M94 – The “Cat’s Eye” Galaxy by Roth Ritter

M94 - The Cat's Eye Galaxy by Roth Ritter

[/caption]

About 13 million light-years away in the constellations Canes Venatici, there’s a cloud. No, it’s not the same clouds that most of us have been experiencing lately – but a cluster of galaxies which appear form a single large cloud-like structure. The one we’re focusing on is Canes Venatici I, just a small section of the Virgo Supercluster and just moving along with the expansion of the Universe. In it we see a galaxy that stands out from the crowd for a very good reason… it has very little or no dark matter. It’s name? Messier 94.

When the very gifted Pierre Mechain discovered this galaxy on March 22, 1781, it took two days before Charles Messier had the chance to confirm his observation and catalog it as object 94. From Messier’s notes: “`Nebula without star, above the Heart of Charles [alpha Canum Venaticorum], on the parallel of the star no. 8, of sixth magnitude of the Hunting Dogs [Canes Venatici], according to Flamsteed: In the center it is brilliant and the nebulosity [is] a bit diffuse. It resembles the nebula which is below Lepus, No. 79; but this one is more beautiful and brighter: M. Mechain has discovered this one on March 22, 1781. (diam. 2.5′)”.

While most observers and some reference guides refer to M94 as a barred spiral galaxy (Sb), the notable feature of all is a dual ring structure – evidence of a low-ionization nuclear emission-line region (LINER) galactic nucleus. The inner core is a starburst ring, where many stars form rapidly and undergo supernovae at an astonishing rate. These starbursts may also be accompanied by the formation of galactic jets as matter falls into the central black hole forming a resonance pattern. Says C. Munoz-Tunon: “The bulge and the inner bar drive disk gas motion, causing inward movements outside the H II ring and outward just inside, thereby accumulating material to trigger star formation on the ring. In the central part the bar drives the gas toward the center, which explains the substantial amount of gas in the nucleus in spite of the presence of a fossil starburst. The peculiar motions reported in the literature in reference to the ionized gas of the H II ring can be understood as infalling gas encountering the shock waves generated by the starburst knots on the H II ring and being raised above the galaxy disk. The scenario of star formation propagating from the nucleus outward used to explain the apparent expanding motion of the HI ring is not fully supported, in light of a comparison of the location of the HI ring with that of the FUV ring. The FUV ring peaks at about 45″-48″, which might point to an inward-propagating star formation scenario.”

But, the point is arguable. According to the work of John Kormendy and Robert Kennicutt, it’s possible that what we’re seeing is simply an illusion of starburst caused by our viewing angle. “The Universe is in transition. At early times, galactic evolution was dominated by hierarchical clustering and merging, processes that are violent and rapid. In the far future, evolution will mostly be secular the slow rearrangement of energy and mass that results from interactions involving collective phenomena such as bars, oval disks, spiral structure, and triaxial dark halos. Both processes are important now. This review discusses internal secular evolution, concentrating on one important consequence, the buildup of dense central components in disk galaxies that look like classical, merger-built bulges but that were made slowly out of disk gas. We call these pseudobulges.”

Regardless of what caused the dual ring structure and declining rotation curves – the true answer is still elusive. Oddly enough it was what was proposed in 2008 which made Messier 94 even more mysterious… the lack of dark matter.

So, why should dark matter “matter”? That’s easy. We know its gravitational effects on visible matter and thereby we can explain the flat rotation curves of spiral galaxies, not to mention dark matter has a central role in galaxy structure formation and galaxy evolution. We owe these findings to Fritz Zwicky who told us that a a high mass-to-light ratio indicates the presence of dark matter in galaxies – just as he taught us that dark matter plays a role in galaxy clusters as well. Dr. Zwicky’s line of thinking was radical for the time… But is there still room for radical thinking? Why not?

According to the work of Joanna Jalocha, Lukasz Bratek and Marek Kutschera, ordinary luminous stars and gas account for all the material in M94 – with no room for dark matter. “The comparison of mass functions and rotation laws at the end of the previous section, illustrates the fact that the models with flattened mass distributions are more efficient than the commonly used models assuming spherical halo. The former are better in accounting both for high rotational velocities as well as for low scale structure of rotation curves and with noticeably less amount of matter than the latter (the relation between rotation and mass distribution in the disk model is very sensitive for gradients of a rotation curve). The use of the disk model is justified for galaxies with rotation curves violating the sphericity condition. This is necessary (although not sufficient) condition for a spherical mass distribution. Rotation of the spiral galaxy NGC 4736 can be fully understood in the framework of Newtonian physics. We have found a mass distribution in the galaxy that agrees perfectly with its high-resolution rotation curve, agrees with the I-band luminosity distribution giving low mass-to-light ratio of 1.2 in this band at total mass of 3.43 × 1010M, and is consistent with the amount of HI observed in the remote parts of the galaxy, leaving not much room (if any) for dark matter. Remarkably, we have achieved this consistency without invoking the hypothesis of a massive dark halo nor using modified gravities.

There exist a class of spiral galaxies, similar to NGC 4736, that are not dominated by spherical mass distribution at larger radii. Most importantly, in this region rotation curves should be reconstructed accurately in order not to overestimate the mass distribution. For a given rotation curve it can be easily determined whether or not a spherical halo may be allowed at large radii by examining the Keplerian mass function corresponding to the rotation curve (the so called sphericity test). By using complementary information of mass distribution, independent of rotation curve, we overcame the cutoff problem for the disk model, that for a given rotation curve, a mass distribution could not be found uniquely as it was dependent on the arbitrary extrapolation of the rotation curve.”

More explanation? Then step into MOND – Modified Newtonian dynamics where a modification of Newton’s Second Law of Dynamics (F = ma) is used to explain the galaxy rotation problem. It simply states that acceleration is not linearly proportional to force at low values. But will it work here? Who knows? Says Jacob Bekenstein: “The modified newtonian dynamics (MOND) paradigm of Milgrom can boast of a number of successful predictions regarding galactic dynamics; these are made without the assumption that dark matter plays a significant role. MOND requires gravitation to depart from Newtonian theory in the extragalactic regime where dynamical accelerations are small. So far relativistic gravitation theories proposed to underpin MOND have either clashed with the post-Newtonian tests of general relativity, or failed to provide significant gravitational lensing, or violated hallowed principles by exhibiting superluminal scalar waves or an {a priori} vector field.”

So next time you’re out observing galaxies, have a look at the “Cat’s Eye” Galaxy. Even a small telescope will reveal its bright, controversial nucleus and wispy shape. And thanks to outstanding astrophotographers like Roth Ritter we’re allowed to see a whole lot more…

Our thanks go to Roth Ritter of Northern Galactic for sharing his incredible work!

Weekend SkyWatcher’s Forecast: May 15-17, 2009

Greetings, fellow SkyWatchers! With the Moon just a bit more out of the early evening picture, let’s enjoy the galaxy season as we begin our studies with one of the most massive and luminous spiral galaxies known. If it doesn’t hit you in the eye, then surely our globular cluster studies will! Be sure to set your clock early for Sunday morning to catch the pretty pairing of Jupiter and the Moon and end the weekend with one of the largest and brightest of the spiral galaxies in the Virgo Cluster. Are you ready? Then get your binoculars and telescopes out and I’ll see you in the back yard…

flemingFriday, May 15, 2009 – Today we celebrate the 1857 birth on this date of Williamina Paton Stevens Fleming, who pioneered in the classification of stellar spectra and discovered the stars we now call white dwarfs. Now get this: she began by working as a maid for Harvard Observatory’s Edward Pickering, who then took her to the observatory to do clerical work. Fleming ended up cataloging over 10,000 stars for Harvard in a period 9 years. You go, girl!

Tonight let’s head out into space where we might get a “blackeye.” You’ll find it located just 1 degree east-northeast of 35 Comae Berenices, and it is most often called M64 (RA 12 56 43 Dec +21 41 00). Discovered by Bode about a year before Messier cataloged it, M64 is about 25 million light years away and holds the distinction of being one of the more massive and luminous spiral galaxies. It has a very unusual structure and is classified as an ‘‘Sa’’ spiral in some catalogs and as an ‘‘Sb’’ in others.

m64

Overall, its arms are very smooth and show no real resolution to any scope, yet its bright nucleus has an incredible dark dust lane that consumes the northern and eastern regions around its core, giving rise to its nickname—the Blackeye Galaxy.

In binoculars, you can perceive this 8.5-magnitude galaxy as a small oval with a slightly brighter center. Small telescope users will pick out the nucleus more easily, but it will require both magnification and careful attention to dark adaptation to catch the dust lane. In larger telescopes, the structure is easily apparent, and you may catch the outer wisps of arms on nights of exceptional seeing. No matter what you use to view it, this is one compact and bright little galaxy!

Saturday, May 16, 2009 – Today we’d like to wish Roy Kerr a happy birthday! Born on this date in 1934, Kerr solved Einstein’s field equations of general relativity to describe rotating black holes, or the space/time around them. The solution, called now a Kerr black hole, shows a vortex-like region outside the event horizon known as the ergoregion. In this region, space and time are dragged around with the rotating parent black hole.

m3Tonight let’s use our binoculars and telescopes to hunt down one of the best globular clusters for the Northern Hemisphere— M3 (RA 13 42 11 Dec +28 22 31). You will discover this ancient beauty about halfway between the pair of Arcturus and Cor Caroli, just east of Beta Comae. The more aperture you use, the more stars you will resolve. Discovered by Charles Messier on May 3, 1764, this ball of approximately a half-million stars is one of the oldest formations in our galaxy. At around 40,000 light years away, the awesome M3 globular cluster spans about 220 light-years and is believed to be as much as 10 billion years old. To get a grasp on this concept, our own Sun is less than half that age! M3 is 40,000 years away, traveling at the speed of light; yet we can still see this great globular cluster.

m53Now let’s locate M53 (RA 13 12 55 Dec +18 10 09), near Alpha Comae. Aim your binoculars or telescopes there and you will find M53 about a degree northeast. This very rich, magnitude 8.7 globular cluster is almost identical to M3, but look at what a difference an additional 25,000 light-years can make to how we see it! Binoculars can pick up a small, round, fuzzy patch, while larger telescopes will enjoy the compact bright core as well as resolution at the cluster’s outer edges. As a bonus for scopes, look 1 degree to the southeast for the peculiar round cluster NGC 5053. Classed as a very loose globular, this magnitude 10.5 grouping is one of the least luminous objects of its type, due to its small stellar population and the wide separation between members, yet its distance is almost the same as that of M3.

lockyearSunday, May 17, 2009 – If you’re up before dawn this morning, take a look at the close pairing of Jupiter and the Moon! Only about a finger-width apart, the magnificent duet will make starting the day a little more pleasant…

Now, as the Sun rises, salute the 1837 birth of Sir Joseph Norman Lockyer, who discovered and named the element helium that he found in the Sun’s atmosphere, even before it had been detected on Earth. Lockyer was the first to coin the term chromosphere for the Sun’s outer layer and was the co-discoverer of solar prominences!

Tonight we’ll return to 6 Coma Berenices, and head no more than a half degree southwest for another awesome galaxy— M99 (RA 12 18 49 Dec +14 25 00). Discovered by Pierre Mechain on the same night as he found M98, this is one of the largest and brightest of the spiral galaxies in the Virgo Cluster. Recognized second after M51 for its structure, Lord Rosse proclaimed it to be “a bright spiral with a star above.” It is an “Sc” class, and unlike its similarly structured neighbors, it rotates clockwise.

m99

Receding from us at 2,324 kilometers per second, its speedy retreat through the galaxy fields and close pass to approachingM98may be the reason that it is asymmetrical, with a wide arm extending to the southwest. Three documented supernovae have been recorded in M99—in 1967, 1972, and 1986.

Possible in large binoculars with excellent conditions, this roughly 9th magnitude object is of low surface brightness and requires clean skies to see details. For a small telescope, you will see this one as fairly large, round, wispy, and with a bright nucleus. But, unleash aperture if you have it! For large scopes, the spiral pattern is very prominent, and the western arm shows well. Areas within the structure are patchworked with bright knots of stars and thin dust lanes, which surround the concentrated core region. During steady seeing, a bright, pinpoint stellar nucleus will come out of
hiding. A worthy study!

Until next week? Dreams really do come true when you keep on reaching for the stars!

This week’s awesome images are (in order of appearance): Williamina Paton Stevens Fleming (historical image), M64: the Blackeye Galaxy, M3 and M53 (credit—Palomar Observatory, courtesy of Caltech), Sir Norman Lockyer (historical image) and M99 (credit—Palomar Observatory, courtesy of Caltech). We thank you so much!

Lunatic Fringe – Stereo Moon by Jukka Metsavainio

Full Moon Parallel by JP Metsavainio

[/caption]

“I was lying in a burned out basement… With the Full Moon in my eyes…” Hey, welcome to my world. You, know, the Full Moon has been credited to many things over the years… werewolves, disasters, fertility, accidents and even crime, suicide and mental illness. Farmers plant their crops by lunar phases and (strangely enough) I’ve even heard tale that some brokers buy and sell stocks according to phases of the Moon. While it’s more myth than fact that seeing Selene in full light has an effect on our human behavior, one thing is for certain… There’s nothing like the details you can glimpse on this distant, barren, rocky orb. Chances are, if you’re seeing two pictures, then you’re about to embark on another stereo journey thanks to the magic of Jukka Metsavaino. Are you ready to take a quarter of a million mile journey? Then let’s go…

As always, whenever we present a dimensional visualization it is done in two fashions. The first is called “Parallel Vision” and it is much like a magic eye puzzle. When you open the full size image and your eyes are the correct distance from the screen, the images will seem to merge and create a 3D effect. However, for some folks, this doesn’t work well – so Jukka has also created the “Cross Version”, where you simply cross your eyes and the images will merge, creating a central image which appears 3D. For some folks, this won’t work either… But I hope it does for you, because this image blew me away!

Full Moon Cross by JP Metsavainio
Full Moon Cross by JP Metsavainio

At 4:01 a.m. Universal Time on May 9, the Moon was officially considered “full” – the point in the lunar cycle when the Moon exactly opposes the Sun. If you wish to be technical, you could say Full Moon occurs when the geocentric apparent (ecliptic) longitudes of the Sun and Moon differ by 180 degrees. Perhaps a little more colorfully you could just say it was fully illuminated. But, no matter how you say it, the truth is that lunar effects don’t really impact human behavior, except for perhaps sparking a relationship. After all, what’s a good romance without a Full Moon?

The reality check is almost everything you hear associated with the Full Moon is myth that has been perpetuated by folklore and the media. Studies have proved that hormones don’t run any higher and babies aren’t born more frequently at this time. Women aren’t any more fertile and the only reason that more accidents and catastrophes seem to occur when our nearest astronomical neighbor is fully lit is simply because it’s more noticeable – and thereby more memorable. And when you see a Full Moon in a telescope and it looks like the image above? It will live in your memory forever!

Go on… Enjoy it for what it is – and enjoy some of the fun that myth and even astrology can give to a very normal function of our solar system. It’s “Truth or Dare Moon” when it happens in the constellation of Scorpio. In folklore the May Full Moon is called the Hare or Flower Moon… or even the Milk Moon, Dragon Moon, Planting Moon, Panther Moon, Bright Moon, Grass Moon and Worm Moon. According to the Farmer’s Almanac, it’s a favorable time of the Moon to plant beans, beets, cucumbers and potatoes – but not to go fishing. Try astronomy instead!

“Lunatic fringe… I know you’re out there.”

Many thanks to JP Metsavainio of Northern Galactic for his magical personal image and allowing us this incredible look at what we so often take for granted!

Kid’s Astronomy – The Summer Triangle

The seasons and the constellations are changing – and so are the times that many of us go to bed! If you’re up late tonight, this would be a great time for you to spot some very special things going on in the night sky. You won’t need any special equipment – just your eyes and knowing where to look. Are you ready? Then step outside and listen to the wind as it tells us about the Summer Triangle and I’ll tell you what else to look for!

Credit: ESO
Credit: ESO
“There is something very magical and wonderful about knowing your way around the night sky. As the Summer nights grow shorter and the blanket of night falls later, perhaps you’ll look up with wonder as each bright star begins to appear one by one. Sometimes to Moon or city lights can hide the fainter stars, but there are a few that shine brightly no matter where you live or when you look.”

Credit: Steve Burgis
Credit: Steve Burgis

“You can learn the night sky easily by identifying a few bright stars that form a pattern. This pattern is known as an asterism, and one of the most famous of all is the Summer Triangle. You won’t need any special equipment, just use your eyes and look high overhead around midnight. Here you will see three bright stars spaced well apart – Vega, Deneb and Altair. Each belong to a different constellation and each are the brightest stars. Eastern Vega’s home is Lyra, northern Deneb belongs to Cygnus and southern Altair makes its home in Aquila.”

Credit: A. Fujii (NASA/ESA)
Credit: A. Fujii (NASA/ESA)

“Once you have found the Summer Triangle, visit it again on a dark night or from a dark location. Do you see what looks like a pale band of clouds running through it? Those aren’t clouds in our atmosphere, those are star clouds which make their home in the spiral arm of our own Milky Way Galaxy!

yourskyTonight, May 9/10, the Summer Triangle will be accompanied by a few very special visitors, too! If you look below to triangle to the south, you will see the almost Full Moon very, very close to a bright star called Antares – the “Rival of Mars”. Because the bright Moon will wash out faint stars, only the brightest will remain, so you will also see another, larger triangle of stars further west. That’s Arcturus, Spica and Regulus. For an added treat, the bright point of light you’ll see right in the center of that triangle is Saturn.

Have fun!!

Weekend SkyWatcher’s Forecast – May 8-10, 2009

Greetings, fellow SkyWatchers! Are you ready for the weekend? Then step outside and see if you’re able to spot Mercury as it begins retrograde. Celebrate the “Full Flower Moon” and Mother’s Day with some very special insights into a very special mother. Maybe you can give your mother the “String of Pearls” or perhaps just some glittering jewels of some very fine double stars? No matter what you choose to do, there’s always something new to find and explore. Follow me…

Friday, May 8, 2009 – As the skies darken this evening, scan the western horizon for Mercury. Just beginning its 2009 Mercury retrograde motion, it won’t be long before it slips back into the glare of the Sun!

Tonight the Moon will command the sky. Why not take this opportunity to have a look at a very curious feature? Scan the lunar surface just a little southeast of the gray oval of Grimaldi. The area we are looking for is called the Sirsalis Rille , and on an orb devoid of magnetic fields—it’s magnetic! Like a dry riverbed, this ancient ‘‘crack’’ on the surface runs 480 kilometers along the surface and branches off in many areas. The Sirsalis Rille is a favored area for lunar geophysics. Although no complete explanation yet exists for its magnetic properties, it’s believed the Rille could be the surface remains of a channel that once fed magma to Oceanus Procellarum. If you look carefully, you will notice that Sirsalis crosses the ejecta of the Mare Orientale impact, leading the scientists to believe it formed after the Imbrium Basin.

sirasilis

There is also a theory that the Sirsalis Rille could be a graben—an impression left when two parallel faults shift. This is in line with the theory that rising magma may have disturbed the crust. Although there’s no firm evidence of volcanic activity, solidified magma under the surface may account for Sirsalis’ magnetic properties.

Lastly, there should be some fascinating effects at sunrise over Darwin, including an unexplained ‘‘string of pearls’’ effect, a possible result of light passing through a series of sharp, steep ridges. Keep a close watch on crater Darwin if you are watching as the Sun rises over the rim. Note what you see, including exact time the effect was spotted, the date, and your location. If you are interested in contributing, send your observing reports to the Association of Lunar and Planetary Observers (ALPO).

lunaseeSaturday, May 9, 2009 – On this date in 1962, Massachusetts Institute of Technology (MIT) scientists bounced a laser beam off the Moon, which illuminated an area with a diameter of 4 miles! The ‘‘Luna See’’ project was a ruby optical laser radiating pulses of approximately 50 joules energy for half a millisecond. It was transmitted through a 1200 Cassegrain telescope and detected with a 4800 Cassegrain. It proved laser light could travel through space!

Tonight is the ‘‘Full Flower Moon.’’ Earth is awakening again! Agricultural literature refers to it as the ‘‘Full Corn Planting Moon,’’ or the ‘‘Milk Moon.’’ No matter what it’s named, Moonrise is majestic to watch. Participate in a Lunar Club Challenge and do some outreach work by demonstrating “Moon Illusion” to someone. We know it’s purely psychological and not physical, but the fact remains that the Moon seems larger on the horizon. Using a small coin held at arm’s length, compare it to Luna as it rises, and then again as it seems to “shrink” as it moves up! You’ve now qualified for extra credit…

fullmoon

Try using colored or Moon filters to look at the many surface features that throw amazing patterns across its surface. If you have none, a pair of sunglasses will suffice. Look for things you might not ordinarily notice, such as the huge streak emanating from crater Menelaus, the pattern projected from Proclus, or the bright tiny dot of little-known Pytheas north of Copernicus. It’s hard to miss the blinding beacon of Aristarchus! Check the southeastern limb, where the edge of Furnerius lights up the landscape… or how a nothing crater like Censorinus shines on the southeast shore of Tranquillitatis, while Dionysus echoes it on the southwest. Could you believe Manlius just north of central could be such a perfect ring, or that Anaxagoras would look like a northern polar cap? Although it might be tempting to curse the Moon for hiding the stars when it’s full, there is no other world out there that we can view in such detail… even if you just look with your eyes!

payneSunday, May 10, 2009 – Today we celebrate the birth of Cecilia Payne in 1900 (and another female astronomer you just might know a little more than fifty years later). Payne was the first to apply the laws of atomic physics to study the temperature and density of stars. It was a difficult time for female astronomers, and she had quite a time getting her peers to take her work seriously. (And it’s still a difficult time for female amateurs – so hang tough.) Payne proved that hydrogen and helium are the two most common elements in the universe and, with the later help of Fred Hoyle, proved that our Sun is 99% hydrogen and helium.

Before the Moon rises, take a look at the constellation of Leo and its brightest stars. Our first destination is 85 light-year-distant Regulus. As the 21st brightest star in the night sky, 1.35-magnitude Alpha Leonis is a helium star about 5 times larger and 160 times brighter than our own Sun. Speeding away from us at 3.7 kilometers per second, Regulus is also a multiple system whose 8th magnitude B companion is easily seen in small telescopes. Regulus B is also a double, with a magnitude 12 dwarf companion of uncertain type. There’s an additional 13th magnitude star in this grouping, but it’s probably not associated with Regulus, since the ‘‘Little King’’ is moving toward it and will be very close to it in 800 years.

leo

About a fist-width northeast of Regulus is 2.61-magnitude Gamma Leonis. Algieba is a very fine double star, but difficult to see at low power, since the 90 light-year-distant pair is bright and close. Separated by about twice the diameter of our own Solar System, the gap between Algieba and its companion is slowly widening! Another two finger-widths north is 3.44-magnitude Zeta. Aldhafera is about 130 light-years away and also has an optical companion—35 Leonis. Remember this binocular pair, because they’ll lead you to galaxies later! Before we leave, look east for 3.34-magnitude Theta. Mark this one in your memory, because Chort and 3.94-magnitude Iota to the south serve as markers for a galaxy hop! Last is easternmost 2.14-magnitude Beta. Denebola is the ‘‘Lion’s Tail’’ and has several faint optical companions.

Now watch the Moon… because for some areas Antares is about to be occulted!

katharina-keplerAs we’re watching, let’s take just a moment a give thanks for our mothers and the roles they can play in our lives. Did you know Johannes Kepler’s mother, Katharina, was the one who inspired him? To rather paraphrase his story, Johannes’ father was a mercenary soldier and left him and his mother when he was a young child. His mother supported them both by working as a waitress at the family inn and put the very religious and mathematically talented young Johannes through seminary school on her own. It was his mother who took him to to watch the great comet of 1577 and an eclipse of the Moon – inspiring his love of astronomy. After he graduated, he became an assistant to Tycho Brahe, supported Copernican theory and worked with Galileo. While Kepler was working on his “Harmony of the World” his 70 year old mother was charged with witchcraft because she collected herbs, made potions and understood astrology. Isn’t that about the way it went for anyone back then who was interested in the stars? Anyhow, Kepler got a lawyer and managed to save her from the fate of the aunt who raised Katharina. She was also burned at the stake for being a witch!

Until next week? Don’t collect any herbs unless they’re legal… And keep on reaching for the stars!

This week’s awesome images are (in order of appearance): Sirsalis Rille and region (credit—Alan Chu), Project Luna See (credit—courtesy of MIT Museum), Full Moon (credit—NASA), Cecilia Payne (historical image), Stellar magnitudes in Leo (credit—NASA) and Katharina Kepler (historical image).

The Messier Catalog

The Messier Catalog. Credit: NASA

Messier objects are celestial bodies that were observed by Charles Messier throughout his career. During his lifetime, any person who found a new comet became well known amongst their peers, but, also became a celebrity. Messier lived in what could be considered precarious times for professional astronomers. There were few jobs, so if you did make new discoveries you did not have a job.

Each Messier object is a body that first appeared to be a comet, but is not. Messier compiled a list of these objects in several additions; eventually ending with a total of 103 objects during his lifetime. His work was limited by the fact that he lived in the Northern Hemisphere, so could only observe objects that appeared in the night sky above 35.7° latitude.

It can be difficult to observe the entire Messier list. In addition to the 103 Messier compiled, his assistant and other researchers followed up on his side notes and astronomers now believe his list should contain a total of 110 objects. These objects are an interesting challenge for amateur astronomers to find, so there are several astronomical associations that offer rewards to anyone who observes them. A simple web search will garner you the information you need to participate.

Below is a set of links to an introduction to Messier objects as well as a link to an article about each of the individual Messier objects. Enjoy your research, then enjoy your observations.

IYA Live Telescope Today – 30 Doradus: “The Tarantula Nebula”

Wow… If you had a chance to watch our live remote telescope today, then you were in for an awesome view of the Tarantula Nebula! Although it didn’t last very long before the dew and clouds chased us out, we were still able to take some great images and run some video footage for you to enjoy. Are you ready to have a look? Then step inside the library and brush away the cobwebs…

The Tarantula Nebula (also known as 30 Doradus, or NGC 2070) is an H II region in the Large Magellanic Cloud. It was originally thought to be a star, but in 1751 Nicolas Louis de Lacaille recognized its nebular nature.

The Tarantula Nebula has an apparent magnitude of 8. Considering its distance of about 180,000 light years, this is an extremely luminous non-stellar object. Its luminosity is so great that if it were as close to Earth as the Orion Nebula, the Tarantula Nebula would cast shadows. In fact, it is the most active starburst region known in the Local Group of galaxies. It is also the largest and most active such region in the Local Group with an estimated diameter of 200 pc. The nebula resides on the leading edge of the LMC, where ram pressure stripping, and the compression of the interstellar medium likely resulting from this, is at a maximum. At its core lies the extremely compact cluster of stars (~2.5 pc diameter) – R136a – that produces most of the energy that makes the nebula visible.

The closest supernova since the invention of the telescope, Supernova 1987A, occurred in the outskirts of the Tarantula Nebula.

As always, you can visit the remote telescope by clicking on the IYA “LIVE Remote Cam” Logo to your right. Just remember if you get an error message, that means it is either daylight or cloudy. We’ll be broadcasting whenever skies are clear and dark in Central Victoria! Enjoy…

Factual information is copied from Wikipedia. Thank you so much!

A Twinkle in the Wolf’s Eye – IC 4406: A Hubble Visualization by Jukka Metsavainio

IC 4405 Parallel by JP Metsavainio

[/caption]

During the month of May, the “Wolf” rises and prowls the skies after midnight. Lupus was one of the 48 original constellations listed by the first century astronomer Ptolemy and on its western border is a Wolf-Rayet planetary nebula – IC 4406 – which contains some of the hottest stars known to be in existence. What exactly lay inside this 1900 light year distant torus-shaped cloud of dust? Then let’s really step inside this Hubble dimensional visualization by Jukka Metsavanio and take a closer look…

Whenever we present a dimensional visualization it is done in two fashions. The first is called “Parallel Vision” and it is much like a magic eye puzzle. When you open the full size image and your eyes are the correct distance from the screen, the images will seem to merge and create a 3D effect. However, for some folks, this doesn’t work well – so Jukka has also created the “Cross Version”, where you simply cross your eyes and the images will merge, creating a central image which appears 3D. As we learned some time ago, it might not always work for all people, but there are a few other tricks you can try. Now sit back and prepare to be blown away…

IC 4406 Cross by JP Metsavainio
IC 4406 Cross by JP Metsavainio

The rectangluar appearance of planetary nebula, IC 4406, isn’t such a great mystery. We know from looking at a great number of objects that our point of view affects how we see things and we realize we’re seeing this incredible structure almost in the plane of its equator. Astronomers believe the entirety of the nebula is shaped like a prolate spheroid – where the polar diameter is greater than the equatorial diameter. Why such an unusual shape? Quite probably because IC 4406 is believed to be bipolar. No. It’s not going to freak out on you… It simply means this planetary nebula has an axially symmetric bi-lobed appearance. This may be the beginnings or the endings of the evolutionary stages of all planetary nebulae – but it does have its quirks.

While the function that shapes this structure isn’t exactly clear to astronomers, many believe it may belong to the physical process known as bipolar outflow – continuous highly energetic streams of gas emanating from the poles of a star. What types of stars? Again, it isn’t always clear. Bipolar outflow can occur with protostars where a dense, concentrated jet produces a supersonic shock fronts. More evolved young stars, such as T-Tauri types, also produce bow shocks visible at optical wavelengths that we refer to as Herbig-Haro objects. Evolved stars produce spherically-symmetric winds (called post-AGB winds) that are focused into cones and eventually become classic planetary nebula structures. There is even speculation that these outflows may be impacting with interstellar dust surrounding the star or supernova remnants. But… what exactly causes these beautiful structures we see inside?

According to C.R. O’Dell: “This progression begins with dark tangential structures showing no alignment with the central star and location near the main ionization front. At the end of the progression in the largest nebulae, the knots are located throughout much of the ionized zone, where they are photoionized on the side facing the central star and accompanied by long tails well aligned radially. This modification of characteristics is what would be expected if the knots were formed near or outside the main ionization front, obtaining densities high enough to lead to their being only partially ionized as they are fully illuminated by the Lyman continuum (Lyc) radiation field. Their expansion velocities must be lower than that of the main body of the nebular shell. Their forms are altered by exposure to the radiation field from the star, although it is not clear as to the relative role of radiation pressure acting on the dust component vis-à-vis ionization shadowing.”

However, there is something a bit unusual about IC 4406, isn’t there? That’s right. It contains a Wolf-Rayet star. Descended from O-types, these massive, extremely luminous beauties have strong stellar winds and are well-known for spouting off their unprocessed outer H-rich layers. The dense, high-velocity winds then rip at the superheated stellar photosphere, unleashing ultra-violet radiation which in turn causes fluorescence in the line-forming wind region. Most continue on to become Ib or Ic type supernovae, and just a very few (only 10%) become the central stars of planetary nebulae. So is the beautiful patterns we see in IC 4406 the beginning or the end? Says C.R. O’Dell:

“We find knots in all of the objects, arguing that knots are common, simply not always observed because of distance. The knots appear to form early in the life cycle of the nebula, probably being formed by an instability mechanism operating at the nebula’s ionization front. As the front passes through the knots they are exposed to the photoionizing radiation field of the central star, causing them to be modified in their appearance. This would then explain as evolution the difference of appearance like the lacy filaments seen only in extinction in IC 4406… Theoretical models have considered only symmetric instabilities, but there seems to be nothing that precludes the formation of elongated concentrations like one sees in IC 4406.”

In the meantime, many of you will recognize these filaments in this planetary by its more common name – the “Retina Nebula” – the third to have its spatial distribution of H2 and CO emissions mapped to prove that the equatorial density is caused by the high-velocity outflow of the progenitor AGB star – and perhaps the twinkle in its eye could have either the beginnings or the end of what may have been planetary systems. Says R. Sahai: “It is suggested that the equatorial tori observed or deduced in IC 4406 results from ‘born again’ disks formed through the destruction of planetary systems at the end of the AGB evolutionary phase.”

Are these filaments shaped by magnetic fields? The work of Hanna Dahlgren opens some very interesting ideas: “We propose a theory where the magnetic fields control the sculpting and evolution of small-scale filaments. This theory demonstrates how the substructures may form magnetized flux ropes that are twisted around each other, in the shape of double helices. Similar structures, and with similar origin, are found in many other astrophysical environments.” And will they survive? Says C.R. O’Dell:

“What the future holds in store for the knots in PN is quite important because whichever mechanism is producing them is locking a substantial fraction of the mass into molecular knots and these knots are escaping from the gravitational field of the central star (Meaburn et al. 1998). The process of photoionization means that there will be photoevaporation of material from the knots. The situation will be very much like the proplyds in the Orion Nebula, where the inner molecular core is heated by photons of less than 13.6 eV, causing a slow flow of gas away from the core. When this gas reaches the knots’ ionization front it is photoionized and heated, then it is rapidly accelerated to a velocity of about 10 km s. The estimated evaporation timescale for the outward moving knots is several thousand years. Many or most of them will therefore survive the hot-luminous phase close to the star and will be ejected into the surrounding interstellar medium.”

As just another twinkle in the Wolf’s eyes…

Many thanks to JP Metsavainio of Northern Galactic for his magic with Hubble Space Telescope images and allowing us this incredible look inside another mystery of space.

Weekend SkyWatcher’s Forecast – May 1-3, 2009

Greetings, fellow StarGazers! Let’s start the weekend off right by taking on a lunar club challenge and then kicking back to enjoy yet another spring meteor shower! (After all, if April showers bring May flowers, you do know what May flowers bring, don’t you? That’s right… Pilgrims!) Now that I’ve got you at least smiling, take out your binoculars, too… Because there’s two asteroids that are ripe for plucking – Hebe and Ceres. If you feel like being a little more serious about your lunar studies, why not do a little photographic map work? Just match the picture to what you see in the eyepiece and log your studies! Are you ready? Then I’ll see you in the back yard…

carpenterFriday, May 1, 2009 – This date is a rather special one in history. In 1543 on this date, Copernicus published and distributed the ‘‘ The Little Commentary ,’’ which described his heliocentric beliefs. In 1949, Gerard Kuiper discovered Nereid, a 150-kilometer-wide satellite of Neptune. It’s so distant from the planet that it requires almost one Earth year (360 days) to complete an orbit! At magnitude 18.7, Nereid is beyond the detection point of most average telescopes but can be ‘‘seen’’ using long exposure charge coupled AQ1 device (CCD) image stacking devices. Other sights that can’t be seen are the Van Allen Radiation Belts of our Earth, the discovery of which was announced in 1958 in this day’s copy of the Washington Evening Star. Thanks to James A. Van Allen’s use of the data from the Explorer I and Pioneer III space probes, we know that Earth’s magnetosphere contains concentrations of electrically charged particles. Say Happy Birthday to American astronaut M. Scott Carpenter, who was born on this date in 1925 and was one of the original seven Mercury astronauts to reach space in 1962.

Tonight’s outstanding lunar feature will be crater Maurolycus , just southwest of the three rings of Theophilus, Cyrillus, and Catharina. This Lunar Club Challenge spans 114 kilometers and goes below the lunar surface by 4,730 meters. Be sure to look for Gemma Frisius just to its north!

maurolycus

Now, relax and enjoy the peak of the Phi Bootid meteor shower, whose radiant is near the constellation Hercules. The best time to view most meteor showers is around 2:00 a.m. local time, but you may have good success watching for these meteors as soon as the Moon westers. The average fall rate is only about 6 per hour, but it’s a great way to spend a spring evening out under the stars!

palissa1Saturday, May 2, 2009 – Today, let’s start with the 1868 birth on this date of Robert Williams Wood. Although Wood’s primary research was on sound waves, he devised a ‘‘zone plate’’ that could replace the objective lens of a telescope! He also improved the diffraction grating, did research in spectroscopy, and made photographs showing both infrared and ultraviolet radiations. Also, take a moment to note the 1925 passing of the star cataloger, Johann Palisa. Palisa remains the most successful visual discoverer in the history of minor planet research, discovering 122 asteroids with a 600 telescope and no photographic plates!

hebeWhy not salute his achievements by looking for the asteroid Hebe, which reaches opposition tonight? Hebe is the 13th largest asteroid by mass and the 5th brightest to observe. If you collect meteorites and have an H chondrite, chances are good you have a physical piece of Hebe, since it is thought to have contributed up to 40% of all recovered chrondites! Hebe is now coming in at 6th magnitude and given its prime location shouldn’t make it fairly easy for even those with just binoculars to find this cool asteroid.

cassini

Now, let’s have a look at the Moon! Tonight’s challenges are craters Cassini and Cassini A, which come into view just south of the black slash of the Alpine Valley. The major crater spans 57 kilometers and reaches a floor depth of 1,240 meters. Your assignment, should you decide to accept it, is to spot the central crater A. It only spans 17 kilometers, yet drops down another 2,830 meters below the primary crater’s floor!

kaslterSunday, May 3, 2009 – How about starting the day with the bizarre and unusual? In 1375 BC, the oldest recorded total solar eclipse occurred—if we can believe eighth century Babylonian records! If you have a green laser pointer, or a telrad, you might want to wish Alfred Kastler a happy birthday. Born on this date in 1902, the physicist was very interested in what happened to atoms when excited by light or radio waves. Kastler developed a method called ‘‘optical pumping,’’ where atoms enter a higher energy state. Optical pumping is what makes your laser work!

Tonight notice just how close bright Regulus is to the Moon! If you’d like to try your hand at asteroid Ceres, you’ll find it approximately another 15 degrees north of the ‘‘Little King.’’

Tonight let’s take a long Moonwalk together and do some major crater exploration. Try using mid-range magnification in your telescope and see how many of the craters in this photograph you can identify!.

ptolmap

Ptolemaeus area: (1) Sinus Asperitatis, (2) Theophilus, (3) Cyrillus, (4) Catharina, (5) Rupes Altai, (6) Piccolomini, (7) Sacrobosco, (8) Abulfeda, (9) Almanon, (10) Taylor, (11) Abenezra, (12) Apianus (13) Playfair, (14) Aliacensis, (15) Werner, (16) Blanchinus, (17) Lacaille, (18) Walter, (19) Regiomontanus, (20) Purbach, (21) Thebit, (22) Arzachel, (23) Alphonsus, (24) Ptolemaeus, and (25) Albategnius.

Until next week? Ask for the Moon… But keep on reaching for the stars!

This week’s awesome images are (in order of appearance): M. Scott Carpenter (credit—NASA), Maurolycus (credit—Alan Chu), Johann Palisa (historical image), Hebe Chart (Your Sky), Cassini (credit—Wes Higgins), Alfred Kastler (historical image) and the Ptolemaeus area (credit—Greg Konkel). We thank you so much!

IYA Live Telescope Today – Messier 10

We certainly hope you had the opportunity to keep an eye on our remote telescope! Despite the weather changes in the southern hemisphere causing a little rain delay, we’ve been looking forward to a clear night and firing the telescope back up. I know it’s certainly fascinating to watch and don’t be disappointed if you log on and get an error message. (That just means the scope is not operating at the moment or you need to refresh.) If you didn’t get a chance to watch the IYA telescope “live” on Galactic TV today, don’t worry. We took a video capture for you. Step inside to enjoy today’s view of Messier Object 10. We do it all for you…

The following information is a direct quotation from Wikipedia:

M10 Globular Cluster: Constellation – OPHIUCHUS

Messier 10 or M10 (also designated NGC 6254) is a globular cluster in the constellation of Ophiuchus.

The object was discovered by Charles Messier on May 29, 1764, who cataloged it as number 10 in his list. He described it as a “nebula without stars”, but later study revealed it as a globular cluster of thousands of stars.

M10 has an apparent diameter of some 20 arcminutes, about two-thirds of the apparent diameter of the Moon. Viewed through medium-sized telescopes it appears about half that size (8′ to 9′), as its bright core is only 35 light-years across. M10 has a spatial diameter of 83 light-years and is estimated to be 14,300 light-years away from Earth.

Four variable stars have been discovered in this cluster.

As always, you can visit the remote telescope by clicking on the IYA “LIVE Remote Cam” Logo to your right. We’ll be broadcasting whenever skies are clear and dark in Central Victoria! Enjoy…

Factual information is copied from: Wikipedia. Thank you so much!