Observing Alert: Possible Nova in Ophichus

Image courtesy of K. Itagaki
Image courtesy of K. Itagaki

[/caption]

Are you ready for some excitement that won’t take an observatory telescope to spot? Then get out your binoculars, because according to CBET 2128 there’s a new object showing its stuff off in the constellation Ophiuchus…

Released by A. Henden in AAVSO Special Notice #187: “CBET 2128 indicates that Hideo Nishimura has discovered a new outbursting object in Ophiuchus. This object has magnitude 8.4 on Jan 15.857UT, and is located at RA 17:39:40.94 DEC -21:39:47.9 J2000. No spectra have been reported, but K. Kadota has inspected the 1997 DSS red plate and finds no object at this position, with a limiting magnitude of 20. This object has now been added to VSX. You may submit observations as N Oph 2010, VSX J173940.9-213947, or with AUID 000-BJS-899. Note that there is a 10.3 magnitude irregular variable a few arcmin west of this position, so do not use it as a comparison star.”

Information on submitting observations to the AAVSO may be found at: http://www.aavso.org/observing/submit/. However, even if you don’t choose to submit an observation, it’s rather rare that an object of this type can easily be observed with even the most modest of equipment. Magnitude 8.4 is easily within reach of small binoculars, and given that most of the world isn’t having the best of luck with weather, you may be one of only a few who get to see it! Use this map to get you in the general area….

Once you have your position in the sky, use this more localized map to help you identify the nova. This field spans approximately 12 degrees – or about the same size as an average binocular field. I’ve filtered the stars to match the magnitude, so look for any star that’s as bright as – or brighter – than what you see within or very near to the red square area. You’ve discovered the nova! (Hint: Look for obvious star patterns that are easy to see, like the group of stars that seems to resemble Orion’s belt and sword just below the target area.) It might take you several tries and several minutes to locate it, but what a reward when you do!

Enjoy your observations….

Weekend SkyWatcher’s Forecast: January 15-17, 2010

Greetings, fellow SkyWatchers! It’s a dark weekend and time to get out and rock the night… If you’re up to the challenge, one of the finest and most exciting objects we’ll study here isn’t a Messier… it’s a comet. And not just any comet – but one that fits right into this time frame in history! Not up to hunting a moving object? Then we’ll take a look at two objects that could resemble comets and not only present a challenge, but add to the fun! Whenever you’re ready, dust your optics off and I’ll see you in the backyard….

January 15, 2010 – In 2006, Stardust was nearing Earth with its payload of cometary dust particles from Comet Wild 2. The tiny interstellar dust particles were collected by the spacecraft Stardust, which on January 15, 2006, completed its 7-year Odyssey in space by returning its samples to Earth. Two years before, on January 2, 2004, Stardust flew through the hail of rocks and dust that make up comet Wild 2’s coma, collecting invaluable samples of cometary particles that will help scientists decipher the history of our solar system. But during its long voyage Stardust also picked up a different type of sample — minuscule particles of interstellar dust that arrived at our solar system from distant stars, light years away. Stardust collected these particles between February and May 2000, and again between August and December 2002, while passing through a stream of dust that flows into our solar system from interstellar space. The stream was discovered quite recently — in 1993 by the spacecraft Galileo, which passed through that region of space on its way to Jupiter. When Stardust flew through the stream, it extended its tennis-racket shaped aerogel collector, picking up and storing the interstellar particles. No such pristine particles from distant stars have ever been collected before! Then, on January 15, 2006, Stardust swung by the Earth once more and released a sample return capsule, which parachuted safely down onto the Utah desert. Nestled within the capsule’s science canister were two sets of samples: cometary particles on one side of the aerogel collector, and interstellar dust on the other. Within days of arrival, mission scientists began extracting the dust grains from Wild 2 and preparing them for shipment to scientists around the world. Don’t forget to participate in StarDust@Home!

If you’d like to collect a little “stardust” of your own, then this weekend is a great opportunity to actually view Comet 81P Wild 2! Holding a near respectable magnitude 10 and cruising through Virgo (rough RA 13 10.7 and DEC -04 48). 81P Wild 2 has a distant and circular orbit which has it about 1.642 AU away from our Sun at the moment and it will continue to brighten slowly over the next couple of months and is expected to be its brightest (magnitude 9) towards the end of March and in early April. While Comet 81P Wild 2 is just a bit too faint to be found with average binoculars, even a small telescope will reveal its diffuse form. It won’t be bright, and it will appear more like a small, round nebulous patch rather than what folks traditionally think of as a comet… But history is out there waiting on you to come and collect on history!

January 16, 2010 – In 1978 on this date, NASA named 35 candidates for space shuttle missions, including Sally Ride as the first female U.S. astronaut and Guion Bluford, Jr., as the first black. In 1973, the Lunokhod 2 mission was beginning its robotic lunar expedition, and in 1969 Soyuz 4 and 5 became the first vehicles to dock in space and exchange cosmonauts. The year 1730 saw the birth of Jean Bochart – publisher of LaPlace’s planet/ecliptic theory. Although eventually beheaded for his politics, Bochart put together Europe’s largest collection of astronomical instruments and was renowned for his calculations of cometary orbits, made jointly with long-time friend and co-observer Charles Messier.

Tonight, venture into Lepus for a faint, round, fuzzy object that might easily be mistaken for a comet in a small telescope or binoculars – Messier Object 79 (RA 05 24 10 Dec +24 31 27). The true beauty of this object is revealed in large telescopes. Behold a globular cluster, one of many densely packed balls of stars that mainly congregate near our galactic center. Discovered by Pierre Mechain and cataloged by Messier in 1780, M79 is on the opposite side of our galaxy, and about 4,200 light-years away. Spanning 118 light-years, this starry sphere may not be an original member of our galaxy at all but an import. Although we can’t see it happening, the Canis Major Dwarf galaxy is slowly being incorporated into our own system, and M79 might very well be a product of this union!

Thanks to Mechain and Messier’s careful notes, William Herschel later recovered M79 and resolved its stars. Although the practice of maintaining an astronomy diary isn’t for everyone, keeping simple records is very rewarding. Make note of the object’s appearance, equipment used, and sky conditions. Observing diaries just like those of Messier and Mechain have led countless astronomers along the road of discovery to all the deep-sky objects we know today!

January 17, 2010 – Celebrate the 1723 birthday of Johann Tobias Mayer, the German astronomer who created the first lunar tables for determining longitudes at sea. His calculations were accurate to within a half degree! Mayer was also the first to develop the “reflecting circle” – a complete circular instrument graduated to 720°. The reflection circle was a welcome addition, because at the time the technology did not had enough accuracy for surveying measurement. To reduce the error, they relied on making the average of three sequential readings over the circle, separated 120º from each other. A very cool instrument that preceded the sextant!

Are you ready for one last cometary object? Then get out there and capture NGC 2261 (RA 6:39.2 Dec +08:44). You’ll find it about 2 degrees northeast of star 13 in Monoceros. Perhaps you know it better as “Hubble’s Variable Nebula”?


Named for Edwin Hubble, this 10th magnitude object is very blue in appearance through larger apertures, and a true enigma. The fueling star, the variable R Monocerotis, does not display a normal stellar spectrum and may be a proto-planetary system. R is usually lost in the high surface brightness of the “comet-like” structure of the nebula, yet the nebula itself varies with no predictable timetable – perhaps due to dark masses shadowing the star. We do not even know how far away it is, because there is no detectable parallax!

Until next week? Keep your feet on the ground and your eyes on the skies! There’s even more about to happen…

This week’s awesome images are (in order of appearance): Artist’s conception of the Stardust spacecraft Credit: NASA / JPL , Sally Ride – Credit: NASA, M79 Credit: NOAO/AURA/NSF, Johann Tobias Mayer (historical image) and the Hubble Variable Nebula by John Chumack. We thank you so much!!

Vyugovey – The Real “Ice In Space”

Ain’t no doubt about it… Space is cool! And this year Russian space exploration is not only cool – but ice cold. This year’s International Festival of Snow, Ice and Light sculptures “Vyugovey” will take place in Moscow from December 25 to February 28 in the Memorial Museum of Space Exploration {ark on Prospekt Mira, and is devoted to the 50th anniversary of Russian space exploration.

The contest was part of the Ice Sculpture Festival “in memory of Russian space exploration.” About 100 pieces of space-related sculptures were presented by local artists. Some 11 sculptors from countries and regions including Russia, Mexico, Japan and Bulgaria took part in the four-day event started on Monday. Moscow’s freezing temperature provided ideal conditions for their ice-made artwork. Sergey Korolkov from Russia’s Ural Autonomous Okrug of Yamalo-Nenets won the first prize with his work “Goddesses of Sun and Moon,” which he said was inspired by the ancient myth of goddesses saving the world. But carving this cool piece of work wasn’t easy. The champion said he had worked three days from 10:00 a.m. to 6:00 p.m. to finish the piece!

Festival visitors can see sculptures up to five meters tall, among them the legendary rockets Soyz and Vostok. There are also the heroes of “Star Wars “and fantastic galaxies. At night the composition turns more colorful, as different lights create a special space atmosphere. Check out the video coverage:

Now, let’s take a look at the beauty…

Visitors can trace the development of Russian space exploration, and see the legendary spaceships “Vostok” and “Soyuz”, which are more than 5 meters high
Famous astronauts in ice
Visitors will also have the opportunity to see the exotic worlds and characters from Star Wars
Award winning Russian ice-sculptors are included in the festival
The festival’s unique light shows help visitors experience the cosmos

Soviet cosmonaut Yuri Gagarin became the first man to travel to space.

How “cool” is that?!

Video courtesy of RIA Novosti / Petr Chernov, STR, and still photos by RIA Novosti and Valery Melnikov.

The Week Long Messier Marathon

The Messier Catalog
The Messier Catalog Credit: SEDS

Are you ready to run the Messier Marathon? Doing all 110 objects in one night is both exhausting and rewarding… with no guarantee that night you choose will be clear. If you’d rather take your stars at a more leisurely pace – then follow along as we spread 110 of the best sky objects out over a week. The best time of year to do this is nearest to Spring Equinox and the best time to begin is just a few days before New Moon. Now, let’s hope for clear skies as we grab binoculars or telescopes and head out into the night.

Night One – This is going to be one incredibly busy week as we’re off to conquer the week long “Messier Marathon.” Beginning as soon as the sky darkens enough to find the guidestar Delta Cetus, the M77 spiral galaxy will be your first, and the M74 spiral galaxy east of Eta Pisces will be your second mark. Both of these galaxies are telescopic only and will be an extreme challenge at this time of year due to their low position. Even computer-assisted scopes will have some difficulty revealing this pair under less than optimal conditions. Next up is M33 west of Alpha Triangulum. With ideal skies, the “Pinwheel Galaxy” could be seen in binoculars, but skybright will make this huge, low surface brightness spiral difficult for even telescopes at low power. M31 – the Andromeda Galaxy – will, however, be a delightful capture for both binoculars and scopes just west of Nu Andromedae. For the telescope, two more on the list are companions to M31 – the elliptical M32 on the southeastern edge and M110 to the northwest.

Let’s head northwest as we take on two open clusters visible to both telescopes and binoculars. You can find M52 easiest by identifying Alpha and Beta Cassiopeia, drawing a mental line between them and extending it the same distance northwest of Beta. Next just hop north of Delta to pick up our ninth object – the M103 open cluster. Time to head south towards Perseus and go back to the telescope to locate M76, the “Little Dumbbell” planetary nebula, just north of Phi. Binoculars are all that’s needed to see the M34 open cluster also in Perseus, located roughly halfway between the “Demon Star” Algol and lovely double Almach, Gamma Andromeda.

Now that skies are dark and the fastest setting objects are out of the way, we can take a moment to breathe as we view M45 – the Pleiades. The “Seven Sisters” are easily visible to the unaided eye high in the west and their cool, blue beauty is incomparable in binoculars or telescopes. Our next “hop” is with the “rabbit” Lepus as we go back to the south and identify Beta and Epsilon. Triangulating with this pair to the south is a nearly fifth magnitude star (ADS 3954) which will help you locate the small globular M79 to its northeast. At around magnitude 8.5, it is possible to see its very tiny form in binoculars, but M42 – the “Great Orion Nebula” is much easier. The next object, M43, is part of the Orion Nebula, and you will catch it as a small “patch” to the north-northeast. The next two objects, M78 northeast of Zeta Orionis and the M1 Crab Nebula northwest of Zeta Tauri, are both achievable in binoculars with excellent conditions, but are far more interesting to the telescope.

Now we can really relax. Take a few minutes and grab a cup of coffee or hot chocolate and get warmed up. The remaining objects on our observing list for tonight are all very easy, very well positioned for early evening, and all observable in just binoculars. Are you ready? Then let’s go.

M35 is just as simple as finding the “toe” of Gemini – bright Eta. A short hop to the northwest will capture this fine open cluster. The next stop is Auriga and we’ll go directly between silicon star Theta and southern Beta. About halfway between them and slightly to the east you will find open cluster M37. This time let’s use Theta and Iota to its west. Roughly halfway between them and in the center of Auriga you will find M38 and a short hop southeast will capture M36. Now let’s get Sirius and finish this list for tonight. The open cluster M41 in Canis Major is found just as quickly as drifting south of the brightest star in the sky. The last three for tonight couldn’t be any easier – because we just studied them before. Go capture M93, M47 and M46 in Puppis… And give yourself a well-deserved pat on the back.

You’ve just conquered 24 Messiers.

Night Two – Ready for tonight’s challenge? Then nap away the very early evening hours and let’s head out well before bedtime to work on the next section of our week-long “marathon.”

First up will be four binocular targets, the incredibly colorful open cluster M50 is roughly a third of the way in a line drawn between Sirius and Procyon – use binoculars. Hydra is a difficult constellation, but try dropping south-southeast of the most eastern star in Monoceros – Zeta – about half a fist’s width to discover relatively dim open cluster M48. Far brighter, and usually visible to the unaided eye is M44, better known as the Beehive Cluster, just a scant few degrees north-northwest of Delta Cancri. From Delta, go south and identify Alpha because M67 is just to its west. It will appear as a “fine haze” to binoculars, but telescopes will find a spectacular “cloud” of similar magnitude resolvable stars.

Now we really do have to use the telescope again because we’re going “lion taming” by hunting galaxies in Leo. Let’s trade one Alpha for another as we head west to Regulus. Roughly about a fist width east of this major star you will see two dim stars that may require the use of the finderscope – 52 to the north and 53 to the south. We’re heading right between them. About a degree and a half south of 52, you will discover ninth magnitude elliptical M105. Larger scopes will also show two additional faint galaxies, NGC 3384 and NGC 3389 to M105’s west. Continuing about a degree south towards star 53 you will spot the silver-gray beauty of M96 in a relatively starless field. Enjoy its bright nucleus and wispy arms.

About another degree west will bring you to M95, which is neither as bright nor as large as its Messier “neighbor.” Small scopes should show a brightening towards its center and large ones should begin to resolve out the arms of this awesome barred spiral. Our next destination is the southwestern star of the three that mark Leo’s “hips,” Theta Leonis – or more commonly called Chort. South of it you will see faint star 73 and right around one degree to its east-southeast you will locate a pair. In small scopes at low power, M65 and M66 are same field. The western M65 and eastern M66 are both beautiful spirals.

Now let’s head north for another “same field pair” of galaxies and hunt down M81 and M82 in Ursa Major. Many folks have trouble “star hopping” to these galaxies, but a very simple way of finding them is to draw a mental line between Phecda (Gamma) and Dubhe (Alpha). By extending that line beyond Dubhe almost the same distance, you’ll locate our next two “marathon” objects. At low power with a smaller scope, the southern-most and most pronounced of the two is the stunning M81 with its bright core. To the north is broken, spindle-shaped peculiar galaxy M82. Viewable in binoculars, we’ll study more about this pair later on as we head for Mirak (Beta) and our next galaxy. About a degree and a half southeast you will see a 10th magnitude “scratch” of light. This great edge-on galaxy – M108 – should show at least four brighter “patches” to the small scope and a nice dark dust-lane to larger ones. Continuing about another half degree southeast will bring you to the planetary nebula M97. Also known as the “Owl,” this 12th magnitude beauty is roughly the same diameter as Jupiter and can be spotted under optimal conditions with binoculars – but requires a large scope at high power to begin to discern its features. Let’s continue south to Phecda and less than half a degree to the east you will locate M109. In the field with Gamma, M109 will show its faded central bar and prominent nucleus to the small scope, but requires large aperture and high magnification to make out structure. The last in Ursa Major is an error on Messier’s part. Labeled as M40, this object is actually double star WNC 4, located in the same eyepiece field as 70 Ursae Majoris to the northeast.

Now let’s move into Canes Venatici and round up a few more. This is an area of dimmer stars, but the two major stars, Alpha (it is called Cor Caroli and it is a wonderful double star) and Beta are easily recognizable to the east of the last star in the “handle” of the “Big Dipper” (Eta). The northernmost is Beta and you will find the soft-spoken spiral galaxy M106 almost midway between it and Phecda less than 2 degrees south of star 3. M94 is a much brighter, compact galaxy and is found by forming an isosceles triangle with Alpha and Beta Canum with the imaginary apex towards Eta Ursae Majoris. M63 is a very pretty, bright galaxy (often known as “the Sunflower”) that approaches magnitude 10 and is found about one-third the distance between Cor Caroli and Eta Ursae Majoris (Alkaid). Still heading towards Alkaid (Eta UM), the incomparable M51 comes next. Near Eta you will see an unmistakable visual star called 24 CnV, the “Whirlpool” is the same basic distance to the southwest. Now that we’re back into “big bear country” again, we might as well head on to the M101 “Pinwheel” galaxy which is found by following the same trajectory and distance to the other side of Alkaid. Before we head on, let’s continue north and clean up… ummm… another “messy mistake.” The accepted designation for M102 is lenticular galaxy NGC 5866, located in Draco south east of Iota.

Now let’s finish up – it’s getting late. Our next stop will be to identify the three primary stars of Coma Berenices now high in the east above Arcturus. You will find small globular cluster M53 northeast of Alpha. One of the coolest galaxies around is M64 (known as the “Blackeye”) just a degree east-northeast of 35 Comae, which is about one-third the distance between Alpha Comae and Alkaid. The last, and most outstanding for the night, is a globular cluster that can be seen in binoculars – M3. As strange as this may sound, you can find M3 easily by drawing a line between Cor Caroli and Arcturus. Starting at Arcturus, move up about one third the way until you see Beta Comae to the west of your “line”… Poof. There it is.

Awesome job. We’ve just completed another 24 objects and we’ve claimed 48 on the Messier list before bedtime in two days.

Night Three – Our next set of Messier objects won’t be difficult to view as the “window of opportunity” in which we’ll be able to see them. Am I going to ask you to stay up past your bedtime? Darn right…

These next targets will be best viewed after midnight when the constellations of Coma Berenices and Virgo have well risen, providing us with the darkest sky and best position. For the large telescope, we are going to be walking into an incredibly rich galaxy field that we will touch on only briefly because they will become the object of future studies. Just keep in mind that our Messier objects are by far the brightest of the many you will see in the field. For the smaller scope? Don’t despair. These are quite easy enough for you to see as well and probably far less confusing because there won’t be so many of them visible. Now let’s identify the easternmost star in Leo – Denebola – and head about a fist width due East…

Our first will be M98, just west of star 6 Comae. It will be a nice edge-on spiral galaxy in Coma Berenices. Next return to 6 Comae and go one degree southeast to capture M99, a face-on spiral known as the “Pinwheel” that can be seen in apertures as small as 4″. Return to 6 Comae and head two degrees northeast. You will pass two fifth magnitude stars that point the way to M100 – the largest appearing galaxy in the Coma/Virgo cluster. To the average scope, it will look like a dim globular cluster with a stellar nucleus. Now let’s continue on two degrees north where you will see bright yellow 11 Comae. One degree northeast is all it takes to catch the ninth magnitude, round M85. (Ignore that barred spiral. let’s keep moving…) Now, let’s try a “trick of the trade” to locate two more. Going back to 6 Comae, relocate M99 and turn off your drive. If you are accurately aligned to the equator, you may now take a break for 14 minutes. When you return the elongated form and near stellar nucleus of M88 will have “drifted” into view. Wait another two to three minutes and the faint barred spiral M91 will have joined the show in a one degree field of view? Pretty fun, huh?

Now let’s shift guidestars by locating bright Vindemiatrix (Epsilon Virginis) almost due east of Denebola. Let’s hop four and a half degrees west and a shade north of Epsilon to locate one of the largest elliptical galaxies presently known – M60. At a little brighter than magnitude 9, this galaxy could be spotted with binoculars. In the same telescopic low power field you will also note faint NGC 4647 which only appears to be interacting with M60. Also in the field is our next Messier, bright cored elliptical M59 to the west. (Yes, there’s more – but not tonight.) Moving a degree west of this group will bring you to our “galactic twin,” fainter M58. Moving about a degree north will call up face-on spiral M89, which will show a nice core region in most scopes. One half degree northeast is where you will find the delightful 9.5 magnitude M90 – whose dark dust lanes will show to larger scopes. Continue on one and a half degrees southwest for M87, one of the first radio sources discovered. This particular galaxy has shown evidence of containing a black hole and its elliptical form is surrounded by more than 4,000 globular clusters.

Just slightly more than a degree northwest is a same field pair, M84 and M86. Although large aperture scopes will see many more in the field, concentrate on the two bright cored ellipticals which are almost identical. M84 will drift out of the field first to the west and M86 is east. Next we will select a new guidestar by going to 31 Virginis to identify splendid variable R about a degree to its west. We then move two degrees northwest of R to gather in the evenly lighted oval of M49. Now shifting about three degrees southwest, you will see a handsome yellow double – 17 Virginis. Only one-half degree south is the large face-on spiral, M61. Larger scopes will see arms and dust lanes in this one. Last for tonight is to head for the bright blue beauty of Spica and go just slightly more than a fist width (11 degrees) due west. M104 – the “Sombrero” galaxy – will be your reward for a job well done.

Congratulations. You’ve just seen 17 of the finest galaxies in the Coma/Virgo region and our “Marathon” total for three days has now reached 65. We’re over halfway home…

Night Four – How about if we try an “early to bed and early to rise” attitude and conquer these next objects well ahead of the dawn? Set your alarm for 3:00 am, dress warm and let’s dance.

With Corvus relatively high to the south, the drop is about five degrees to the south-south east of Beta Corvi. Just visible to the unaided eye will be the marker star – the double A8612. Eighth magnitude M68 is a bright, compact globular cluster in Hydra that will appear as a “fuzzy star” to binoculars and a treat to the telescope. Our next is tough for far-northern observers, for the “Southern Pinwheel” – M83 – is close to ten degrees southeast of Gamma Hydrae. (This is why it is imperative to get up early enough to catch this constellation at its highest.)

Now we’re going to make a wide move across the sky and head southeast of brilliant Arcturus for Alpha Serpentis. About 8 degrees southwest you will find outstanding globular cluster M5 sharing the field with 5 Serpens. Now locate the “keystone” shape of Hercules and identify Eta in its northwest corner. About one-third of the way between it and Zeta to the south is the fantastic M13, also known as the “Great Hercules Globular Cluster.” A little more difficult to find is the small M92 because there are no stars to guide you. Try this trick – Using the two northernmost stars in the “keystone,” form an equilateral triangle in your mind with its imaginary apex to the north. Point your scope there. At sixth magnitude, this compact globular cluster has a distinct nucleus.

Now we’re off to enjoy summer favorites and future studies. M57, the “Ring Nebula,” is located about halfway between Sheilak and Sulafat. You’ll find the small globular M56 residing conveniently about midpoint between Sulafat and Alberio. About 2 degrees south of Gamma Cygni is the bright open cluster M29. And equally bright M39 lays a little less than a fist width to the northeast of Deneb. If you remember our hop north of Gamma Sagitta, you’ll easily find M27, the “Dumbbell Nebula,” and the loose globular, M71, just southwest of Gamma. All of the objects in this last paragraph are viewable with binoculars (albeit some are quite small) and all are spectacular in the telescope.

And now we’ve made it to 76 on our “Messier Hit List.”

Night Five – So, are you having fun yet? Now we’re moving into early morning skies and looking at our own galactic halo as we track down some great globular clusters. What time of day, do you ask? Roughly two hours before dawn…

Ophiuchus is a sprawling constellation and its many stars can sometimes be hard to identify. Let’s start first with Beta Scorpii (Graffias) and head about a fist’s width to the northeast. That’s Zeta and the marker you will need to locate M107. About one quarter the way back towards Graffias, you will see a line of three stars in the finder. Aim at the center one and you’ll find this globular in the same field. Now go back to Zeta and you will see a pair of similar magnitude dim stars higher to the northeast. The southernmost is star 30 and you will find the M10 globular cluster about one degree to its west. M12 is only about three degrees further along to the northeast. Both are wonderfully large and bright enough to be seen in binoculars.

Now we need to identify Alpha in Ophiuchus. Head toward Hercules. South of the “keystone” you will see bright Beta Hercules with Alpha Hercules to the southeast. The next bright star along the line is Alpha Ophiuchi and globular cluster M14 is approximately 16 degrees south and pretty much due east of M10. Now let’s head for bright Eta Ophiuchi (Sabik) directly between Scorpius and Sagittarius. The next globular, M9, is about three and a half degrees southeast.

Now let’s move on to an easier one. All you need to know is Antares to find the globular cluster M4 in Scorpius. All you have to do is aim your binoculars there, for this diffuse giant is just a little over one degree to the west. Go back to Antares and shift about four degrees to the northwest and you’ll find compact, bright globular M80. It will be very small in binoculars, but it’s quite bright. Going back to the scope is best for M19, although it’s easy to find around seven degrees due east of Antares. The last for this morning is M62 about a half a fist’s width to the south.

Hey, you’re doing terrific. Some of these are tough to find unless you’ve had practice… But now we’re up to a total of 85.

Night Six – Ready to get up early again? I know it’s hard, but what we’re after this morning is truly worth it. These are some of the most beautiful objects in the sky.

The lower curve of Scorpius is quite distinctive and the unaided eye pair you see at the “stinger” is beautiful double Shaula (Lambda) and its slightly less bright neighbor Upsilon. Aim your binoculars there and head towards the northeast and you cannot miss M6, the “Butterfly Cluster.” Below it and slightly east is a hazy patch, aim there and you will find another spectacular open cluster M7, often known as “Ptolemy’s Cluster.”

Now go north and identify Lambda Aquilae and you will find M11, the “Wild Duck” open cluster just to the west. About the same distance away to the south/southwest you will spot M26, another open cluster. These are all great binocular targets, but it will take an exceptionally dark, clear sky to see the Eagle Nebula associated with the M16 easy open cluster about a fist’s width away to the southwest. Far easier to see is the “Nike Swoosh” of M17 just a little further south. Many of you know this as the “Omega” or “Swan” nebula. Keeping moving south and you will see a very small collection of stars known as M18, and a bit more south will bring up a huge cloud of stars called M24. This patch of Milky Way “stuff” will show a wonderful open cluster – NGC 6603 – to average telescopes and some great Barnard darks to larger ones.

Now we’re going to shift to the southeast just a shade and pick up the M25 open cluster and head due west about a fist’s width to capture the next open cluster – M23. From there, we are dropping south again and M21 will be your reward. Head back for your scope and remember your area, because the M20 “Triffid Nebula” is just a shade to the southwest. Small scopes will pick up on the little glowing ball, but anything from about 4″ up can see those dark dust lanes that make this nebula so special. You can go back to the binoculars again, because the M8 “Lagoon Nebula” is south again and very easy to see.

This particular star hop is very fun. If you have children who would like to see some of these riches, point out the primary stars and show them how it looks like a dot-to-dot “tea kettle.” From the kettle’s “spout” pours the “steam” of the Milky Way. If you start there, all you will need to do is follow the “steam” trail up the sky and you can see the majority of these with ease.

Our Messier total has now risen to 98…

Night Seven – OK, folks… It’s “crunch time” and the first few on this list will be fairly easy before dawn, but you won’t have long before the light steals the last few from the sky.

At the top of the “tea kettle” is Lambda. This is our marker for two easy binocular objects. The small M28 globular cluster is quite easily found just a breath to the north/northwest. The larger, brighter and quite wonderful globular cluster M22 is also very easily found to Lambda’s northeast. Now we’re roaming into “binocular possible” but better with the telescope objects. The southeastern corner of the “tea kettle” is Zeta, and we’re going to hop across the bottom to the west. Starting at Zeta, slide southwest to capture globular cluster M54. Keep heading another three degrees southwest and you will see the fuzzy ball of M70. Just around two degrees more to the west is another globular that looks like M70’s twin. Say good morning to M69.

Now it’s really going to get tough. The small globular M55 is out there in “No Man’s Land” about a fist’s width away east/south east of Zeta and the dawn is coming. It’s going to be even harder to find the equally small globular M75, but if you can see Beta Capricorn it will be about a fist’s width southwest. Look for a “V” pattern of stars in the finder and go to the northeastern star of this trio. You should be able to put it in the same low power field. Without the “square” of Pegasus to guide us, look low to the east and identify Enif by its reddish color. (Delphinus above it should help you.) Power punch globular M15 is to Enif’s northwest and you should be able to see the star on its border in the finderscope. Let’s be thankful that M2 is such a fine, large globular cluster. The hop is two thirds of the way between Enif and Beta Aquarius, or just a little less than a fist’s width due west of Alpha.

Let’s hope that Beta is still shining bright, because we’ll need to head about a fist’s width away again to the southwest to snag what will now be two very dim ones – the M72 globular cluster and M73 open cluster just west of Nu Aquarius. We’re now running just ahead of the light of dawn and the M30 globular cluster is our last object. Hang on Delta Capricornus and show us the way south/southwest to star 41. If you can find that? You’ve got the very last one…

We’ve done the Messier Catalog of all 110 objects in just one week!

Is this a perfect list with perfect instructions? No way. Just like the sky, things aren’t always perfect. This is just a general guideline to helping you find the Messier objects for yourself. Unless you are using a computer-guided scope, it truly takes a lot of practice to find all the Messiers with ease, so don’t be discouraged if they just don’t fall from the sky. You might find all of these in one year or one week – and you just might find all of them in one good night. Regardless of how long it takes you – or when the skies cooperate – the beauty, joy and reward is the peace and pleasure it brings.

Messier Poster courtesy of SEDS.

The Messier Marathon


The Messier Marathon is an exhaustive attempt by an astronomer to observe all 110 Messier Objects in a single night – usually occurring around Spring Equinox when all objects can be seen between dusk and dawn. The observer begins with objects which are low to the western horizon at sky dark, continuing eastward and finishing with the targets that are low to the east just before dawn. While no sequence list can be perfect for every observer at every location, the below list works well with mid-northern latitudes and can be modified to suit your needs.

Each year astronomy clubs and observing groups get together to run the “Messier Marathon”… an exhausting, yet wonderful time!

Messier Marathon Observing List

!. M77 spiral galaxy in Cetus

2. M74 spiral galaxy in Pisces

3. M33 The Triangulum Galaxy (also Pinwheel) spiral galaxy in Triangulum

4. M31 The Andromeda Galaxy spiral galaxy in Andromeda

5. M32 Satellite galaxy of M31 elliptical galaxy in Andromeda

6. M110 Satellite galaxy of M31 elliptical galaxy in Andromeda

7. M52 open cluster in Cassiopeia

8. M103 open cluster in Casseopeia

9. M76 The Little Dumbell, Cork, or Butterfly planetary nebula in Perseus

10. M34 open cluster in Perseus

11. M45 Subaru, the Pleiades–the Seven Sisters open cluster in Taurus

12. M79 globular cluster in Lepus

13. M42 The Great Orion Nebula diffuse nebula in Orion

14. M43 part of the Orion Nebula (de Mairan’s Nebula) diffuse nebula in Orion

15. M78 diffuse reflection nebula in Orion

16. M1 The Crab Nebula supernova remnant in Taurus

17. M35 open cluster in Gemini

18. M37 open cluster in Auriga

19. M36 open cluster in Auriga

20. M38 open cluster in Auriga

21. M41 open cluster in Canis Major

22. M93 open cluster in Puppis

23. M47 open cluster in Puppis

24. M46 open cluster in Puppis

25. M50 open cluster in Monoceros

26. M48 open cluster in Hydra

27. M44 Praesepe, the Beehive Cluster open cluster in Cancer

28. M67 open cluster in Cancer

29. M95 spiral galaxy in Leo

30. M96 spiral galaxy in Leo

31. M105 elliptical galaxy in Leo

32. M65 spiral galaxy in Leo

33. M66 spiral galaxy in Leo

34. M81 Bode’s Galaxy (nebula) spiral galaxy in Ursa Major

35. M82 Cigar Galaxy irregular galaxy in Ursa Major

36. M97 The Owl Nebula planetary nebula in Ursa Major

37. M108 spiral galaxy in Ursa Major

38. M109 spiral galaxy in Ursa Major

39. M40 Double Star WNC4 in Ursa Major

40. M106 spiral galaxy in Canes Venatici

41. M94 spiral galaxy in Canes Venatici

42. M63 Sunflower galaxy spiral galaxy in Canes Venatici

43. M51 The Whirlpool Galaxy in Canes Venatici

44. M101 The Pinwheel Galaxy spiral galaxy in Ursa Major (M102 may be a duplication of M101)

45. M102? Spindle Galaxy (NGC 5866) lenticular (S0) Galaxy in Draco

46. M53 globular cluster in Coma Berenices

47. M64 Blackeye galaxy spiral galaxy in Coma Berenices

48. M3 globular cluster in Canes Venatici

49. M98 spiral galaxy in Coma Berenices

50. M99 spiral galaxy in Coma Berenices

51. M100 spiral galaxy in Coma Berenices

52. M85 lenticular (S0) Galaxy in Coma Berenices

53. M84 lenticular (S0) galaxy in Virgo

54. M86 lenticular (S0) galaxy in Virgo

55. M87 Virgo A elliptical galaxy in Virgo

56. M89 elliptical galaxy in Virgo

57. M90 spiral galaxy in Virgo

58. M88 spiral galaxy in Coma Berenices

59. M91 spiral galaxy in Coma Berenices

60. M58 spiral galaxy in Virgo

61. M59 elliptical galaxy in Virgo

62. M60 elliptical galaxy in Virgo

63. M49 elliptical galaxy in Virgo

64. M61 spiral galaxy in Virgo

65. M104 The Sombrero Galaxy spiral galaxy in Virgo

66. M68 globular cluster in Hydra

67. M83 Southern Pinwheel Galaxy spiral galaxy in Hydra

68. M5 globular cluster in Serpens Caput

69. M13 Great Hercules Globular Cluster globular cluster in Hercules

70. M92 globular cluster in Hercules

71. M57 The Ring Nebula planetary nebula in Lyra

72. M56 globular cluster in Lyra

73. M29 open cluster in Cygnus

74. M39 open cluster in Cygnus

75. M27 The Dumbbell Nebula planetary nebula in Vulpecula

76. M71 globular cluster in Sagitta

77. M107 globular cluster in Ophiuchus

78. M10 globular cluster in Ophiuchus

79. M12 globular cluster in Ophiuchus

80. M14 globular cluster in Ophiuchus

81. M9 globular cluster in Ophiuchus

82. M4 globular cluster in Scorpius

83. M80 globular cluster in Scorpius

84. M19 globular cluster in Ophiuchus

85. M62 globular cluster in Ophiuchus

86. M6 The Butterfly Cluster open cluster in Scorpius

87. M7 Ptolemy’s Cluster open cluster in Scorpius

88. M11 The Wild Duck Cluster open cluster in Scutum

89. M26 open cluster in Scutum

90. M16 open cluster associated with the Eagle Nebula or Star Queen Nebula IC 4703 in Serpens Cauda

91. M17 The Omega or Swan or Horseshoe or Lobster Nebula diffuse nebula in Sagittarius

92. M18 open cluster in Sagittarius

93. M24 Milky Way Patch star cloud with open cluster NGC 6603 in Sagittarius

94. M25 open cluster in Sagittarius

95. M23 open cluster in Sagittarius

96. M21 open cluster in Sagittarius

97. M20 The Trifid Nebula diffuse nebula in Sagittarius

98. M8 The Lagoon Nebula diffuse nebula in Sagittarius

99. M28 globular cluster in Sagittarius

100. M22 globular cluster in Sagittarius

101. M69 globular cluster in Sagittarius

102. M70 globular cluster in Sagittarius

103. M54 globular cluster in Sagittarius

104. 55 globular cluster in Sagittarius

105. M75 globular cluster in Sagittarius

106. M15 globular cluster in Pegasus

107. M2 globular cluster in Aquarius

108. M72 globular cluster in Aquarius

109. M73 open cluster in Aquarius

110. M30 globular cluster in Capricornus

Good luck!!

Messier Poster courtesy of SEDS.

Introduction to the Messier Objects

Charles Messier was born on June 26, 1730 in Lorraine, France. In 1744 at age fourteen, he saw the “Great Comet” appear in the skies above Lorraine and four years later in 1748, witnessed an annular solar eclipse. Perhaps it was these inspiring events that led Charles to a lifelong love of astronomy. In 1751, his excellence in handwriting brought him a job as assistant to Navy Astronomer, Joseph Delisle at the Paris Observatory. It was there that Messier learned to keep accurate records of astronomical observations and the first known entry made by Messier was the transit of Mercury across the Sun in 1753.

At the time, discovering a comet made an astronomer not only noteworthy in the eyes of their peers, but quite famous as well. In 1757 the big search was on for the Comet Halley – predicted to return during that year. While Charles wasn’t the first to locate it, he quickly came to realize during his “sweeps” that there were many objects which could be mistaken as cometary – yet remained in fixed positions. Thus began the Messier Catalog, and its first entry in 1758 was M1, the “Crab Nebula”. While Messier was compiling his catalog of non-cometary objects, he also discovered a genuine comet in 1763 and two more in 1764.

Charles’ catalog was published in several editions as it was amended and the first 45 entries was printed in 1771. In its classic form, it contained 103 entries. In later years, after careful study of his notes, Dr. Helen Sawyer Hogg and Dr. Owen Gingerich would suggest that another four to six objects should be added to bring the total to 110 – the Messier Catalog we know today. Not all of the objects were his original discovery – a fact which he made clear in his notes – and it is rather ironic that what Messier thought of to be “nuisance nebula” that might confuse the comet hunter would later become his major claim to fame. With his small telescopes aimed towards the night sky, he would give future generations of astronomers one of the finest sets of targets for mid-northern latitudes to enjoy.


It isn’t long before the novice astronomer becomes aware of the “Messier List” – and rightly so. This wonderful collection of deep sky gems are easily accessible to a small telescope and most can even be perceived in binoculars. A large majority of the objects can be conquered easily with modest instruments under less than perfect sky conditions, a few can be seen with the unaided eye and some are quite challenging. As a whole, they make for great nights of study, piquing both interest and intellect, as well as observing skills. They range from vague misty patches to grand swaths of stellar landscape!

The Messier Objects (as presented here), contain proper sky coordinates for setting circles or entry into GoTo systems. You’ll also find included a rough map of location, descriptions, scientific information and history. Do not be disappointed if your observations don’t match the grand photos that accompany each article. It is unfortunate that photography can’t always depict what can be seen at the eyepiece, but do rejoice that you are catching a smudge that’s such a huge distance away! Do not give up if you don’t find a particular object easily… Conquering the Messier list takes time and patience. There are also many fine organizations that offer awards for observing the Messier List and instructions for participation can be easily found on the web. Most of all? Enjoy your observations!

Charles Messier (archival image), Messier Objects Poster courtesy of SEDS.

Messier 110


Object Name: Messier 110
Alternative Designations: M110, NGC 205
Object Type: E6p Elliptical Galaxy
Constellation: Andromeda
Right Ascension: 00 : 40.4 (h:m)
Declination: +41 : 41 (deg:m)
Distance: 2900 (kly)
Visual Brightness: 8.5 (mag)
Apparent Dimension: 17×10 (arc min)


Locating Messier 110: M110 is easily located with smaller telescopes as the northeastern companion galaxy of M31 – the Great Andromeda Galaxy. It can be spotted as a small hazy patch in larger binoculars from a dark sky site and easily begins to display structure with a mid-sized telescope. While it isn’t as grand as its nearby neighbor, most backyard astronomers would find this bright little galaxy far more interesting if it were on its own! It is well suited to a small amount of light pollution and makes for an excellent suburban challenge.

What You Are Looking At: Classified as a dwarf spheroidal galaxy, M110 enjoys its life some 2.9 million years away from our solar system on the outskirts of the Andromeda Galaxy. Despite its diminuative size, its an active little galaxy with a system of 8 globular clusters in a halo around it. “We present measurements of ages, metallicities and [?/Fe] ratios for 16 globular clusters (GCs) in NGC 147, 185 and 205 and of the central regions of the diffuse galaxy light in NGC 185 and 205. Our results are based on spectra obtained with the SCORPIO multislit spectrograph at the 6-m telescope of the Russian Academy of Sciences. We include in our analysis high-quality Hubble Space Telescope/WFPC2 photometry of individual stars in the studied GCs to investigate the influence of their horizontal branch (HB) morphology on the spectroscopic analysis. All our sample GCs appear to be old (T > 8 Gyr) and metal-poor ([Z/H]??1.1) , except for the GCs Hubble V in NGC 205 (T= 1.2 ± 0.6 Gyr, [Z/H]=?0.6 ± 0.2) , Hubble VI in NGC 205 (T= 4 ± 2 Gyr, [Z/H]=?0.8 ± 0.2) and FJJVII in NGC 185 (T= 7 ± 3 Gyr, [Z/H]=?0.8 ± 0.2) . The majority of our GCs sample has solar [?/Fe] enhancement in contrast to the halo population of GCs in M31 and the Milky Way.” says M.E. Sharina (et al). “The HB morphologies for our sample GCs follow the same behaviour with metallicity as younger halo Galactic GCs. We show that it is unlikely that they bias our spectroscopic age estimates based on Balmer absorption-line indices. Spectroscopic ages and metallicities of the central regions in NGC 205 and 185 coincide with those obtained from colour–magnitude diagrams. The central field stellar populations in these galaxies have approximately the same age as their most central GCs (Hubble V in NGC 205 and FJJIII in NGC 185), but are more metal-rich than the central GCs.”

But globular clusters are old… Are there new stars forming inside of M110? “NGC 205 is a peculiar dwarf elliptical galaxy hosting in its center a population of young blue stars. Their origin is still matter of debate, the central fresh star formation activity possibly being related to dynamical interactions between NGC 205 and M31. The star formation history around the NGC 205 central nucleus is investigated in order to obtain clues to the origin of the young stellar population. Methods. Deep HST/ACS CCD photometry is compared with theoretical isochrones and luminosity functions to characterize the stellar content of the region under study and compute the recent SF rate. Our photometry reveals a previously undetected blue plume of young stars.” says L. Monaco (et al). “Our analysis suggests that (they) were produced between approximately 62 Myr and 335 Myr ago in the NGC 205 inner regions, with a latest minor episode occurring 25 Myr ago. The excellent fit of the observed luminosity function of young main sequence stars obtained with a model having a constant star formation rate argues against a tidally triggered star formation activity over the last 300 Myr. Rather, a constant SF may be consistent with NGC 205 being on its first interaction with M 31.”

Is that all? The let’s stir up the interstellar medium… “In order to understand what determines the properties of the interstellar medium (ISM) and the relation of that ISM to star formation, it is important to observe the ISM in a variety of environments unlike our solar neighborhood. One example of an environment different from the solar neighborhood is the interior of the dwarf elliptical galaxy NGC 205, a companion of M31.” says L.M. Young and K. Yo. “Though it is an elliptical, NGC 205 has long been classified as peculiar, because it has dust clouds and signs of recent star formation near its center. Therefore, given the general deficiency of gas and star formation in elliptical galaxies, NGC 205 presents an excellent opportunity to study the properties of the interstellar medium”

Having such a dominate neighbor isn’t easy, either. According to the work of K.M. Howley (et al): “NGC 205, a close satellite of the M31 galaxy, is our nearest example of a dwarf elliptical galaxy. Photometric and kinematic observations suggest NGC 205 is undergoing tidal distortion from its interaction with M31. Despite earlier attempts, the orbit and progenitor properties of NGC 205 are not well known. We perform an optimized search for these unknowns by combining a genetic algorithm with restricted N-body simulations of the interaction. Coupled with photometric and kinematic observations as constraints, this allows for an effective exploration of the parameter space. We represent NGC 205 as a static Hernquist potential with embedded massless test particles serving as tracers of surface brightness. We explore three distinct, initially stable test particle configurations: cold rotating disk, warm rotating disk, and hot, pressure-supported spheroid. Each model reproduces some, but not all, of NGC 205’s observed features, leading us to speculate that a rotating progenitor with substantial pressure support could match all of the observables.”

Did M110 form from M31, or is it just hanging on the coattails of its big brother? Let’s ask the Isaac Newton Telescope. “The initial results of this survey could not have been more surprising: despite exhibiting a near pristene disk, M31’s halo is full of substructure and points to a history of accretion and disruption. Metal-poor/young stars are coded blue whilst metal rich/older stars are coded red. This spectacular image shows in amazing detail the wealth of information that the INT is helping to reveal about the structure of this previously invisible region of galaxies. The most obvious piece of substructure visible is the giant stellar stream (visible in the south-east). This extends to near the edge of our survey —a projected distance of some 60kpc. In fact, by examining the systematic shift in the luminosity function of the stream as a function of galactocentric radius, we find its actual length is much greater than 100kpc. The similarity of the colour of this feature with the loop of material at the north of the survey suggests a connection: deep follow-up imaging using HST/ACS confirms that they possess the same stellar population. It seems likely that the northern feature is an extension of the stream, after it has passed very close to the centre of the potential of M31.” says Alan McConnachie (et al). “A second large stellar stream candidate has also been identified. The progenitor of this feature appears to be the satellite galaxy NGC 205, although this awaits spectroscopic confirmation. This object has long been known to be tidally perturbed but it is only now that the full extent of its disruption is becoming clear.”

History: M110 was discovered by Charles Messier on August 10, 1773. In his notes he writes: “I examined, under a very good sky, the beautiful nebula of the girdle of Andromeda [M31], with my achromatic refractor, which I had made to magnify 68 times, for creating a drawing like the one of that in Orion [M42] (Mem. de l’acad. 1771, pag. 460). I saw that [nebula] which C. [Citizen] Legentil discovered on October 29, 1749 [M32]. I also saw a new, fainter one, placed north of the great [nebula], which was distant from it about 35′ in right ascension and 24′ in declination. It appeared to me amazing that this faint nebula has escaped [the discovery by] the astronomers and myself, since the discovery of the great [nebula] by Simon Marius in 1612, because when observing the great [nebula], the small is located in the same field [of view] of the telescope. I will give a drawing of that remarkable nebula in the girdle of Andromeda, with the two small which accompany it.”

Caroline Herschel independently discovered M110 on August 27, 1783, little more than 10 years after Messier, and William Herschel numbered it H V.18 when he cataloged it on October 5, 1784 and placed in his notes: “.. There is a very considerable, broad, pretty faint, small nebula near it [M31]; my Sister [Caroline] discovered it August 27, 1783, with a Newtonian 2-feet sweeper. It shews the same faint colour with the great one, and is, no doubt, in the neighborhood of it. It is not [M32] ..; but this is about two-thirds of a degree north preceding it, in a line parallel to Beta and Nu Andromedae.”

M110 would later be cataloged by John Herschel and poetically observed by Admiral Smyth: “A large faintish nebula of an oval form, with its major axis extending north and south. It it between the left arm and robes of Andromeda, a little to the np [North Preceding, NW] of 31 Messier; and was discovered by Miss Herschel in 1783, with a Newtonian 2-foot [FL] sweeper. It lies between two sets of stars, consisting of four each, and each disposed like the figure 7, the preceding group being the smallest; besides other telescopic stars to the south, This mysterious apparition was registered by H [William Herschel] as 30′ long and 12′ broad, but only half that size by his son; and there was a faint suspicion of a nucleus. This doubt must stand over for the present, – for whatever was a matter of uncertainty in the 20-foot reflector, would have no chance of definition in my instrument. It was carefully differentiated with Beta Andromedae.”

Enjoy this great little galaxy!

Top M110 image credit, Palomar Observatory courtesy of Caltech, M110 courtesy of J.C. Cuillandre, CFHT, M110 Image by Lowell Observatory, M110 by Adam Block/NOAO/AURA/NSF, Messier’s Andromeda and Companion Sketch (public image) and M110 image courtesy of NOAO/AURA/NSF.

Messier 109

Object Name: Messier 109
Alternative Designations: M109, NGC 3992
Object Type: Sbc Barred Spiral Galaxy
Constellation: Ursa Major
Right Ascension: 11 : 57.6 (h:m)
Declination: +53 : 23 (deg:m)
Distance: 55000 (kly)
Visual Brightness: 9.8 (mag)
Apparent Dimension: 7×4 (arc min)


Locating Messier 109: Locating M109 is a snap. It’s position is less than a degree southeast of Gamma Ursae Majoris – Phecda – the inside bottom corner star of the Big Dipper asterism. But just because it is easy to find doesn’t mean it is easy to see! Although it is considered rather large, the outer spiral arms are quite faint and only the bright central bar and nucleus region show well to smaller telescopes. Messier 109 will require dark, clear skies and at least mid-sized aperture to begin seeing details.

What You Are Looking At: This member of the Ursa Major Galaxy Cloud is about 55 million light years away from Earth and running away from us at an approximate speed of 1142 kilometers per second. However, it is not alone… It has companion galaxies as well – companions that may be contributing to M109’s bright central bar. “Detailed neutral hydrogen observations have been obtained of the large barred spiral galaxy NGC 3992 and its three small companion galaxies, UGC 6923, UGC 6940, and UGC 6969. For the main galaxy, the HI distribution is regular with a low level radial extension outside the stellar disc. However, at exactly the region of the bar, there is a pronounced central H I hole in the gas distribution. Likely gas has been transported inwards by the bar and because of the emptiness of the hole no large accretion events can have happened in recent galactic times.” says R. Bottemar (et al).

“The gas kinematics is very regular and it is demonstrated that the influence of the bar potential on the velocity field is negligible. A precise and extended rotation curve has been derived showing some distinct features which can be explained by the non-exponential radial light distribution of NGC 3992. The decomposition of the rotation curve gives a slight preference for a sub maximal disc, though a range of disc contributions, up to a maximum disc situation fits nearly equally well. For such a maximum disc contribution, which might be expected in order to generate and maintain the bar, the required mass-to-light ratio is large but not exceptional.”

And indeed its spiral structure is what makes it beautiful. Says K. Wilke: “For the intermediate-type barred galaxies NGC 3992 and NGC 7479 stationary models are constructed which reproduce in a consistent manner the observed distribution of the luminous matter and the observed gas kinematics in the inner disk regions affected by the bar. We present 2D fits to the observed NIR luminosity distributions that consist of three components: a bulge, a bar, and a disk. By projection to the reference frame of the galaxy, artificial rotation curves for every model are obtained and are compared with the observed rotation curves of the HII-gas. The parameters of the NGC 3992- and NGC 7479-models are optimized by computing and evaluating a large number of models with different parameter sets. This iterative procedure results in final models that accurately reproduce the morphological structure of NGC 3992 and NGC 7479 as well as the observed kinematics of the HII-gas.”

Because Messier 109 has a slightly different structure to its arms, it makes it a great place for astronomers to discover how starforming regions evolve. According to the work of J. P. Cepa and J. E. Beckman: “The present study estimates the efficiency ratio for massive star formation between the arms and the interarm discs of three grand design spirals. The estimate is based on H mapping observations of theHii regions in the galaxies. We find that this efficiency ratio is 10 in the zones between the Lindbalad resonances and the radius which we infer to be co-rotation, dropping to values close to unity at these three resonance raddii. these results point to a dominant influence of resonance structure in stimulating star formation in grand design spirals.”

However, Messier 109 isn’t just producing new stars. It’s magnetic halo is producing ultra high energy cosmic rays! “The study of the propagation of ultra-high-energy cosmic rays (UHECRs) is a key step to unveiling the secret of their origin. Up to now only the influence of the galactic and extragalactic magnetic fields was considered. In this article we focus our analysis on the influence of the magnetic field of the galaxies standing between possible UHECR sources and us. Our main approach is to start from the well-known galaxy distribution up to 120 Mpc.” says Pascal Chardonnet and Alvise Mattei. “We use the most complete galaxy catalog: the LEDA catalog. Inside a sphere of 120 Mpc, we extract 60,130 galaxies with known positions. In our simulations we assign a halo dipole magnetic field (HDMF) to each galaxy. The code developed is able to retro-propagate a charged particle from the arrival points of UHECR data across our galaxy sample. We present simulations in the case of the Virgo Cluster and show that there is a nonnegligible deviation in the case of protons of 7 × 1019 eV, even if the B value is conservative. Then special attention is devoted to the AGASA triplet, where we find that NGC 3998 and NGC 3992 could be possible source candidates.”

But things aren’t sitting still inside Messier 109 while the action goes on. The central bar is rotating rather unusually, too. “The pattern speed is one of the fundamental parameters that determines the structure of barred galaxies. This quantity is usually derived from indirect methods or by employing model assumptions. The number of bar pattern speeds derived using the model-independent Tremaine & Weinberg technique is still very limited. We present the results of model-independent measurements of the bar pattern speed in four galaxies ranging in Hubble type from SB0 to SBbc.” says Joris Gerssen (et al). “Three of the four galaxies in our sample are consistent with bars being fast rotators. The lack of slow bars is consistent with previous observations and suggests that barred galaxies do not have centrally concentrated dark matter haloes. This contradicts simulations of cosmological structure formation and observations of the central mass concentration in nonbarred galaxies.”

When it comes to galaxy dynamics, it is this speed that determines the bulge in the center. Says E. M. Corsini: “The dynamics of a barred galaxy depends on the pattern speed of its bar. The only direct method for measuring the pattern speed of a bar is the Tremaine-Weinberg technique. This method is best suited to the analysis of the distribution and dynamics of the stellar component. Therefore it has been mostly used for early-type barred galaxies. Most of them host a classical bulge. On the other hand, a variety of indirect methods, which are based on the analysis of the distribution and dynamics of the gaseous component, has been used to measure the bar pattern speed in late-type barred galaxies. Nearly all the measured bars are as rapidly rotating as they can be. By comparing this result with high-resolution numerical simulations of bars in dark matter halos, it is possible to conclude that these bars reside in maximal disks.”

History: This interesting spiral galaxy was first turned up by Pierre Mechain on the night of March 12, 1781. It was later confirmed by Charles Messier on March 24, 1781, along with M108 while doing the computations for M97. Originally Messier included this finding as object #99 is his rough draft, but did not give it a position. From Mechain’s letter to Bernoulli of May 6, 1783: “A nebula near Beta in the Great Bear. Mr. Messier mentions, when indicating its position, two others, which I also have discovered and of which one is close to this one [M108], the other is situated close to Gamma in the Great Bear [this is M109], but I could not yet determine their positions.”

Because it wasn’t included in the catalog, Sir William Herschel independently recovered it on on April 12, 1789, gave it his own catalog number and writes: “Considerably bright. Irregularly formed. Extended meridionally [along the Meridian, i.e. North-South]. Little brighter Nucleus. With faint brances 7 or 8′ long, and 5 or 6′ broad.” His son John would also go on to add it to his catalog on February 17, 1831 when he writes: “Bright; Large; very suddenly brighter to the Middle; round; 3′ diameter. Fine object.”

Because M109 wasn’t added to the published Messier catalog of the time, poetic stargazer – Admiral Smyth – would attribute its discovery to Herschel and write in his own notes: “A large pale-white nebula, on the Bear’s right haunch, about 1d 1/4 south of Gamma; discovered in April, 1789. It has a peculiar appearance in the field, from there being a coarse small double star north of it, and from its being followed by a vertical line of five equidistant telescopic stellar attendants. This object is fine, but, in my instrument, faintish; it brightens towards the middle; and WH says there is, in that part, an unconnected star, the which I cannot make out. From every inference this nebula is a vast and remote globular cluster of worlds, for JH assures us it is actually resolvable. By its blazing towards the centre, proof is afforded that the stars are more condensed there than around its margin, an obvious indication of a clustering power directed from all parts towards the middle of the spherical group. In other words, the whole appearance affords presumptive evidence of a wonderful physical fact, — the actual existence of a central force.”

Although he didn’t know he was looking at a distant galaxy, Smyth definitely had some sort of clue as to what was going on. May your observations prove as interesting!

Top M109 image credit, Palomar Observatory courtesy of Caltech, M109 Images courtesy of SSDS, M109 courtesy of Hunter Wilson (Wikipedia), M109 IPAC Image, M109 Core Region courtesy of NASA/ESA Hubble Space Telescope, M109 2MASS Image and M109 image courtesy of NOAO/AURA/NSF.

Messier 108


Object Name: Messier 108
Alternative Designations: M108, NGC 3556
Object Type: Sc Spiral Galaxy
Constellation: Ursa Major
Right Ascension: 11 : 11.5 (h:m)
Declination: +55 : 40 (deg:m)
Distance: 45000 (kly)
Visual Brightness: 10.0 (mag)
Apparent Dimension: 8×1 (arc min)


Locating Messier 108: M108 is easily located about one quarter the distance between Beta Ursa Majoris and Gamma Ursa Majoris… but locating doesn’t mean it’s always easily seen! At nearly edge-on in presentation, this mottled streak of light is a rather difficult catch for smaller telescopes and requires good, dark sky to see any details. Larger instruments will make out both faint and bright patches in structure.

What You Are Looking At: Located about 45 million light years away from Earth and running away from us at 772 kilometers per second, this disturbed looking galaxy is rich in dark dust, star forming regions and a supershell. “We present the first high resolution HI maps of the nearby edge-on galaxy, M 108 (NGC 3556). This galaxy is known to have a radio continuum thick disk and we have now found HI arcs and extensions protruding from the plane on kpc scales. Two HI arcs, positioned at either end of the optical major axis have the signature of expanding shells and, in the context of energy input from supernovae and stellar winds, the required input energy for the eastern shell is > 2.6 times 10^56 erg, making this the most energetic HI supershell yet detected.” says D. L. Giguere and J. Irwin.

“Since this galaxy is isolated, the supershells are unlikely to have been created through impacting external clouds, yet the required input energy is also greater than that available from the observed internal star formation rate. Thus it would appear that some form of energy enhancement (such as magnetic fields) must also be important in creating these features. The supershells are so dominant that they distort the outer major axis. Without a knowledge of the resolved structure of these features, the galaxy would mistakenly be considered warped. We have also modeled the underlying smooth density and velocity distributions of this galaxy by reproducing the line profiles in the HI cube.”

What else is unusual about Messier 108? Try a water maser that disappeared. “NGC 3556: is a nearby spiral galaxy located at a distance of 12Mpc. Its FIR luminosity, LFIR 1010 L?, is similar to that of the Milky Way. The detected H2O maser line initially had a central velocity of 738 kms?1. With a peak flux of 20–40mJy, the maser had an isotropic luminosity of 1 L. More recently, the maser feature disappeared and another weaker component, at 708 kms?1, was detected.” says A. Tarchi (et al). “The high rate of maser detections in our sample of galaxies strongly suggests that a relationship between FIR flux density and maser phenomena exists.”

What else is hiding? Perhaps an intermediate mass black hole, you say? “We present a 60 ks Chandra ACIS-S observation of the isolated edge-on spiral galaxy NGC 3556, together with a multiwavelength analysis of various discrete X-ray sources and diffuse X-ray features. Among 33 discrete X-ray sources detected within the IB = 25 mag arcsec-2 isophote ellipse of the galaxy, we identify a candidate for the galactic nucleus, an ultraluminous X-ray source that might be an accreting intermediate-mass black hole, a possible X-ray binary with a radio counterpart, and two radio-bright giant H II regions.” says Q. Daniel Wang (et al). “The diffuse X-ray emission exhibits significant substructures, possibly representing various blown-out superbubbles or chimneys of hot gas heated in massive star-forming regions. This X-ray-emitting gas has temperatures in the range of ~(2-7) × 106 K and has a total cooling rate of ~2 × 1040 ergs s-1. The energy can be easily supplied by supernova blast waves in the galaxy. These results show NGC 3556 to be a galaxy undergoing vigorous disk-halo interaction. The halo in NGC 3556 is considerably less extended, however, than that of NGC 4631, in spite of many similarities between the two galaxies. This may be due to the fact that NGC 3556 is isolated, whereas NGC 4631 is interacting. Thus, NGC 3556 presents a more pristine environment for studying the disk-halo interaction.”

History: According to SEDS, Charles Messier’s hand-written preliminary and unpublished version of his catalog, M108, similar to M109, was discovered by Pierre Méchain shortly after M97 (which he had found February 16, 1781): Méchain discovered M108 3 days after M97 on February 19, 1781, and M109 on March 12, 1781. Both objects were apparently also observed by Charles Messier when he measured the position of M97 (March 24, 1781), but apparently he didn’t find occasion to obtain positions for these objects at that time. Messier listed this object, M108, under number “98” in his preliminary manuscript version of his catalog, without giving a position.

M108 was catalog again by William Hershel in 1789, but best described by Admiral Smyth who said: “A large milky-white nebula, on the body of the Great Bear, with a small star at its sp [South Preceding, SW] apex, and an 8th-magnitude preceding [W] it at double the distance; there is also a brightish group in the np [North Preceding, NW] quadrant. It is easily found, since it lies only about 1 deg south-east of Beta, Merak. This object was discovered by H. [William Herschel] in April, 1789; and is No. 831 of his son’s Catalogue. It is faint but well defined, being much elongated with an axis-major trending sp [South Preceding, SW] and nf [north following, NE] across the parallel, and a small star, like a nucleus, in its center. As H. [WH] considers this star to be unconnected with the nebula, it follows that it is between us and it, and therefore strengthens to confirmation our belief in the inconceivable remoteness of those mysterious bodies.”

Enjoy every inch of this mysterious body!

Top M108 image credit, Palomar Observatory courtesy of Caltech, M108 Hubble Image, M108 courtesy of Ole Nielsen (Wikipedia), M108 GALEX image and M108 image courtesy of NOAO/AURA/NSF.

Messier 107


Object Name: Messier 107
Alternative Designations: M107, NGC 6171
Object Type: Class X Globular Cluster
Constellation: Ophicuhus
Right Ascension: 16 : 32.5 (h:m)
Declination: -13 : 03 (deg:m)
Distance: 20.9 (kly)
Visual Brightness: 7.9 (mag)
Apparent Dimension: 13.0 (arc min)


Locating Messier 107: M107 is easily found about 4 degrees (3 fingerwidths) south/southwest of Zeta Ophiuchi. In binoculars it is a small, round contrast change and it can even be spotted in larger finderscopes from a dark sky location. At near magnitude 8, Messier 107 can take some moderate light pollution and is well suited for urban and suburban viewing. In a 4.5″ telescope, this globular cluster will take on a grainy appearance and will resolve more and more as aperture is applied.

What You Are Looking At: Enjoying its “space” some 21,000 light years away from Earth, this darkly obscured globular cluster spans 80 light years and is coming towards us at a speed of 147 kilometers per second. While that may sound fast, in astronomical terms it’s a rather weak acceleration. “As part of an ongoing program to test Newton’s law of gravity in the low acceleration regime using globular clusters, we present here new results obtained for NGC 6171. Combining VLT spectra for 107 stars with data from the literature, we were able to trace the velocity dispersion profile up to 16 pc from the cluster center, probing accelerations of gravity down to 3.5e-9 cm/s/s. The velocity dispersion is found to remain constant at large radii rather than follow the Keplerian falloff.” says Riccardo Scarpa (et al). “We have now studied three clusters and all three have been found to have a flat dispersion profile beyond the radius where their internal acceleration of gravity is ~ 1e-8 cm/s/s. Whether this indicates a failure of Newtonian dynamics or some more conventional dynamical effect (e.g., tidal heating) is still unclear. However, the similarities emerging between globular clusters and elliptical galaxies seem to favor the first of the two possibilities.”

What’s causing M107 to slow down? At home in the halo of our own galaxy, this globular cluster could be caught in our own tidal drag from the MIilky Way’s central bar. Says Christine Allen: “We study the effect of a bar in the galactic orbits of forty-five globular clusters whose absolute proper motions are known. The orbital characteristics of the orbits are compared with those obtained for the case of an axisymmetric galactic potential. Tidal radii are computed and discussed for both cases.”

But there could be other reasons as well… “We report on the detection of SiO masers in Asymptotic Giant Branch variables toward bulge/disk globular clusters. In five out of six cases, the radial velocities are compatible with the optically measured radial velocities of globular clusters in the assessed uncertainty. Two sources, toward Terzan 5 and Terzan 12, lie very close to the cluster centers. The objects toward Pal 6 and Terzan 12 have luminosities appropriate to the AGB tip in globular clusters, while those toward NGC 6171, Pal 10, and Terzan 5 are brighter than expected.” says M. Noriyuki. “It is suggested that the latter three may have evolved from merged binaries, offering a test for binary-evolution scenarios in globular clusters, if the membership is approved.”

M107 might be a middleweight contender when it comes to metallicity, but it finishes the round with 25 variable stars. It is also known to contain blue straggler stars, too… But where did they come from? With all of those suns so closely packed together, it stands to reason that a collision may have happened more than once. “There are several observed phenomena in globular clusters that are thought to be the result of dynamical processes or binary star evolution. This review examines these manifestations of the interaction between globular cluster dynamics and stellar evolution. Blue stragglers may be formed by the evolution of primordial binaries or by collisions.” says A. Knudsen. “Current evidence suggests that both processes are likely to occur, and that the observed blue straggler sequences can place dynamically interesting limits on rates. Color gradients in globular clusters are thought to becaused by the stripping of giants by collisions, although the creation of blue subdwarfs by the same process may also be required to explain the observations. The observed X-ray sources and radio pulsars are apparently also made by a variety of dynamical processes that are still not fully understood.”

History: Messier 107 was originally discovered by Pierre Mechain in April 1782 – perhaps destined for a future edition of the Messier Catalog. In his letters he writes: “In April 1782 I discovered a small nebula in the left flank of Ophiuchus between the stars Zeta and Phi, the position of which I have not yet observed any closer.” It was independently recovered again by Sir William Herschel on May 12, 1793 and listed in his unpublished notes as: “A very beautiful extremely compressed cluster of stars, extremely rich, 5 or 6′ in diameter, gradually more compressed toward the centre.”

While Herschel’s son John would later add it to his catalog, it was observed beforehand by Admiral Smyth who states in his notes: “A large but pale granulated cluster of small stars, on the Serpent-bearer’s right leg. There are five telescopic stars around it, so placed as to form a crucifix, when the cluster is high in the field; but the region immediately beyond is a comparative desert. After long gazing, this object becomes more compressed in the centre, and perplexes the mind by so wonderful an aggregation. It was discovered by WH in May, 1793, and was registered 5′ or 6′ in diameter. The mean place was obtained by differentiation with Zeta Ophiuchi, from which it is distant 3 deg to the south-south-west, in the line between Beta Scorpii and Beta Ophiuchi.”

May you enjoy gazing into it until the stars resolve!

Top M107 image credit, Palomar Observatory courtesy of Caltech, Messier 107 Hubble Image, M107 courtesy of NOAO, Messier 107 courtesy of Western Washington University, M107 2MASS image and M107 image courtesy of NOAO/AURA/NSF.