Jupiter’s Dueling Red Spots

Jupiter 11/01/09 by John Chumack

Even though most of us have been suffering from poor seeing conditions due to both hemisphere’s seasonal climate changes, the changes we’re experiencing look like nothing compared to what’s happening on Jupiter. If you think we’ve got turbulent atmosphere and more than our fair share of clouds – then check out what John Chumack’s been watching!

“I captured Jupiter last night (7:45pm EST on 11-01-09) from my backyard in Dayton, but the seeing was rather poor….but I did notice that the Great Red Spot had Company…the Little Red Spot has gotten noticeably redder and is now very close to the GRS.”

Of course, we all know the Great Red Spot is a great anti-cyclonic (high pressure) storm similar to our terrestrial hurricanes, but it is enormous. Three Earths would fit within its boundaries! And we also know this huge storm has persisted for at least the 400 years that we humans have observed it through telescopes. But in all that time, has it ever collided with another storm front?

Because the GRS can never occur over a land mass and the fact that it is driven by Jupiter’s internal heat source may be why it has hung around for so long. Thanks to some far reaching computer simulations, astronomers believe such large disturbances may be a stable feature of Jupiter, and that stronger disturbances tend to absorb weaker ones. Has the GRS consumed smaller anti-cyclones in its past and that is why is is so big? Is it about to do it again?

Since the cometary collision that created the “Great Black Spot” in July of this year occurred, many observers and photographers have been keeping an eye on Jupiter’s activity. Says John, “Since July they seem to have been getting closer together and may eventually collide….it will be fun watching to see which one survives the duel!!!”

dn14290-2_250In 2006, Oval BA, also known as “Red Jr.,” sideswiped its huge companion – just as it does about every two years. Chances are good that when the two meet, the smaller of the pair will end up losing its ruddy tones – the larger storm slowing Oval BA’s spin and possibly reversing the process that reddened it in the first place. Will it pull up even more material from below Jupiter’s surface? Or will it disperse what’s already there? No one knows for sure… But what we do know is that when a third “Red Spot” passed between the two in 2008… and it didn’t survive the interaction. Need to know when to watch? Then take this:

Great Red Spot Transit Times (UT):

November 1: 5:36, 15:31; 2: 1:27, 11:23, 21:19; 3: 7:14, 17:10; 4: 3:06, 13:02, 22:58; 5: 8:53, 18:49; 6: 4:45, 14:41; 7: 0:36, 10:32, 20:28; 8: 6:24, 16:20; 9: 2:15, 12:11, 22:07; 10: 8:03, 17:59; 11: 3:54, 13:50, 23:46; 12: 9:42, 19:38; 13: 5:33, 15:29; 14: 1:25, 11:21, 21:17; 15: 7:12, 17:08; 16: 3:04, 13:00, 22:56; 17: 8:51, 18:47; 18: 4:43, 14:39; 19: 0:35, 10:30, 20:26; 20: 6:22, 16:18; 21: 2:14, 12:10, 22:05; 22: 8:01, 17:57; 23: 3:53, 13:49, 23:44; 24: 9:40, 19:36; 25: 5:32, 15:28; 26: 1:23, 11:19, 21:15; 27: 7:11, 17:07; 28: 3:03, 12:58, 22:54; 29: 8:50, 18:46; 30: 4:42, 14:38

December 1: 0:33, 10:29, 20:25; 2: 6:21, 16:17; 3: 2:13, 12:08, 22:04; 4: 8:00, 17:56; 5: 3:52, 13:48, 23:43; 6: 9:39, 19:35; 7: 5:31, 15:27; 8: 1:22, 11:18, 21:14; 9: 7:10, 17:06; 10: 3:02, 12:58, 22:53; 11: 8:49, 18:45; 12: 4:41, 14:37; 13: 0:33, 10:28, 20:24; 14: 6:20, 16:16; 15: 2:12, 12:08, 22:03; 16: 7:59, 17:55; 17: 3:51, 13:47, 23:43; 18: 9:39, 19:34; 19: 5:30, 15:26; 20: 1:22, 11:18, 21:14; 21: 7:09, 17:05; 22: 3:01, 12:57, 22:53; 23: 8:49, 18:45; 24: 4:40, 14:36; 25: 0:32, 10:28, 20:24; 26: 6:20, 16:16; 27: 2:11, 12:07, 22:03; 28: 7:59, 17:55; 29: 3:51, 13:46, 23:42; 30: 9:38, 19:34; 31: 5:30, 15:26

And get thee out there with a telescope… Dueling Red Spots will be fun to watch!

Many thanks to John Chumack of Northern Galactic for sharing his image with us and to Sky & Telescope Magazine for the GRS transit prediction times!

Supernova 2009js… Another One Bites The Dust!

SN 2009 JS in NGC 918 by Joe Brimacombe

[/caption]

Far away in the constellation of Aries, in a 14th magnitude barred spiral galaxy designated as NGC 918… a star exploded with enough candlepower to briefly outshine its home. Discovered independently by Lick Observatory Supernova Search (LOSS) and Koichi Itagaki (Japan) on October 11, 2009, this Type II supernova might be hiding in the intergalactic dust, but it isn’t hiding from Joe Brimacombe.

So who is to blame for this poor intergalactic housekeeping condition, eh? Just exactly where did this film of dust come from that dims distant galaxies and cloaks supernova events? Try our own Milky Way. We’ve known since the first Palomar Sky Surveys that we’re looking through clouds and filaments of dust at high galactic latitudes. But it isn’t just our galaxy either… It’s our whole family! Chances are the entire local group is puffing out enough hydrogen to send up a smoke screen – possibly even with higher redshift extragalactic objects. And just who is the smoker of our group?

The Andromeda Galaxy – M31…

“Finally we come to the aspect which could most shake conventional beliefs about the Local Group and the nature of near space. Deep prints of a red sensitive Schmidt plate (Arp and Sulentic 1991) show unmistakable filamentary dust features reaching back along the minor axis direction toward M31.This filament is repeated in the blue photographs and 100 the hundred micron infra red scans. They have to be real. Although no one has cared to take a spectrum there is no hint of gaseous emission.” says Halton Arp.

“The ejection path across the whole Local Group sky from M31 to 3C120 must have carried material either dusty or capable of forming dust from the ejecting M 31. But that means dust and obscuration within the Local group of galaxies – a point which has never before been seriously advanced. But how can one escape the mult-iwavelength evidence? The most provocative object in the M31 minor axis line is NGC 918. The nebulous dust is most concentrated at the position of the galaxy but a region has been cleared on either side of the minor axis of the galaxy. Higher resolution images would give invaluable information on the process whereby ejections come out along the minor axis of galaxies. In addition the nebulosity is of such long extent across the sky and so coincident with the alignment along the M31 minor axis that it must be in the Local Group. Therefore interaction with the dust filament would represent direct evidence for a distance much smaller than NGC 918’s conventional redshift distance.”

“The filamentary features surrounding NGC 918 are well shown in this image. The outer features appear to be dust illuminated by the galaxy. Immediately around the galaxy the dust appears to cleared away. By either outflow of matter or radiation pressure from the galaxy.” explains Arp, “If the galaxy is not interacting with the nebulosity but just shining through a serendipitous hole we still have the remarkable inference that material has been ejected along the minor axis of M31 into the middle of the Local Group of galaxies. The question then arises as to how many other nearby galaxy groups contain intergalactic material and what this would do to our view of purportedly more distant galaxies.”

If dust is to blame for a clouded view here, is it possible that NGC 918 could be just as guilty of ignoring the Swiffer? Darn right it could. According to research done by E. E. Martinez-Garcia (et al), NGC 918 has its share of spiral density waves that present azimuthal color gradients that even an infrared passband won’t fully penetrate. “We believe that this effect may be due to the position of the dust lanes and stars with respect to the observer.” says Garcia, “More research needs to be done to understand the origin of this effect.”

In the meantime, we’ll thank Joe Brimacombe of Northern Galactic for being on watch and capturing this distant supernova within 24 hours of its discovery. Cuz’ another one bites the dust!

IYA Live Telescope – M50

Did you get a chance to check out the IYA Live Telescope? Our last object was Messier 50 (also known as M 50 or NGC 2323) is an open cluster in the constellation Monoceros. It was perhaps discovered by G. D. Cassini before 1711 and independently discovered by Charles Messier in 1772. M50 is at a distance of about 3,000 light-years away from Earth. It is described as a ‘heart-shaped’ figure. You’ll find the video inside!

Open cluster Messier 50 (M50, NGC 2323) is a pretty and considerably bright object located in a rich part of stars and nebulae in constellation Monoceros, near its border to Canis Major. It is easily seen in binoculars and well resolved in even a small telescope.

This cluster was discovered on April 5, 1772 by Charles Messier, but possibly G.D. Cassini had already discovered it before 1711, according to a report by his son, Jacques Cassini, in his book of 1740, Elements of Astronomy.

Open cluster M50 is probably about 3,200 light years distant. Its angular diameter of about 15×20′ therefore corresponds to a linear extension of about 20 light-years, the central dense part being only about 10′ or 10 light-years in diameter. J.E. Gore, from photographic plates taken by Isaac Roberts in 1893, has estimated its population as about 200 stars in the main body. The cluster’s Trumpler type is given as I,2,m (Glyn Jones), II,3,m (Sky Catalog 2000) or II,3,r (Götz). The visual appearance is described as a “heart-shaped figure” by Mallas and Kreimer.

According to Kenneth Glyn Jones, the brightest star is of spectral type B8 and mag 9.0, while the Sky Catalog 2000 gives spectral type B6 and mag 7.85, and the age is estimated as 78 million years. 7′ south of the center is a red M giant, contrasting prominently against its blue-white neighbor stars. The cluster also contains some yellow giants.

The Orionid Meteor Shower – What Did You See?

2009 Orionid Meteor by John Chumack

[/caption]

If you had the opportunity this morning to witness the offspring of Comet Halley, then I’m curious as to what you might have noticed about this reliable annual meteor shower.

The Orionid Meteor Shower produces an average of 10-20 meteors per hour maximum, with activity beginning before local midnight on October 20th, and reaches its peak as Orion stands high to the south about two hours before local dawn October 21st. The radiant (or point of origin) is roughly between Betelgeuse and the “feet” of Gemini. Also on an average is the magnitude – 3 – and most people describe the appearance as fast.

As a seasoned meteor-watcher and reporter, I document times, magnitudes, length of trails, duration, activity, numbers, etc. By the book, the Orionids behaved pretty much as they should have. They reached the predicted average fall rate, came screaming into our atmosphere at 140,000 mph peaking at the predicted local time, but this morning I noticed a little something different. Rather than branch out around the radiant like spokes on a wheel, the bulk of the activity seemed to occur down a narrow corridor.

Check out this time lapse video by John Chumack

On speaking with John, I noticed we both picked up on the same peak activity time – around 10:00 UT. And, upon reviewing his film, I also noticed it captured what I witnessed… The strong activity was centered on area about 10 degrees wide that ran right up the center of the constellation of Gemini. Of course, it’s natural that John and I should get relatively the same results since my observing station is only about 150 km to his north… But I’m curious!

For those that had an opportunity to observe the Orionids from a much different location, did the activity seem to be centered on a certain area at a certain time? Did the majority of the meteors seem to be brighter than the average magnitude 3? Please feel free to post your comments here!

Skies Sparkle For Both Hemispheres – The Annual Orionid Meteor Shower!

It’s not often that both hemispheres of the Earth get treated to an annual meteor shower, but in a matter of hours the complex Orionid stream is heading to dark sky your way! Where and when do you watch? Will it be as good as this year’s Perseids as filmed by John Chumack above? Try even better! Follow me…

We are now slipping into the stream of Comet Halley and one of the finest meteor showers of the year. If skies are clear tonight, this would be the perfect chance to begin observations of the Orionid meteor shower. But get to bed early and rise well before dawn to enjoy one of the year’s most reliable meteor showers. The offspring of Comet Halley grace the early morning hours as they return as the Orionid meteor shower. This dependable shower produces an average of 10-20 meteors per hour maximum, and best activity begins before local midnight on the 20th, and reaches its peak as Orion stands high to the south about two hours before local dawn the 21st. With only the tiniest crescent of a Moon gone in the early evening, this looks to be the year’s premier meteor shower!

Although Comet Halley has now departed the inner Solar System, its debris trail remains well organized – allowing us to predict when this meteor shower will occur. The Earth first enters the stream at the beginning of October and does not leave until the beginning of November. This makes your chances of “catching a falling star” above average! These meteors are very fast, and although faint, occasional fireballs do leave persistent trails.

For best success, get away from city lights. Face south-southeast in the northern hemisphere and almost overhead in the southern – then relax and enjoy the stars of the Winter Milky Way. The radiant is near Betelguese, but may occur from any part of the sky. The meteor watching experience is much more comfortable if you include a lawn chair, blanket, and thermos of your favorite beverage.


Orionid Meteor Shower – Key Points

  • The nights of October 21st and 22nd are the best times to watch.
  • Maximum hours rates are typically 20/hr and meteors are described as “fast”.
  • The radiant is at RA=06h20m, DEC=+16o, just above the left shoulder of Orion.
  • The average magnitude of an Orionid meteor is 3.

Clouded out? Don’t despair. You don’t always need eyes or perfect weather to keep the watch. Tune an FM radio to the lowest frequency that doesn’t receive a clear signal. An outdoor FM antenna pointed to the zenith increases your chances – but isn’t essential. Simply turn up the static and listen. Those hums, whistles, beeps, bongs, and occasional snatches of signals are distant transmissions being reflected off a meteor’s ion trail!

Sky Chart Courtesy of NASA.

IYA Live Telescope: Mmmm, Mmmmm, Good!

If you’ve had an opportunity over the last few days to check in on our IYA “Live” Telescope, we’ve been keeping an eye on the Messier Catalog Objects for you… specifically some bright open clusters named M46, M47 and M48! If you didn’t get a chance to catch them while they were on the air, then feel free to have a look at our video capture…

Messier 46 (also known as M 46 or NGC 2437) is an open cluster in the constellation of Puppis. It was discovered by Charles Messier in 1771. Dreyer described it as “very bright, very rich, very large.” M46 is about 5,500 light-years away with an estimated age on the order of several 100 million years.

The planetary nebula NGC 2438 appears to lie within the cluster near its northern edge (the faint smudge at the top center of the image), but it is most likely unrelated since it does not share the cluster’s radial velocity.[1][2] The case is yet another example of a superposed pair, joining the famed case of NGC 2818. M46 is about a degree east of M47 in the sky, so the two fit well in a binocular or wide-angle telescope field.

Ready for the next? Let’s go….

Open Cluster M47 (also known as Messier Object 47 or NGC 2422) is an open cluster in the constellation Puppis. It was discovered by Giovanni Batista Hodierna before 1654 and independently discovered by Charles Messier on February 19, 1771.

M47 is at a distance of about 1,600 light-years from Earth with an estimated age of about 78 million years. There are about 50 stars in this cluster, the brightest one being of magnitude +5.7.

And before we go…

Messier 48 (also known as M 48 or NGC 2548) is an open cluster in the Hydra constellation. It was discovered by Charles Messier in 1771.

M48 is visible to the naked eye under good atmospheric conditions. Its age is estimated to amount 300 million years.

As always, check when you have an opportunity to catch the IYA “Live” telescope in action!

Factual information courtesy of Wikipedia.

Hot Crescent Rolls… A Bubble?

The Crescent Nebula by Dietmar Hager and Immo Gerber

[/caption]

The Crescent Nebula, also known as NGC 6888, is a very well renown and most intriguing object located in the constellation Cygnus in the northern hemisphere. At an apparent size of about 18 by 13 arc-minutes it is a very pale nebula. Even in a moderate amateur telescope you can’t quite see this one unless you have absolute dark skies (or narrow band filters) and a decent “light bucket”. So how do we get a chance to study it? Photographically, of course…

Spanning some 25 by 18 light years, gazing at NGC 6888 means we are looking 4700 years into the past, a past that renders a nebula fueled and excited by the blue star at the center. And not just any blue star – but a high mass super-giant star – one that depleted its fuel at “full speed”. Not only was it a super giant, but hot… in the class of “Wolf Rayet” stars (HD 192163). Now, after only a couple of million years the “stellar gas” is almost used up and the star is standing right before a significant change: a supernova candidate. Behold a star that vents its outer layers into space at terrific speed!

“Images are used to constrain models of the ionization structure of nebular features.” says Brian D. Moore (et al) of the Department of Physics and Astronomy, Arizona State University, “From these models, we infer physical conditions within features and estimate elemental abundances within the nebula. The results of our analysis, together with the degree of small-scale inhomogeneity apparent in the images, call into question the assumptions underlying traditional methodologies for interpretation of nebular spectroscopy. The thermal pressure of photoionized clumps is higher than the inferred internal pressure of the shocked stellar wind, implying that the current physical conditions have changed significantly over less than a few thousand years.”

While the central star sustains severe loss of mass, the gas is holding lots of oxygen and hydrogen… just before the individual big “bang” of the WR-star creating a “hot bubble” whose struture can’t quite be explained yet. “A detailed analysis of the H I distribution at low positive velocities allowed us to identify two different structures very probably related to the star and the ring nebula. From inside to outside they are: (1) an elliptical shell, 11.8×6.3 pc in size, that embraces the ring nebula (labeled inner shell); and (2) a distorted H I ring, 28 pc in diameter, also detected in IR emission (outer shell). The borders of the inner shell strikingly follows the brightest regions of NGC 6888, showing the sites where the interaction between the nebula and the surrounding gas occurs. A third structure, the external feature, is a broken arc detected at slightly higher velocities than the former shells.” says Christina Cappa (et al), “We propose a scenario in which the strong stellar wind of HD 192163, expanding in an inhomogeneous interstellar medium, blew the outer shell during the main sequence phase of the star. Later, the material ejected by the star during the LBV (or RSG) and WR phases created NGC 6888. This material encountered the innermost wall of the outer shell originating the inner shell. The association of the external feature with the star and the nebula is not clear.”

For a look inside, view the full size image!

Many thanks to Dietmar Hager and Immo Gerber of TAO-Observatory for sharing this incredible image!

Request For Twilight Observations of U Scorpii

Further to AAVSO Alert Notice 367 and Special Notices 127 and 141, the AAVSO requests twilight observations of the recurrent nova U Scorpii prior to its solar conjunction in late 2009. These observations are in support of the long-term campaign by Dr. Bradley Schaefer (LSU) to catch this very fast nova during its rise.

AAVSO Special Notice #171: In 2008, the last ground-based observation of U Sco was made on 2008 November 2 (S. Kerr,
Glenlee, QLD, Australia). Observers are asked to do the best they can to observe U Sco as close to the Sun as possible. For this project, fainter-than observations are just as important as positive ones, and observers are asked to report all observations as promptly as possible via AAVSO WebObs.

For more information on the U Sco campaign and its science goals, please see the following URL: http://www.aavso.org/news/usco.shtml

uscorpdetailsU Sco is located at the following (J2000) coordinates:
RA:16:22:30.80, Dec: -17:52:43.0

Charts for U Sco may be plotted using AAVSO VSP: http://www.aavso.org/observing/charts/vsp/index.html?pickname=U%20Sco

(AAVSO Special Notice was prepared by M. Templeton)

Located north of Antares, U Scorpii is one of the most famous recurrent novae… and one of the fastest known. Able to shoot up to 8 or 9 magnitudes in less than 6 hours, dedicated observers are predicting that 2009 should see this cataclysmic variable star erupt with a vengeance. “I’ve calculated that the recurrent nova U Scorpii, north of Antares and east of the head of Scorpius, should explode any month now.” says Bradley E. Schaefer of Sky & Telescope, “My ‘crystal ball’ is based on old archival photographs and data from amateur astronomers. This brings a golden opportunity for amateurs and professionals to catch the early hours of a nova eruption and to prepare in advance for an intensive observing campaign.”

While professional observatories and NASA’s Swift Satellite will be busy gathering information about any possible eruption, there’s more than enough room for amateur observations. While it’s great to have modern equipment and credited astronomers to capture the action, their eyes can’t watch 24/7 – and chances are good that any outburst may very well be captured by ordinary viewers working in the field. “Amateurs provided essentially the whole light curves for the last three eruptions.” says Brad, “Now, with some advance warning to allow preparations, and with a little luck, the upcoming eruption of U Sco could produce the best record of a nova outburst — of any kind — ever.”

Please promptly report all observations to the AAVSO with the name “U SCO”.

Weekend SkyWatcher’s Forecast – October 16-18, 2009

Crescent Moon and Venus - Danilo Pivato

[/caption]

Greetings, fellow Stargazers! Were you up early this morning? If so, you were greeted by an awesome scene, much like this one captured by Danilo Pivato. There’s nothing more eyecatching the a close appearance of Venus and the Moon! With dark skies this weekend, it will be a good opportunity to broaden your astronomical horizons by chasing lesser known objects in both binoculars and telescopes. Of course there are challenges, too! Whenever you’re ready, I’ll see you in the back yard….

Friday, October 16 – Celestial scenery alert! Be up and outside this morning before dawn. The incredible duo of Venus and Saturn will be joined by the Moon! In 1982, the 30th return of Halley’s Comet was observed with the 5-meter (20000) Hale Telescope at the Mount Palomar Observatory. The comet was beyond the orbit of Saturn!

Tonight let’s head toward the region of Cas A and see what we can find. Although Cas A is itself not visible in amateur equipment, it is known to be associated with a 10,000-light-year-distant supernova remnant related to an unnoticed event occurring more than 300 years ago. The remnant itself has now expanded to a region filling some 10 light-years of space and has been imaged using orbiting X-ray observatories.

ngc7510

The closest deep-sky study to Cas A is the dense and compact open cluster NGC 7510 (RA 23 11 00 Dec +60 34 00). This diminutive, magnitude 7.9 study can just be glimpsed as a hazy patch in large binoculars and small scopes, with a few of its brightest 10th magnitude members resolvable at higher magnifications. Doubling the aperture brings out a dozen or so of NGC 7510’s 12th magnitude stars against the teeming glow of numerous fainter members. Double the aperture again, and 60 stars to magnitude 14 are possible. Many amateurs have discovered that the combination of a small rich field refractor, a 600 apochromatic refractor, and a 1200 Newtonian makes for the ultimate in observing equipment. But don’t forget those binoculars!

Saturday, October 17 – Today we mark the birth of Dr. Mae C. Jemison, the first black woman to go into space! Tonight let’s revisit M39 and use it as our touchstone to seek out other deep-sky gems. Starting with M39, head less than two finger-widths east-southeast (RA 21 53 32 Dec +47 16 06) to a 7.2 magnitude open cluster, one associated with the 12th magnitude ‘‘Cocoon Nebula.’’

ic5146

Collectively known as IC 5146, this cluster with nebulosity consists largely of 12th magnitude stars and is just about mid-sized. Barely detectable in a small scope, this 4,000-light-year-distant cluster needs aperture to come out and play. Large scopes may make seeing the nebula possible, although an appropriate filter may be necessary from most observing sites. To assist in finding the Cocoon, look for the stream of the dark obscuration nebula B168 touching its eastern frontier.

ic1369Returning again to M39, head two finger-widths southwest in the direction of Deneb to seek 6.8 magnitude IC 1369 (RA 21 12 06 Dec +47 44 00). Mid-sized instruments will show a dozen or so 12th and 13th magnitude members within a misty haze of those waiting to be resolved. Also known as alternative catalog study Pechue (AN 3259), IC 1369 has been studied for luminosity features.

Sunday, October 18, 2009 – Tonight it’s a New Moon! Time to break out the muscle and challenge big telescope users to hone their skills. It’s galaxy-hunting time, and our destination for tonight is the Hickson Compact Group 87 (RA 20 48 11 Dec -19 50 24).

hickson87

Several billion years ago, on the ecliptic plane about 4 degrees west/southwest of Theta Capricorni, and around 400 million light-years from our Solar System, a galactic association decided to form its own ‘‘Local Group.’’ Orbiting around a common center every 100 million years, their mutual gravity is pulling each of them apart, creating starbursts and feeding their active galactic nuclei. Small wonder they’re shredding each other. They’re only 170,000 light-years apart! One day HCG 87 may even form a single elliptical galaxy bright enough for the average telescope to see, but as they are now, this group isn’t going to be seen with anything less than 20 inch aperture.

ngc7016So, shall we try something a little more within the realm of reality? Then go ahead and drop about 8 degrees south of Theta, and try picking up on the NGC7016/17/18 group (RA 21 07 20 Dec -25 29 15). Are they faint? Of course! It wouldn’t be a challenge if they were easy, would it? With an average magnitude of 14, this tight trio known as Leavenworth 1 is around 600 million light-years away. They’re very small and not very easy to locate, but for those who like something a bit different, give it a try!

Until next week? Dreams really do come true when you keep on reaching for the stars!

This week’s awesome images are (in order of appearance): The Moon and Venus: Courtesy of Danilo Pivato of Northern Galactic, NGC 7510, IC 5146, IC 1369, Hickson Compact Group 87 and NGC 7016/17/18 (credit—Palomar Observatory, courtesy of Caltech). We thank you so much!

Weekend SkyWatcher’s Forecast – October 9-11, 2009

Greetings, fellow SkyWatchers! It’s a much darker weekend – and just in time for the Draconid Meteor Shower! If you haven’t been watching the early morning trio of Venus, Mercury and Saturn, there’s still time… Just as there is time to chase a couple of Caldwell Objects and a very challenging galaxy study for more practiced observers. But we’re not forgetting small scopes and binoculars either as we take a look at “What was Charles Messier thinking when he recorded M73?” It’s time to turn your eyes to the skies and I’ll see you in the dark…

Friday, October 9, 2009 – Have you been watching our early morning planetary conjunction? Mercury was nearly touching Saturn 24 hours ago! If you’re up early over the next few days, enjoy celestial mechanics in action as Venus, Mercury and Saturn slowly shift their positions in the sky.

Tonight is the peak of the northern Draconid meteor shower, whose radiant is near the westering constellation of Hercules. This particular shower can be quite impressive when comet Giacobini–Zinner passes near Earth. When this happens, the fall rate jumps to 200 per hour and has even been known to reach 1,000. Comet Giacobini–Zinner reached perihelion on July 2, 2005, passing within 8 million kilometers of Earth but has now greatly distanced itself from our region of the Solar System. Chances are the Draconids will produce only about 3–5 meteors per hour, but this number can vary.

Tonight’s skies remain dark into the early hours, so let’s take this opportunity to have a look at two objects from one of the more obscure catalogs. Set your sights on Alpha Pegasi, and drop due south less than 5 degrees to pick up NGC 7479 (RA 23 04 56 Dec +12 19 23).

ngc7479

Discovered by William Herschel in 1784, this 11-magnitude barred spiral galaxy experienced a supernova as recently as 1990. Although the 16th magnitude event near its nucleus is no longer visible, modest telescopes will easily pick out the bright core and elongation of the central bar. Larger aperture will find this one a real treat, as the spiral arms curl over and under the central structure, resembling a ballet dancer en pointe.

Congratulations! If you’ve found it, you’ve just observed Caldwell 44.

ngc7814NGC 7814 is easy enough to find. Start at Gamma Pegasi and use the finderscope to center on a star around 3 degrees northwest (RA 00 03 14 Dec þ16 08 43). In the scope, look southeast to see NGC 7814 as a scratch of light in the low power field. Magnify and enjoy! This galaxy has a deeply concentrated nucleus and a very prominent dissecting dark dust lane. This one is also known by another name, Caldwell 43.

Saturday, October 10, 2009 – On this date in 1846, William Lassell was busy at his scope as he made a new discovery, Neptune’s moon Triton. Although our everyday equipment can’t ‘‘see’’ Triton, we can still have a look at Neptune! You’ll find it on the ecliptic around 21:45 in right ascension. On this date 140 years later (1986), a tiny asteroid, Asteroid 3753, was found orbiting Earth. Named Cruithne, the little body will orbit our Earth for at least another 5,000 years from a minimum distance of 15 million kilometers. While time and the stars appear to stand still, and astronomical twilight begins earlier each night, let’s take one last look at the exiting constellation of Sagittarius. Our return study for this evening is a telescopic challenge for skilled observers only. Set your sights about 2 degrees northeast of easy double 54 Sagittarii and around 7 degrees west of Beta Capricorni (RA 19 44 58 Dec –14 48 11), and let’s have a look at NGC 6822.

ngc6822

Often referred to as ‘‘Barnard’s Galaxy’’ for its discoverer (E.E. Barnard, 1884), this unusual customer is actually a member of our local galaxy group. For the 400–600 telescope, this 11th magnitude, 1.7-million-light-year-distant object will not be easy to see, but it can be achieved with good conditions. Lower power is essential in even larger scopes, and those into the 1200–1600mm range will see NGC 6822 burst into stunning resolution. Barnard’s Galaxy almost appears like an open cluster overlaid with nebulosity, but the experienced eye will clearly see that the ‘‘shine’’ behind the stars is galactic in nature. It’s a very clumpy and unusual galaxy, one that you will very much enjoy. Be sure to look for the small, pale blue, 10th magnitude planetary nebula NGC 6818 in the same field to the north-northwest. This pair rocks!

olbersSunday, October 11, 2009 – Today we begin with the 1758 birth on this day of Heinrich Olbers, a German astronomer who calculated the orbit of the 1779 comet, discovered the minor planets (asteroids) Pallas (1802) and Vesta (1807), and discovered five comets during his career. Tonight we’ll have a look at a collection of stars as we ponder the age-old mystery of M73. Located about three finger-widths north-northwest of Theta Capricorni (RA 20 59 00 Dec –12 38 00), this 9th magnitude open cluster consisting of four stars was discovered by Charles Messier on October 4, 1780. Messier described it as a ‘‘cluster of three or four small stars, which resembles a nebula at first glance. . ..’’ Hotly debated as to whether or not the grouping is a genuine cluster or simply an asterism, it was also included in J. Herschel’s catalog (GC 4617) and given the NGC 6994 designation by Dreyer. In 1931, Collinder cataloged M73 as Cr 426, with an estimated distance of 12,000 light-years. Still, the debate about its authenticity as a physically related group continues.

m73

At least two stars show the same proper motion, leading scientists to believe that M73 may be the remnant of a much older and now dispersed cluster—or simply two related stars. Of the 140 stars
investigated in the region, 24 may be real members, including those in Messier’s original observation. Thanks to the work of Hertzsprung and Russell, these candidates fall within the color-magnitude diagram of a 2–3-billion-year-old cluster with Messier’s suspect four being evolved giants. Although more recent data indicate that M73 may simply be an asterism—sharing no common proper motion— you can still enjoy this unusual Messier in even a small telescope!

Until next week? Dreams really do come true when you keep on reaching for the stars!

This week’s awesome images are (in order of appearance): NGC 7479 and NGC 7814 (credit—Palomar Observatory, courtesy of Caltech), NGC 6822 (credit—Local Group Galaxies Survey Team/NOAO/AURA/NSF), Heinrich Olbers (historical image) and M73 (credit—Palomar Observatory, courtesy of Caltech). We thank you so much!