give us valuable information about the last few thousand years of a star’s life. By studying the unusual clumps and bumps in the ring’s structure, astronomers may be able to decode its history… History that will be lost as debris expansion wipes out the structure. “Young supernova remnants have personality,” Kirshner agreed.

For now, this young supernova is allowing us to take a look at a future so bright, it’s gotta’ wear shades.

Original Story Source: Harvard-Smithsonian Center for Astrophysics.

New Class of Stellar Explosion Sings the Blues

The four supernovae discovered by the Palomar Transient Factory. Left: before explosion. Right: after explosion. From top to bottom, the supernovae are PTF09atu, PTF09cnd, PTF09cwl, and PTF10cwr. [Credit: Caltech/Robert Quimby/Nature]

[/caption]

A team of astronomers led by the California Institute of Technology (Caltech) have discovered a new, ultra-bright class of supernova – and it really sings the blues. Possibly one of the most luminous observable objects in the Cosmos, these new types of stellar explosions may help us better understand the origins of starbirth, unravel the mysteries of distant galaxies and even look back into the beginnings of our Universe…

“We’re learning about a whole new class of supernovae that wasn’t known before,” says Robert Quimby, a Caltech postdoctoral scholar and the lead author on a paper to be published in the June 9 on-line issue of the journal Nature. Not only did the team locate four instances of this new class, but the study also helped them unravel the questions behind two previously known supernovae which apparently belong in the same category.

As a graduate student at the University of Texas, Austin, Quimby came to the astronomy forefront in 2007 when he reported the brightest supernova ever found: 100 billion times brighter than the sun and 10 times brighter than most other supernovae. At the time, it was a record. Categorized as 2005ap, it had a rather strange spectral signature – a lack of hydrogen. But Quimby wasn’t the only one in the “class” doing homework, because the Hubble Space Telescope also detected an enigmatic event listed as SCP 06F6. It, too, had an unusual spectrum, but nothing led researchers to surmise it to be similar to 2005ap.

Enter Shri Kulkarni, Caltech’s John D. and Catherine T. MacArthur Professor of Astronomy and Planetary Science and a coauthor on the paper. They enlisted Quimby as a a founding member of the Palomar Transient Factory (PTF) – a project which scans the skies for unrecorded incident flashes of light which could signal possible supernova. With the eye of the 1.2-meter Samuel Oschin Telescope at Palomar Observatory, the colleagues went on to discover an additional four new supernovae events. Measuring the spectra with the 10-meter Keck telescopes in Hawaii, the 5.1-meter telescope at Palomar, and the 4.2-meter William Herschel Telescope in the Canary Islands, the astronomers discovered that all four objects had an unusual spectral signature. Quimby then realized that if you slightly shifted the spectrum of 2005ap—the supernova he had found a couple of years earlier—it looked a lot like these four new objects. The team then plotted all the spectra together. “Boom—it was a perfect match,” he recalls.

From there it didn’t take long to learn to sing the blues. The astronomers quickly figured out that by shifting the spectrum of SCP 06F6 caused it to align with previous findings. The results showed all six supernovae to be a similar type – all with very blue spectra – with the brightest wavelengths shining in the ultraviolet. This was the missing link that connected the two previously unexplained supernovae. “That’s what was most striking about this—that this was all one unified class,” says Mansi Kasliwal, a Caltech graduate student and coauthor on the Nature paper.

Even though astronomers now know these supernovae are related, the rest remains a mystery. “We have a whole new class of objects that can’t be explained by any of the models we’ve seen before,” Quimby says. “What we do know about them is that they are bright and hot—10,000 to 20,000 Kelvin; that they are expanding rapidly at 10,000 kilometers per second; that they lack hydrogen; and that they take about 50 days to fade away—much longer than most supernovae, whose luminosity is often powered by radioactive decay. So there must be some other mechanism that’s making them so bright.”

What could they be? One simulation leads to a pulsational pair-instability and the next points towards a magnetar. No matter what the answer is, the result is the illumination aids astronomers in studying distant dwarf galaxies, allowing them to measure the spectrum of the interstellar gas and uncover their composition. The findings could also “shed light” on what ancient stars may have been like… stretching back into the very beginnings of our Universe. “It is really amazing how rich the night sky continues to be,” Kulkarni says. “In addition to supernovae, the Palomar Transient Factory is making great advances in stellar astronomy as well.”

Original Story Source: California Institute of Technology.

Light Blows Away Giant Molecular Clouds

This cloud of gas and dust is being deleted. Likely, within a few million years, the intense light from bright stars will have boiled it away completely. The cloud has broken off of part of the Carina Nebula, a star forming region about 8000 light years away. CREDIT: Hubble Heritage Team (STScI/AURA), N. Walborn (STScI) & R. Barbß (La Plata Obs.), NASA.

[/caption]

Although they only make up about one percent of the interstellar medium, giant molecular clouds are a rather formidable thing. These dense masses of gas can reach tens of parsecs in diameter and we know them as star forming regions. But, what we didn’t know is that light from massive stars can tear them apart.

New findings presented by Dr. Elizabeth Harper-Clark and Prof. Norman Murray of the Canadian Institute for Theoretical Astrophysics (CITA) show that radiation pressure is not a thing which should be discounted. It has widely been theorized that supernovae accounted for GMC disruption, but “Even before a single star explodes as a supernova, massive stars carve out huge bubbles and limit the star formation rates in galaxies.”

Galaxies harbor stellar nurseries and, as stars are born, the galaxy evolves. It is our understanding that stellar birth occurs within giant molecular clouds where low temperatures, high density and gravity work together to ignite the stellar process. It happens at a smooth and steady rate – a pace which we surmise occurs from the outflow of energy from other stars and possibly black holes. But just what exactly is the life expectancy of a GMC?

To understand a giant molecular cloud is to understand the mass of the stars contained within it. This is key to star formation rates. “In particular, the stars within a GMC can disrupt their host and consequently quench further star formation.” says Harper-Clark. “Indeed, observations show that our own galaxy, the Milky Way, contains GMCs with extensive expanding bubbles but without supernova remnants, indicating that the GMCs are being disrupted before any supernovae occur.”

What’s happening here? Ionization and radiation pressure are blending together within the gases. Electrons are being forced out of atoms during ionization… an action which happens incredibly fast, heating up the gases and increasing pressure. The often over-looked radiation is far more subtle. “The momentum from the light is transferred to the gas atoms when light is absorbed.” says the team. “These momentum transfers add up, always pushing away from the light source, and produce the most significant effect, according to these simulations.”

The simulations performed by Harper-Clark are just the beginning of new studies. The work shows calculations of the effects of radiation pressure on GMCs and reveal they are capable of not only disrupting star-forming regions, but completely blowing them apart, cutting off further formation when about 5 to 20% of the clouds mass had been converted to stars. “The results suggest that the slow rate of star formation seen in galaxies across the Universe may be the result of radiative feedback from massive stars,” says Professor Murray, Director of CITA.

So what of supernovae? Incredibly enough, it would seem they are simply unimportant to the equation. By calculating the results both with and without star light radiation, supernova events didn’t change star formation nor did they alter the GMC. “With no radiation feedback, supernovae exploded in a dense region leading to rapid cooling. This robbed the supernovae of their most effective form of feedback, hot gas pressure.” says Dr. Harper-Clark. “When radiative feedback is included, the supernovae explode into an already evacuated (and leaky) bubble, allowing the hot gas to expand rapidly and leak away without affecting the remaining dense GMC gas. These simulations suggest that it is the light from stars that carves out nebulae, rather than the explosions at the end of their lives.”

Original Story Source: Canadian Astronomical Society More information on Dr. Harper-Clark’s work can be found here.