Messier 41 – the NGC 2287 Open Star Cluster

Image of the open star cluster Messier 41, highlighting its combination of red dwarf, white dwarf and K3-type class stars. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the double star known as Messier 41. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is the open star cluster known as Messier 41 (aka. M41, NGC 2287). Located in the Canis Major constellation – approximately 4,300 light years from Earth – this cluster lies just four degrees south of Sirius, the brightest star in the night sky. Like most open clusters, it is relatively young – 190 million years old – and contains over 100 stars in a region measuring 25 to 26 light years in diameter.

Description:

Running away from us at a speed of about 34 kilometers per second, this field of about 100 stars measures about 25 light years across. Born about 240 million years ago, it resides in space approximately 2300 light years away from our solar system. Larger aperture telescopes will reveal the presence of many red (or orange) giant stars and the hottest star in this group is a spectral type A.

View of the night sky in North Carolina, showing the constellations of Orion, Hyades, Canis Major and Canis Minor. Credit: NASA

As G.L.H. Harris (et al) explained in a 1993 study:

“We have obtained photoelectric UBV photometry for 100 stars, uvbyb photometry for 39 stars and MK spectral types for 80 stars in the field of NGC 2287. After combination with data from other sources, several interesting cluster properties are apparent. Both the UBV and uvbyb photometry point to a small but nonzero reddening, while our spectral types confirm previous results indicating a high binary frequency for the cluster. Based on our spectral and photometric data for the cluster members, we find a minimum binary frequency of 40% and discuss the possibility that the results may imply a binary frequency closer to 80%. The cluster age is found to be based on both the main-sequence turnoff and the red giant distribution; the width of the turn up region can probably be explained by a combination of duplicity and a range in stellar rotation.”

But there’s more than just red giant stars and various spectral types to be found hiding in Messier 41. There’s at least two white dwarf stars, too. As P.D Dobbie explained in a 2009 study:

“[W]e use our estimates of their cooling times together with the cluster ages to constrain the lifetimes and masses of their progenitor stars. We examine the location of these objects in initial mass-final mass space and find that they now provide no evidence for substantial scatter in initial mass-final mass relation (IFMR) as suggested by previous investigations. This form is generally consistent with the predictions of stellar evolutionary models and can aid population synthesis models in reproducing the relatively sharp drop observed at the high mass end of the main peak in the mass distribution of white dwarfs.”

Messier 41 and Collinder 121. Image: Wikisky

As you view Messier 41, you’ll be impressed with its wide open appearance… and knowing it’s simply what happens to star clusters as they get passed around our galaxy. As Giles Bergond (et al.) stated in their 2001 study:

“Taking into account observational biases, namely the galaxy clustering and differential extinction in the Galaxy, we have associated these stellar overdensities with real open cluster structures stretched by the galactic gravitational field. As predicted by theory and simulations, and despite observational limitations, we detected a general elongated (prolate) shape in a direction parallel to the galactic Plane, combined with tidal tails extended perpendicularly to it. This geometry is due both to the static galactic tidal field and the heating up of the stellar system when crossing the Disk. The time varying tidal field will deeply affect the cluster dynamical evolution, and we emphasize the importance of adiabatic heating during the Disk-shocking. During the 10-20 Z-oscillations experienced by a cluster before its dissolution in the Galaxy, crossings through the galactic Disk contribute to at least 15% of the total mass loss. Using recent age estimations published for open clusters, we find a destruction time-scale of about 600 million years for clusters in the solar neighborhood.”

That means we’ve only got another 360 million years to observe it before it’s completely gone (though some estimates place it at about 500 million). Either way, this star cluster is destined to disappear, perhaps before we are!

History of Observation:

Messier 41 was “possibly” recorded by Aristotle about 325 B.C. as a patch in the Milky Way… quite understandable since it is very much within unaided eye visibility from a dark sky location. Said Aristotle:

“.. some of the fixed stars have tails. And for this we need not rely only on the evidence of the Egyptians who say they have observed it; we have observed it also ourselves. For one of the stars in the thigh of the Dog had a tail, though a dim one: if you looked hard at it the light used to become dim, but to less intent glance it was brighter.”

Messier 41 and Sirius. Image: Wikisky

However, Giovanni Batista Hodierna was the first to catalog it in 1654, and the star cluster became a bit more astronomically known when John Flamsteed independently found it again on February 16, 1702. Doing his duty, Charles Messier also logged it:

“In the night of January 16 to 17, 1765, I have observed below Sirius and near the star Rho of Canis Major a star cluster; when examining it with a night refractor, this cluster appeared nebulous; instead, there is nothing but a cluster of small stars. I have compared the middle with the nearest known star; and I found its right ascension of 98d 58′ 12″, and its declination 20d 33′ 50″ north.”

Following suit, other historical astronomers also observed M41 – including Sir John Herschel to include it in the NGC catalog. While none found it particularly thrilling… their notes range from a “coarse collection of stars” to “very large, bright, little compressed”, perhaps you will feel much differently about this easy, bright target!

Locating Messier 41:

Finding Messier 41 isn’t very difficult for binoculars and small telescopes – all you have to know is the brightest star in the northern hemisphere, Sirius, and south! Simply aim your optics at Sirius and move due south approximately four degrees. That’s about one standard field of view for binoculars, about one field of view for the average telescope finderscope and about 6 fields of view for the average wide field, low power eyepiece.

The location of Messier 41 in the Canis Major constellation. Credit: IAU and Sky & Telescope magazine/Roger Sinnott & Rick Fienberg

Because Messier 41 is a large star cluster, remember to use lowest magnification to get the best effect. Higher magnification can always be used once the star cluster is identified to study individual members. M41 is quite bright and easily resolved and makes a wonderful target for urban skies and moonlit nights!

Because you understand what’s there…

Object Name: Messier 41
Alternative Designations: M41, NGC 2287
Object Type: Open Galactic Star Cluster
Constellation: Canis Major
Right Ascension: 06 : 46.0 (h:m)
Declination: -20 : 44 (deg:m)
Distance: 2.3 (kly)
Visual Brightness: 4.5 (mag)
Apparent Dimension: 38.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

The Cetus Constellation

The Cetus Constellation. Credit and Copyright ©: Torsten Bronger/Wikipedia Commons

Welcome back to Constellation Friday! Today, in honor of the late and great Tammy Plotner, we will be dealing with the sea monster – the Cetus constellation!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these constellations is Cetus, which was named in honor of the sea monster from Greek mythology.  Cetus is the fourth largest constellation in the sky, the majority of which resides just below the ecliptic plane. Here, it is bordered by many “watery” constellations – including Aquarius, Pices, Eridanus, Piscis Austrinus, Capricornus – as well as Aries, Sculptor, Fornax and Taurus. Today, it is one of the 88 modern constellations recognized by the IAU.

Name and Meaning:

In mythology, Cetus ties in with the legendary Cepheus,Cassiopeia, Andromeda, Perseus tale – for Cetus is the monster to which poor Andromeda was to be sacrificed. (This whole tale is quite wonderful when studied, for we can also tie in Pegasus as Perseus’ horse, Algol and the whom he slew to get to Andromeda and much, much more!)

Cetus, as represented by Sidney Hall in this card from Urania’s Mirror (1825). Credit: Library of Congress/Sidney Hall

As for poor, ugly Cetus. He also represents the gates to the underworld thanks to his position just under the ecliptic plane. Arab legend has it that Cetus carries two pearl necklaces – one broken and the other intact – which oddly enough, you can see among its faint stars in the circular patterns when nights are dark. No matter what the legends are, Cetus is an rather dim, but interesting constellation!

History of Observation:

Cetus was one of many Mesopotamian constellations that passed down to the Greeks. Originally, Cetus may have been associated with a whale, and is often referred to as the Whale. However, its most common representation is that of the sea monster that was slain by Perseus.

In the 17th century, Cetus was depicted variously as a “dragon fish” (by Johann Bayer), and as a whale-like creature by famed 17th-century cartographers Willem Blaeu and Andreas Cellarius. However, Cetus has also been variously depicted with animal heads attached to an aquatic animal body.

The constellation is also represented in many non-Western astrological systems.In Chinese astronomy, the stars of Cetus are found among the Black Tortoise of the North (B?i F?ng Xuán W?) and the White Tiger of the West (X? F?ng Bái H?).

Cetus, as depicted by famed 17th century cartographer Willem Blaeu, 1602. Credit: WIkipedia Commons/Erik Lernestål

Notable Features:

Cetus sprawls across 1231 square degrees of sky and contains 15 main stars, highlighted by 3 bright stars and 88 Bayer/Flamsteed designations. It’s brightest star is Beta Ceti, otherwise known as Deneb Kaitos (Diphda), a type K0III orange giant which is located approximately 96.3 light years away. This star has left its main sequence and is on its way to becoming a red giant.

The name Deneb Kaitos is derived from the Arabic “Al Dhanab al Kaitos al Janubiyy”, which translates as “the southern tail of Cetus”. The name Diphda comes “ad-dafda at-tani“, which is Arabic for “the second frog” – the star Fomalhaut in neighboring Piscis Austrinus is usually referred to as the first frog.)

Then there’s Alpha Ceti, a very old red giant star located approximately 249 light years from Earth. It’s traditional name (Menkar), is derived from the Arabic word for “nostril”. Then comes Omicron Ceti, also known as Mira, binary star consisting located approximately 420 light years away. This binary system consists of an oscillating variable red giant (Mira A).

After being recorded for the first time by David Fabricius (on August 3, 1596), Mira has since gone on to become the prototype for the Mira class of variables (of which there are six or seven thousand known examples). These stars are red giants whose surfaces oscillate in such a way as to cause variations in brightness over periods ranging from 80 to more than 1,000 days.

Composite image of Messier 77 (NGC 1068), showing it in the visible, X-ray, and radio spectrums. Credit: NASA/CXC/MIT/C.Canizares/D.Evans et al/STScI/NSF/NRAO/VLA

Cetus is also home to many Deep Sky Objects. A notable examples is the barred spiral galaxy known as Messier 77, which is located approximately 47 million light years away and is 170,000 light years in diameter, making it one of the largest galaxies listed in Messier’s catalogue. It has an Active Galactic Nucleus (AGN) which is obscured from view by intergalactic dust, but remains an active radio source.

Then there’s NGC 1055, a spiral galaxy that lies just 0.5 north by northeast of Messier 77. It is located approximately 52 million light years away and is seen edge-on from Earth. Next to Messier 77, NGC 1055 is a largest member of a galaxy group – measuring 115,800 light years in diameter – that also includes NGC 1073 and several smaller irregular galaxies. It has a diameter of about 115,800 light years. The galaxy is a known radio source.

Finding Cetus:

Cetus is the fourth largest constellation in the sky, is visible at latitudes between +70° and -90° and is best seen at culmination during the month of November. Of all the stars in Cetus, the very first you must look for in binoculars is Mira. Omicron Ceti was the very first variable star discovered and was perhaps known as far back as ancient China, Babylon or Greece. The variability was first recorded by the astronomer David Fabricius while observing Mercury.

Now aim your binoculars at Alpha Ceti. It’s name is Menkar and we do know something about it. Menkar is an old and dying star, long past the hydrogen and perhaps even past the helium stage of its stellar evolution. Right now it’s a red giant star but as it begins to burn its carbon core it will likely become highly unstable before finally shedding its outer layers and forming a planetary nebula, leaving a relatively large white dwarf remnant.

Location of Mira and Tau Ceti. Credit: Constellation Guide/Torsten Bronger

Hop down to Beta Ceti – Diphda. Oddly enough, Diphda is actually the brightest star in Cetus, despite its beta designation. It is a giant star with a stellar corona that’s brightening with age – exerting about 2000 times more x-ray power than our Sun! For some reason, it has gone into an advanced stage if stellar evolution called core helium burning – where it is converting helium directly to carbon.

Are you ready to get out your telescope now? Then aim at Diphda and drop south a couple of degrees for NGC 247. This is a very definite spiral galaxy with an intense “stellar” nucleus! Sitting right up in the eyepiece as a delightful oval, the NGC 247 is has a very proper galaxy structure with a defined core area and a concentration that slowly disperses toward its boundaries with one well-defined dark dust lane helping to enhance a spiral arm. Most entertaining! Continuing “down” we move on to the NGC 253. Talk about bright!

Very few galactic studies come in this magnitude (small telescopes will pick it up very well, but it requires large aperture to study structure.) Very elongated and hazy, it reminds me sharply of the “Andromeda Galaxy”. The center is very concentrated and the spiral arms wrap their way around it beautifully! Dust lanes and bright hints of concentration are most evident. and its most endearing feature is that it seems to be set within a mini “Trapezium” of stars. A very worthy study…

Now, let’s hop off to Delta Ceti, shall we? I want to rock your world – because spiral galaxy M77 rocked mine! Once again, easily achieved in the small telescope, Messier 77 comes “alive” with aperture. This one has an incredible nucleus and very pronounced spiral arms – three big, fat ones! Underscored by dark dust lanes, the arms swirl away from the center in a galactic display that takes your breath away!

The location of the Cetus Constellation. Credit: IAU/Sky&Telescope magazine

The “mottling” inside the structure is not just a hint in this ovalish galaxy. I guarantee you won’t find this one “ho hum”… how could you when you know you’re looking at something that’s 47.0 million light-years away! Messier 77 is an active galaxy with an Active Galactic Nucleus (AGN) and one of the brightest Seyfert galaxies known.

Now, return to Delta and the “fall line” runs west to east on the north side. First up is galaxy NGC 1073, a very pretty little spiral galaxy with a very “stretched” appearing nucleus that seems to be “ringed” by its arms! Continuing along the same trajectory, we find the NGC 1055. Oh, yes… Edge-on, lenticular galaxy! This soft streak of light is accompanied by a trio of stars. The galaxy itself is cut through by a dark dust lane, but what appears so unusual is the core is to one side!

Now we’ve made it to back to the incredible M77, but let’s keep on the path and pick up the NGC 1087 – a nice, even-looking spiral galaxy with a bright nucleus and one curved arm. Ready to head for the beautiful variable Mira again? Then let her be the guide star, because halfway between there and Delta is the NGC 936 – a soft spiral galaxy with a “saturn” shaped nucleus. Nice starhoppin’!

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources:

Messier 40 – the Winnecke 4 Double Star

The double star Messier 40 (Winnecke 4), along with PGC 39934, NGC 4290 and NGC 4284. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the double star known as Messier 40. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is Messier 40, this double star is now known to be an optical double star (i.e. two independent stars at different distances that appear aligned based on our perspective). It is also included in the Winnecke Catalogue of Double Stars as number 4, and is located in the constellation of Ursa Major (aka. the Big Dipper).

Description:

At roughly 500 light years away from us, no one is quite sure if this pair of stars is truly a binary system or an optical double star. According to Richard Nugent’s 2002 data, “The observed relative proper motion, as measured in separation and position angle, is consistent with a straight, independent motion of the two stars, one crossing between us and the other.”

The double star Messier 40 (Winnecke 4), along with PGC 39934, NGC 4290 and NGC 4284. Credit: Wikisky

The two stars are nearly the same brightness as each other, with the primary star being magnitude 9 and the secondary being magnitude 9.3 and they are separated by about 49 arc seconds – a wide gap. At one time, the angular separation of the pair was measured at 49.2″, but has gradually changed to about 52.8″ in more recent years.

History of Observation:

Messier 40 was discovered by Charles Messier in 1764 while he was searching for a nebula that had been reported in the area by Johann Hevelius. As he wrote at the time:

“The same night on October 24-25, [1764], I searched for the nebula above the tail of the Great Bear [Ursa Major], which is indicated in the book Figure of the Stars, second edition: it should have, in 1660, the right ascension 183d 32′ 41″, and the northern declination 60d 20′ 33″. I have found, by means of this position, two stars very near to each other and of equal brightness, about the 9th magnitude, placed at the beginning of the tail of Ursa Major: one has difficulty to distinguish them with an ordinary refractor of 6 feet. Here are their position: right ascension, 182 deg 45′ 30″, and 59 deg 23′ 50″ northern declination. There is reason to presume that Hevelius mistook these two stars for a nebula.”

History often credits Messier for being a little bit crazy for cataloging a double star, but upon having read Messier’s report, I feel like he was an astronomer doing his job. If Hevelius reported a nebula here – then he was bound to look and write down what he saw. He didn’t just stumble on a double star and catalog it for no reason!

Close-up of the double star Messier 40. Credit: Wikisky

Later astronomers would also search for M40 and report a double star, and it was cataloged by such as by Friedrich August Theodor Winnecke at Pulkovo Observatory in 1863 as WNC 4. However, to give the good Hevelius credit, John Mallas reports, “the Hevelius object is the 5th-magnitude star 74 Ursae Majoris, more than one degree away, as reference to his star catalogue will show.”

In 1991, the separation between the stars was measured at 52.8 arcseconds, which represented an increase since 1966, when it was measured at 51.7. In 2001 and 2002, studies conducted by Brian Skiff and Richard L. Nugent suggested that the stars comprising the double star (HD 238107 and HD 238108) were in fact an optical double star, rather than a double star system.

In 2016, by using parallax measurements from the Gaia satellite, this theory was proven for the first time. Distance estimates were also produced, indicating that the two components are 350±30 and 140±5 parsecs (~1141±98 and 456±16 light years).

Locating Messier 40:

Finding Messier 40 isn’t very difficult for fairly large binoculars and small telescopes – but you need to remember that it’s a double star. First locate the easily recognized constellation of Ursa Major and focus on the ‘Big Dipper’ and look for the two stars that form the edge that connect to the handle – Gamma and Delta.

The location of Messier 40 in Ursa Major, above and to the left of MegrezCredit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Aim your telescope’s finderscope at Delta – the point where the ‘handle’ would connect. In the finder, you will see a fainter star to the northeast. Hop there. Now, using a low power eyepiece, scan slightly further northeast and you will locate M40. Once located, you may go to higher magnification to more closely examine this Messier catalog curiosity.

While this pair of stars will show easily in binoculars, you must remember that binoculars give such a wide field that it will be difficult to distinguish them from surrounding stars. However, this is a great object for light-polluted skies and moonlit nights!

Enjoy the controversy… and this pair! And here are the quick facts on M40 to help you get started:

Object Name: Messier 40
Alternative Designations: M40, WNC 4
Object Type: Double Star
Constellation: Ursa Major
Right Ascension: 12 : 22.4 (h:m)
Declination: +58 : 05 (deg:m)
Distance: 0.51 (kly)
Visual Brightness: 8.4 (mag)
Apparent Dimension: 0.8 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 39 – The NGC 7092 Open Star Cluster

The open star cluster Messier 39. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the open galactic star cluster known as Messier 39. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is known as Messier 39, an open star cluster located in the direction of the Cygnus constellation. Because of its proximity to Deneb and its size – it is actually larger in the night sky than a full Moon – it is easily observed using binoculars and small, low magnification telescopes.

Description:

Positioned only about 800 light years away from our solar system, this 300 million year old group of about 30 stars may look like they are spread fairly far apart in the sky. But as clusters go, they are close, really close! This group is gathered in space in only a 7 light year neighborhood! All of its stars are main sequence and the very brightest of them are just about to evolve into the red giant star phase.

In a study done by Jean Claude Mermilliod (et al), they conducted a long-term monitoring of solar-type dwarfs with CORAVEL – a study which took 19 years. While most individual radial velocities were never published – apart from a small number of spectroscopic binaries – the stars themselves and their properties were well documented in the works of B. Uyaniker and T. L. Landecker of the National Research Council, Herzberg Institute of Astrophysics.

Low-magnification image of Messier 39. Credit: Christian van Endern

As Uyaniker and Landecker claimed in their 2002 study, “A Highly Ordered Faraday-Rotation Structure in the Interstellar Medium“:

“We describe a Faraday rotation structure in the interstellar medium detected through polarimetric imaging at 1420 MHz from the Canadian Galactic Plane Survey (CGPS). The structure, at l = 918,b = -25, has an extent of ~2°, within which polarization angle varies smoothly over a range of ~100°. Polarized intensity also varies smoothly, showing a central peak within an outer shell. This region is in sharp contrast to its surroundings, where low-level chaotic polarization structure occurs on arcminute scales. The Faraday rotation structure has no counterpart in radio total intensity and is unrelated to known objects along the line of sight, which include a Lynds Bright Nebula, LBN 416, and the star cluster M39 (NGC 7092). It is interpreted as a smooth enhancement of electron density. The absence of a counterpart, in either optical emission or total intensity, establishes a lower limit to its distance. An upper limit is determined by the strong beam depolarization in this direction. At a probable distance of 350 ± 50 pc, the size of the object is 10 pc, the enhancement of electron density is 1.7 cm-3, and the mass of ionized gas is 23 M. It has a very smooth internal magnetic field of strength 3 UG, slightly enhanced above the ambient field. G91.8-2.5 is the second such object to be discovered in the CGPS, and it seems likely that such structures are common in the magneto-ionic medium.”

So where do these gases come from? Perhaps they are there all along. As Yu N. Efremov and T.G. Sitnik wrote in their 1988 study:

“It is found that about 90% of young clusters o-b2 and OB-associations situated within 3 kpc from the Sun are united into complexes with diameters from 150 to 700 pc. Almost all complexes contain giant molecular clouds with masses. A number of complexes (mostly large ones)-are connected with giant H I clouds; a few of small complexes are situated in the H I-caverns. Older (>b2) cluster avoid the regions occupied by young star groups. Complexes often have an hierarchic structure; some neighbouring complexes may be united into supercomplexes with diameters about 1.5 kpc.”

Does this mean it’s possible that M39 could be more than one cluster combined? As H. Schneider wrote in his 1987 study:

“Early-type stars up to 12.0 mag and spectral type F2 in two young northern clusters were investigated by means of Stromgren and H-beta photometry. The distance and reddening of the clusters were estimated, and the membership of the stars discussed. In the case of NGC 7039 a distance of 675 pc and a color excess of E(b-y) = 0.056 were found; the respective values for NGC 7063 were 635 pc and E(b-y) = 0.062. The reality of NGC 7039 is somewhat puzzling: it seems that there exists a loose star aggregate called NGC 7039, containing about six to nine stars, and in the background another cluster at a distance of about 1500 pc. Besides this, variable reddening across the cluster area is probable.”

Atlas Image mosaic of Messier 39, obtained as part of the Two Micron All Sky Survey (2MASS). Credit: NASA/NSF/IPAC/Caltech/Univ. of Mass.

History of Observation:

While it is possible this bright star cluster was remarked upon by Aristotle as a cometary appearing object about 325 BC, and it is also possible that it may have been discovered by Le Gentil in 1750, the fact remains M39 is most frequently attributed to be an original discovery of Charles Messier. As he recorded in his notes:

“In the night of October 24 to 25, 1764, I observed a cluster of stars near the tail of Cygnus: One distinguishes them with an ordinary (nonachromatic) refractor of 3 and a half feet; they don’t contain any nebulosity; its extension can occupy a degree of arc. I have compared it with the star Alpha Cygni, and I have found its position in right ascension of 320d 57′ 10″, and its declination of 47d 25′ 0″ north.”

Because Sir William Herschel did not publish his findings on Messier’s works, very few have read his observations of the object -“Consists of such large and straggling stars that I could not tell where it began nor where it ended. It cannot be called a cluster.” However, it would later go on to receive a New General Catalog (NGC) designation by Sir John Herschel who would describe it as “A star of 7th mag [position taken], one of a large loose cluster of stars of 7th to 10th magnitude; very coarsely scattered, and filling many fields.”

Even as accomplished as historic observers were, they sometimes didn’t always do the right thing. In the case of Messier 39, it is so close to us that it appears large dimensionally in the sky – and therefore needs less magnification instead of more to be properly studied as a whole. However, don’t always put away the magnfication, because as Admiral Smyth reports:

“A loose cluster, or rather splashy galaxy field of stars, in a very rich visinity between the Swan’s tail and the Lizard, due south of Beta Cephei, and east-north-east of Deneb [Alpha Cygni]. This was picked up by Messier in 1764, with his 3 1/2 foot telescope, and registered as being a degree in diameter. Among them there are several pairs, of which a couple were slightly estimated; the first being the brightest star (7m) and its comes, and the second a pretty pair of 10th-magnitudes.”

The location of Messier 39 in the Cygnus constellation. Credit: IAU/Sky & Telescope magazine/Roger Sinnott & Rick Fienberg)

Locating Messier 39:

This coarse open star cluster is easily found in small optics. Start first by identifying the very large constellation of Cygnus and pinpointing its brightest, northernmost star. Aim you binoculars there. You’ll find M39 about 9 degrees east and a bit north of Deneb (Alpha Cygni). If at first you don’t succeed, try looking at Deneb from a dark sky location and see if you can spot a small, hazy patch about a fist width away to the east. There’s your star cluster!

It will also show easily in the telescope finderscope as a hazy patch and even begin resolution with larger aperture finders. M39 is very well suited to light polluted skies and moonlit observing and will even hold up well to less than ideal sky conditions. Small instruments will easily see a bright handful of stars while larger telescopes will resolve many more faint members and pairs. Because of its large apparent size, you’ll enjoy viewing M39 far more if you use the least amount of magnification possible.

Enjoy this star-studded cluster and the great Milky Way field that frames it!

And here are the quick facts on this Messier Object to help get you started:

Object Name: Messier 39
Alternative Designations: M39, NGC 7092
Object Type: Galactic Open Star Cluster
Constellation: Cygnus
Right Ascension: 21 : 32.2 (h:m)
Declination: +48 : 26 (deg:m)
Distance: 0.825 (kly)
Visual Brightness: 4.6 (mag)
Apparent Dimension: 32.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 38 – The Starfish Cluster

The open star cluster Messier 38, in proximity to Messier 36 and Messier 37. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the Starfish Cluster, otherwise known as Messier 38. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects it the Starfish Cluster, also known as Messier 38 (or M38). This open star cluster is located in the direction of the northern Auriga constellation, along with the open star clusters M36 and M37. While not the brightest of the three, the location of the Starfish within the polygon formed by the brightest stars of Auriga makes it very easy to find.

Description:

Cruising around our Milky Way some 4200 light years from our solar system, this 220 million year old group of stars spreads itself across about 25 light years of space. If you’re using a telescope, you may have noticed its not alone… Messier 38 might very well be a binary star cluster! As Anil K. Pandey (et al) explained in a 2006 study:

“We present CCD photometry in a wide field around two open clusters, NGC 1912 and NGC 1907. The stellar surface density profiles indicate that the radii of the clusters NGC 1912 and NGC 1907 are 14′ and 6′ respectively. The core of the cluster NGC 1907 is found to be 1′.6±0′.3, whereas the core of the cluster NGC 1912 could not be defined due to its significant variation with the limiting magnitude. The clusters are situated at distances of 1400±100 pc (NGC 1912) and 1760±100 pc (NGC 1907), indicating that in spite of their close locations on the sky they may be formed in different parts of the Galaxy.”

The Starfish Cluster also known as Messier 38. Credit: Wikisky

So what’s happening here? Chances are, when you’re looking at M38, you’re looking at a star cluster that’s currently undergoing a real close encounter! Said M.R. de Oliveira (et al) said in their 2002 study:

“The possible physical relation between the closely projected open clusters NGC 1912 (M 38) and NGC 1907 is investigated. Previous studies suggested a physical pair based on similar distances, and the present study explores in more detail the possible interaction. Spatial velocities are derived from available radial velocities and proper motions, and the past orbital motions of the clusters are retrieved in a Galactic potential model. Detailed N-body simulations of their approach suggest that the clusters were born in different regions of the Galaxy and presently experience a fly-by.”

However, it was Sang Hyun Lee and See-Woo Lee who gave us the estimates of M38’s distance and age. As they wrote in their 1996 study, “UBV CCD Photometry of Open Cluster NGC 1907 and NGC 1912“: The distance difference of the two clusters is 300pc and the age difference is 150 Myr. These results imply that the two clusters are not physically connected.”

So, how do we know they are two clusters passing in the night? The credit for that goes to de Oliveira and colleagues, who also asserted in their 2002 study:

“These simulations also shows that the faster the clusters approach the weaker the tidal debris in the bridge region, which explain why there is, apparently, no evidence of a material link between the clusters and why it should not be expected. It would be necessary to analyse deep wide field CCD photometry for a more conclusive result about the apparent absence of tidal link between the clusters.”

Atlas image mosaic of the Starfish Cluster (Messier 38), obtained as part of the Two Micron All Sky Survey (2MASS). Credit: NASA/NSF/Caltech/UofMass/IPAC

History of Observation:

This wonderful star cluster was originally discovered by Giovanni Batista Hodierna before 1654 and independently rediscovered by Le Gentil in 1749. However, it was Charles Messier’s catalog which brought it to attention:

“In the night of September 25 to 26, 1764, I have discovered a cluster of small stars in Auriga, near the star Sigma of that constellation, little distant from the two preceding clusters: this one is of square shape, and doesn’t contain any nebulosity, if one examines it with a good instrument: its extension may be 15 minutes of arc. I have determined its position: its right ascension was 78d 10′ 12″, and its declination 36d 11′ 51″ north.”

By correcting cataloging its position, M38 could later be studied by other astronomers who would also add their own notes. Caroline, then William Herschel would observe it, where the good Sir William would add to his private notes: “A cluster of scattered, pretty large [bright] stars of various magnitudes, of an irregular figure. It is in the Milky Way.”

Messier Object 38 would then later be added to the New General Catalog by John Herschel, who wasn’t particularly descriptive, either. However, there was an historic astronomer who was determined to examine this star cluster and it was Admiral Symth:

“A rich cluster of minute stars, on the Waggoner’s left thigh, of which a remarkable pair in the following are here estimated. A [mag] 7, yellow; and B 9, pale yellow; having a little companion about 25″ off in the sf [south following, SE] quarter. Messier discovered this in 1764, and described it as ‘a mass of stars of a square form without any nebulosity, extending to about 15′ of a degree;’ but it is singular that the palpable cruciform shape of the most clustering part did not attract his notice. It is an oblique cross, with a pair of large [bright] stars in each arm, and a conspicuous single one at the centre; the whole followed by a bright individual of the 7th magnitude. The very unusual shape of this cluster, recalls the sagacity of Sir William Herschel’s speculations upon the subject, and very much favours the idea of an attractive power lodged in the brightest part. For although the form be not globular, it is plainly to be seen that there is a tendency toward sphericity, by the swell of the dimensions as they draw near the most luminous place, denoting, as it were, a stream, or tide, of stars, setting toward the centre. As the stars in the same nebula must be very merely all at the same relative distance from us, and they appear to be about the same size [brightness], Sir William infers that their real magnitudes must be nearly equal. Granting, therefore, that these nebulae and clusters of stars are formed by their mutual attraction, he concludes that we may judge of their relative age, by the disposition of their component parts, those being the oldest which are the most compressed.”

Open Cluster M38, photographed on Feb 19, 2015. Credit: Wikipedia Commons/Miguel Garcia

Perhaps by taking his time and really observing, Smyth gained some insight into the true nature of M38! Observe it yourself, and see if you can also locate NGC 1907. It’s quite a pair!

Locating Messier 38:

Locating Messier 38 is relatively easy once you understand the constellation of Auriga. Looking roughly like a pentagon in shape, start by identifying the brightest of these stars – Capella. Due south of it is the second brightest star which shares its border with Beta Tauri, El Nath. By aiming binoculars at El Nath, go north about 1/3 the distance between the two and enjoy all the stars!

You will note two very conspicuous clusters of stars in this area, and so did Le Gentil in 1749. Binoculars will reveal the pair in the same field, as will telescopes using lowest power. The dimmest of these is the M38, and will appear vaguely cruciform in shape. At roughly 4200 light years away, larger aperture will be needed to resolve the 100 or so fainter members. About 2 1/2 degrees to the southeast (about a finger width) you will see the much brighter M36.

More easily resolved in binoculars and small scopes, this “jewel box” galactic cluster is quite young and about 100 light years closer. If you continue roughly on the same trajectory about another 4 degrees southeast you will find open cluster M37. This galactic cluster will appear almost nebula-like to binoculars and very small telescopes – but comes to perfect resolution with larger instruments.

The location of Messier 38 open star cluster in the Auriga constellation. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

While all three open star clusters make fine choices for moonlit or light polluted skies, remember that high sky light means less faint stars which can be resolved – robbing each cluster of some of its beauty. Messier 38 is faintest and northernmost of the trio and located almost in the center of the Auriga pentagon. Binoculars and small telescopes will easily spot its cross-shaped pattern.

And here are the quick facts on the Starfish Nebula to help you get started:

Object Name: Messier 38
Alternative Designations: M38, NGC 1912
Object Type: Galactic Open Star Cluster
Constellation: Auriga
Right Ascension: 05 : 28.4 (h:m)
Declination: +35 : 50 (deg:m)
Distance: 4.2 (kly)
Visual Brightness: 7.4 (mag)
Apparent Dimension: 21.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 37 – the NGC 2099 Open Star Cluster

The open star cluster Messier 38, in proximity to Messier 36 and Messier 37. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the open star cluster known as Messier 37. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is the open star cluster known as Messier 37 (aka M37 and NGC 2099). Located in the direction of the Auriga constellation, Messier 37 is one of three open star clusters (including Messier 36 and Messier 38) in this portion of the night sky – and also the brightest.

Description:

Of the trio of Messier star clusters in this area, M37 is by far the most stellar populated. It contains at least 150 stars that are around magnitude 12 and easily resolved by even small telescopes – and science is still counting actual members! At around 347 – 550 million years old, you’ll find at least a dozen red giants living here about 4,500 light years away from Earth… and they do it in a neighborhood that spans anywhere from 20 to 25 light years across!

The open star cluster Messier 37. Credit: Wikisky

Just how many stars might be inside this intermediate-aged cluster? As R. Sagar and Nilakshi of the Indian Institute for Astrophysics said in their 2002 study:

“The CCD observations of the rich open star cluster NGC 2099 and its surrounding field region have been carried out up to a limiting magnitude of V ~ 22 mag in B, V and I passbands for the first time. A total of ~ 12 000 stars have been observed in the area of about 24 arcmin x 34 arcmin in the cluster region, as well as ~ 2180 stars in the ~ 12arcmin x 12arcmin area of the field region located ~ 45arcmin away from the cluster center.”

Out of this huge number of stars, astronomers have been able to observe white dwarfs, too. This helps us to understand how they develop and what affects their helium or hydrogen content. Jasonjot Singh Kalirai et al. had the following to say in a 2004 study:

“Spectra have been obtained of 21 white dwarfs (WDs) in the direction of the young, rich open star cluster NGC 2099. This represents an appreciable fraction (>30%) of the cluster’s total WD population. The mean derived mass of the sample is 0.8 M—about 0.2 M larger than the mean seen among field WDs. A surprising result is that all of the NGC 2099 WDs have hydrogen-rich atmospheres (DAs); none exhibit helium-rich ones (DBs) or any other spectral class. We explore possible reasons for the lack of DBs in these clusters and conclude that the most promising scenario for the DA/DB number ratio discrepancy in young clusters is that hot, high-mass WDs do not develop large enough helium convection zones to allow helium to be brought to the surface and turn a hydrogen-rich WD into a helium-rich one.”

So, we’re setting the stage with number of stars and types. We have white dwarfs – but what about variables? Y.B. Kang (et al), put it this way in a 2007 study:

“Time-series CCD photometric observations of the intermediate-age open cluster NGC 2099 were performed to search for variable stars. We also carried out BV photometry to study physical properties of variables in the cluster. Using V-band time-series data, we carefully examined light variations of about 12,000 stars in the range of 10 < V < 22 mag. A total of 24 variable stars have been identified; seven stars are previously known variables and 17 stars are newly identified. On the basis of observational properties such as light curve shape, period, and amplitude, we classified the new variable stars as nine delta Scuti-type pulsating stars, seven eclipsing binaries, and one peculiar variable star. Judging from the position of delta Scuti-type stars in the color-magnitude diagram, only two stars are likely to have the cluster membership. One new variable KV10 shows peculiar light variations with a delta Scuti-type short period of about 0.044 day as well as a long period of 0.417 day.”

M37 (NGC 2099) open cluster. Credit: Wikipedia Commons

So what does knowing about these two types of stars help with our understanding of stellar evolution? That’s one of the goals of the RACE-OC project. As S. Messina (et al) said in 2008:

“Rotation and solar-type magnetic activity are closely related to each other in main-sequence stars of G or later spectral types. The presence and level of magnetic activity depend on star’s rotation, and rotation itself is strongly influenced by strength and topology of the magnetic fields. Open clusters represent especially useful targets to investigate the connection between rotation and activity. The open cluster NGC 2099 has been studied as a part of the RACE-OC project (Rotation and ACtivity Evolution in Open Clusters), which is aimed at exploring the evolution of rotation and magnetic activity in the late-type members of open clusters of different ages. We collected time series CCD photometric observations of this cluster in January 2004, and we determined the presence of periodicities in the flux variation related to the stellar rotation by Fourier analysis. We investigate the relations between activity manifestations, such as the light curve amplitude, and global stellar parameters. Results: We have discovered 135 periodic variables, 122 of which are candidate cluster members. Determination of rotation periods of G- and K-type stars has allowed us to better explore the evolution of angular momentum at an age of about 500 Myr. In our analysis, we have also identified 3 new detached eclipsing binary candidates among cluster members. A comparison with the older Hyades cluster (~625 Myr) shows that the newly-determined distribution of rotation periods is consistent with the scenario of rotational braking of main-sequence spotted stars as they age. However, a comparison with the younger M 34 cluster (~200 Myr) shows that the G8-K5 members of these clusters have the same rotation period distribution. That is, G8-K5 members in NGC 2099 seem to have experienced no significant braking in the age range from ~200 to ~500 Myr. Finally, NGC 2099 members have a smaller level of photospheric magnetic activity, as measured by light curve amplitude, than in younger stars of the same mass and rotation, suggesting that the activity level also depends on some other age-dependent parameters.”

History of Observation:

Although this great star cluster was originally recorded Giovanni Batista Hodierna before 1654, it would be 230 years before his records would be uncovered, so when Charles Messier first logged as Messier 37, it was believed to be an independent discovery.

“In the same night [September 2 to 3, 1764], I have observed a second cluster of small stars which were not very distant from the preceding, near the right leg of Auriga and on the parallel of the star Chi of that constellaiton: the stars there are smaller than that of the preceding cluster: they are also closer to each other, and contain a nebulosity. With an ordinary refractor of 3 feet and a half, one has difficulty to see these stars; but one distinguishes them with an instrument of greater effectivity. I have determined the position fo this cluster, which may have an extension of 8 to 9 minutes of arc: its right ascension was 84d 15′ 12″, and its declination 32d 11′ 51″ north.”

While William Herschel would return in later years to study Messier’s object, he did not publish his notes – but gives some great observing advice:

“A useful, coarse step; it will serve to learn to see nebulae, because it contains many small stars mixed with others in various magnitudes, many of which are not to be seen without great and long attention.” Messier 37 would be later given its NGC catalog designation by John Herschel who was the first to make a guess at its true stellar population: “Very fine large cluster, all resolved into stars of 10th to 13th magnitude. It fills 1 1/2 field, but the straggling stars extend very far. There may be 500 stars.”

As always, Admiral Smyth was the most poetical about his observing, and of M37 he writes:

“A magnificent object, the whole field being strewed as it were with sparkling gold-dust; and the group is resolvable into about 500 stars, from the 10th to the 14th magnitudes, besides the outliers. It was found and fixed by Messier in 1764, who described it as “a mass of small stars, much enveloped in nebulous matter.” This nebulous matter, however, yields to my telescope, and resolves into infinitely minute points of lucid light, among the distinct little individuals.”

The location of Messier 37 in the constellation Auriga. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Locating Messier 37:

Locating Messier 37 is relatively easy once you understand the constellation of Auriga. Looking roughly like a pentagon in shape, start by identifying the brightest of these stars – Capella. Due south of it is the second brightest star which shares its border with Beta Tauri, El Nath. By aiming binoculars at El Nath, go north about 1/3 the distance between the two and enjoy all the stars! You will note two very conspicuous clusters of stars in this area, and so did Le Gentil in 1749.

Binoculars will reveal the pair in the same field, as will telescopes using lowest power. The dimmest of these is the M38, and will appear vaguely cruciform in shape. At roughly 4200 light years away, larger aperture will be needed to resolve the 100 or so fainter members. About 2 1/2 degrees to the southeast (about a finger width) you will see the much brighter M36.

More easily resolved in binoculars and small scopes, this “jewel box” galactic cluster is quite young and about 100 light years closer. If you continue roughly on the same trajectory about another 4 degrees southeast you will find open cluster M37. This galactic cluster will appear almost nebula-like to binoculars and very small telescopes – but comes to perfect resolution with larger instruments.

While all three open star clusters make fine choices for moonlit or light polluted skies, remember that high sky light means less faint stars which can be resolved – robbing each cluster of some of its beauty. Messier 37 is the brightest and easternmost of the trio and you’ll very much notice its density.

When you view this cluster with binoculars, you’ll be seeing it much as Messier did… But use the power of a telescope if you can. Because this cloud of stars is quite worth your time and attention!

Object Name: Messier 37
Alternative Designations: M37, NGC 2099
Object Type: Galactic Open Star Cluster
Constellation: Auriga
Right Ascension: 05 : 52.4 (h:m)
Declination: +32 : 33 (deg:m)
Distance: 4.4 (kly)
Visual Brightness: 6.2 (mag)
Apparent Dimension: 24.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 36 – The Pinwheel Cluster

The open star cluster Messier 38, in proximity to Messier 36 and Messier 37. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the Pinweel Cluster, otherwise known as Messier 36. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

Included in this list is the open star cluster Messier 36, also known as the Pinwheel Cluster. This cluster is so-named because of its association with the Auriga constellation (aka. “the Charioteer”). Though similar in size and make-up to the Pleiades Cluster (Messier 45), the Pinwheel Cluster is actually ten times farther away from Earth – and one of the most distant of any clusters catalogued by Messier.

What You Are Looking At:

Located a little more than 4000 light years from our solar system, this group of about 60 stars spans across about 14 light years of space. As you are studying it, you’ll notice one star which seems brighter than the rest… With good reason! Its a spectral type B2 and about 360 more luminous than our Sun. Many of the cluster members here are also B-type stars and rapid rotators.

Close-up of the central region of Messier 36. Credit: Wikisky

This means that 25 million year old Messier 36 shares a lot in common with another nearby star cluster, the Pleiades. By taking a deep look at young clusters with stars of varying ages, astronomers are able to how long circumstellar disks may last – giving us a clue as to whether or not planet-forming stars may lay within them.

As Karl E. Haisch, Jr. (et al), wrote in a 2001 study “Disk Frequencies and Lifetimes in Young Clusters“:

“We have completed the first systematic and homogeneous survey for circumstellar disks in a sample of young clusters that both span a significant range in age and contain statistically significant numbers of stars whose masses span nearly the entire stellar mass spectrum. Analysis of the combined survey indicates that the cluster disk fraction is initially very high and rapidly decreases with increasing cluster age, such that one-half the stars within the clusters lose their disks in 3 million years. Moreover, these observations yield an overall disk lifetime of ~6 million years in the surveyed cluster sample. This is the timescale for essentially all the stars in a cluster to lose their disks. This should set a meaningful constraint for the planet-building timescale in stellar clusters.”

ut, can M36 hold surprises? You betcha’. As Bo Reipurth stated in a 2008 study titled “Star Formation and Molecular Clouds towards the Galactic Anti-Center“:

“The open cluster M36 (NGC 1960), which apparently forms the center of the Aur OB1 association, has been the subject of numerous analyses, and of these the earliest studies are today of historical interest only. NGC 1960 has recently attracted attention as the most likely origin of a massive OB star that exploded about 40,000 yr ago, creating the supernova remnant Simeis 147, an old supernova remnant listed in the catalog compiled at Simeiz by Gaze & Shajn (1952). A pulsar, PSR J0538+2817, has been found near the center of Simeis 147.”

2MASS Atlas Image Mosaic of the open star cluster Messier 36. Credit: NASA/IPAC/Caltech/University of Massachusetts

And the search for planet-building stars within M36 hasn’t stopped yet. The Spitzer Space telescope will also be investigating it, thanks to a proposal made by George Rieke:

“We propose a deep IRAC/MIPS survey of NGC 1960, a ~20 Myr-old massive cluster unexplored in the mid infrared. This cluster is at a key stage in terrestrial planet formation. Our survey will likely detect infrared excess emission from debris disks and transition disks from ~ 100 intermediate-mass (1-3 solar mass) stars. Together with ground-based photometry/spectroscopy of this cluster, proposed observations of 10 Myr-old NGC 6871, scheduled cycle 4 observations of the massive 13 Myr old clusters h and chi Persei, and existing data on NGC 2547 at 30 Myr, this survey will yield robust constraints on the frequency of debris/transition disks as a function of spectral type, age, and cluster environment at a critical age range for planet formation. This survey will provide a benchmark study of the observable signatures of terrestrial planet formation that will inform James Webb Space Telescope observations of planet-forming disks a decade from now.”

History of Observation:

The presence of this awesome star cluster was first recorded by Giovanni Batista Hodierna before 1654 and re-discovered by Le Gentil in 1749. However, it was Charles Messier who took the time to carefully record its position for future generations:

“In the night of September 2 to 3, 1764, I have determined the position of a star cluster in Auriga, near the star Phi of that constellation. With an ordinary refractor of 3 feet and a half, one has difficulty to distinguish these small stars; but when employing a stronger instrument, one sees them very well; they don’t contain between them any nebulosity: their extension is about 9 minutes of arc. I have compared the middle of this cluster with the star Phi Aurigae, and I have determined its position; its right ascension was 80d 11′ 42″, and its declination 34d 8′ 6″ north.”

M36 Open Cluster. Credit: NOAO/AURA/NSF

It would be observed again by Caroline, William and John Herschel who would be the first to note the double star in M36’s center. Although none of their notes are particularly glowing on this awesome star cluster, Admiral Symth does come to the historic rescue!

“A neat double star in a splendid cluster, on the robe below the Waggoner’s left thigh, and near the centre of the Galaxy stream. A [mag] 8 and B 9, both white; in a rich though open splash of stars from the 8th to the 14th magnitudes, with numerous outliers, like the device of a star whose rays are formed by very small stars. This object was registered by M. [Messier] in 1764; and the double star, as H. [John Herschel] remarks, is admirably placed, for future astronomers to ascertain whether there be internal motion in clusters. A line carried from the central star in Orion’s belt, through Zeta Tauri, and continued about 13deg beyond, will reach the cluster, following Phi Aurigae by about two degrees.”

Locating Messier 36:

Locating Messier 36 is relatively easy once you understand the constellation of Auriga. Looking roughly like a pentagon in shape, start by identifying the brightest of these stars – Capella. Due south of it is the second brightest star which shares its border with Beta Tauri, El Nath. By aiming binoculars at El Nath, go north about 1/3 the distance between the two and enjoy all the stars!

You will note two very conspicuous clusters of stars in this area, and so did Le Gentil in 1749. Binoculars will reveal the pair in the same field, as will telescopes using lowest power. The dimmest of these is the M38, and will appear vaguely cruciform in shape. At roughly 4200 light years away, larger aperture will be needed to resolve the 100 or so fainter members. About 2 1/2 degrees to the southeast (about a finger width) you will see the much brighter M36.

The location of M36 in the Auriga constellation. Credit: IAU and Sky and Telescope Magazine (Roger Sinnott & Rick Fienberg)

More easily resolved in binoculars and small scopes, this “jewel box” galactic cluster is quite young and about 100 light years closer. If you continue roughly on the same trajectory about another 4 degrees southeast you will find open cluster M37. This galactic cluster will appear almost nebula-like to binoculars and very small telescopes – but comes to perfect resolution with larger instruments.

While all three open star clusters make fine choices for moonlit or light polluted skies, remember that high sky light means less faint stars which can be resolved – robbing each cluster of some of its beauty. Messier 36 is intermediate brightness of the trio and you’ll quite enjoy its “X” shape and many pairings of stars!

Has the central double changed with time? Why not observe for yourself and see!

Object Name: Messier 36
Alternative Designations: M36, NGC 1960, Pinwheel Cluster
Object Type: Galactic Open Star Cluster
Constellation: Auriga
Right Ascension: 05 : 36.1 (h:m)
Declination: +34 : 08 (deg:m)
Distance: 4.1 (kly)
Visual Brightness: 6.3 (mag)
Apparent Dimension: 12.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

The Cepheus Constellation

The Cepheus constellation, located in the northern hemisphere. Credit: Torsten Bronger (2003)/Wikipedia Commons

Welcome back to Constellation Friday! Today, in honor of the late and great Tammy Plotner, we will be dealing with the King of Ethiopia himself, the Cepheus constellation!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these is the northern constellation of Cepheus, named after the mythological king of Ethiopia. Today, it is one of the 88 modern constellations recognized by the IAU, and is bordered by the constellations of Camelopardalis, Cassiopeia, Cygnus, Draco, Lacerta, and Ursa Minor.

Name and Meaning:

In Greek mythology, Cepheus represents the mythical king of Aethiopia – and husband to the vain queen Cassiopeia. This also makes him the father of the lovely Andromeda, and a member of the entire sky saga which involves jealous gods and mortal boasts. According to this myth, Zeus placed Cepheus in the sky after his tragic death, which resulted from a jealous lovers’ spat.

Cepheus as depicted in Urania’s Mirror, a set of constellation cards published in London c. 1825. Credit: Library of Congress/Sidney Hall

It began when Cepheus’ wife – Cassiopeia – boasted that she was more beautiful than the Nereids (the sea nymphs), which angered the nymphs and Poseidon, god of the sea. Poseidon sent a sea monster, represented by the constellation Cetus, to ravage Cepheus’ land. To avoid catastrophe, Cepheus tried to sacrifice his daughter Andromeda to Cetus; but she was saved by the hero Perseus, who also slew the monster.

The two were to be married, but this created conflict since Andromeda had already been promised to Cepheus brother, Phineus. A fight ensued, and Perseus was forced to brandish the head of Medusa to defeat his enemies, which caused Cepheus and Cassiopeia (who did not look away in time) to turn to stone. Perhaps his part in the whole drama is why his crown only appears to be seen in the fainter stars when he’s upside down?

History of Observation:

As one of the 48 fabled constellations from Greek mythology, Cepheus was included by Ptolemy in his 2nd century tract, The Almagest. In 1922, it was included in the 88 modern constellations recognized by the International Astronomical Union (IAU).

Notable Features:

Bordered by Cygnus, Lacerta and Cassiopeia, it contains only one bright star, but seven major stars and 43 which have Bayer/Flamsteed designations. It’s brightest star, Alpha Cephei, is a white class A star, which is located about 48 light years away. Its traditional name (Alderamin) is derived from the Arabic “al-dira al-yamin“, which means “the right arm”.

This Hubble image shows RS Puppis, a type of variable star known as a Cepheid variable. Credit: NASA/ESA/STScI/AURA/H. Bond/STScI/Penn State University

Next is Beta Cephei, a triple star systems that is approximately 690 light years from Earth. The star’s traditional name, Alfirk, is derived from the Arabic “al-firqah” (“the flock”). The brightest component in this system, Alfirk A, is a blue giant star (B2IIIev), which indicates that it is a variable star. In fact, this star is a prototype for Beta Cephei variables – main sequence stars that show variations in brightness as a result of pulsations of their surfaces.

Then there’s Delta Cephei, which is located approximately 891 light years from the Solar System. This star also serves as a prototype for Cepheid variables, where pulsations on its surface are directly linked to changes in luminosity. The brighter component of the binary is classified as a yellow-white F-class supergiant, while its companion is believed to be a B-class star.

Gamma Cephei is another binary star in Cepheus, which is located approximately 45 light years away. The star’s traditional name is Alrai (Er Rai or Errai), which is derived from the Arabic ar-r?‘?, which means “the shepherd.” Gamma Cephei is an orange subgiant (K1III-IV) that can be seen by the naked eye, and its companion has about 0.409 solar masses and is thought to be an M4 class red dwarf.

Cepheus is also home to many notable Deep Sky Objects. For example, there’s NGC 6946, which is sometimes called the Fireworks Galaxy because of its supernovae rate and high volume of star formation. This  intermediate spiral galaxy is located approximately 22 million light years distant. The galaxy was discovered by William Herschel in September 1798, and nine supernovae have been observed in it over the last century.

The Fireworks Galaxy (NGC 6946). Credit: Simon Driver (University of St. Andrews)

Next up is the Wizard Nebula (NGC 7380), an open star cluster that was discovered by Caroline Herschel in 1787. The cluster is embedded in a nebula that is about 110 light years in size and roughly 7,000 light years from our Solar System. It is also a relatively young open cluster, as its stars are estimated to be less than 500 million years old.

Then there’s the Iris Nebula (NGC 7023), a reflection nebula with an apparent magnitude of 6.8 that is approximately 1,300 light years distant. The object is so-named because it is actually a star cluster embedded inside a nebula. The nebula is lit by the star SAO 19158 and it lies close to two relatively bright stars – T Cephei, which is a Mira type variable, and Beta Cephei.

Discovered by Sir William Herschel on October 18, 1794, Herschel made the correct assumption of, “A star of 7th magnitude. Affected with nebulosity which more than fills the field. It seems to extend to at least a degree all around: (fainter) stars such as 9th or 10th magnitude, of which there are many, are perfectly free from this appearance.”

So where did the confusion come in? It happened in 1931 when Per Collinder decided to list the stars around it as a star cluster Collinder 429. Then along came Mr. van den Berg, and the little nebula became known as van den Berg 139. Then the whole group became known as Caldwell 4! So what’s right and what isn’t?

The Wizard Nebula (NGC 738). Credit: NASA/JPL-Caltech/WISE Team

According to Brent Archinal, “I was surprised to find NGC 7023 listed in my catalog as a star cluster. I assumed immediately the Caldwell Catalog was in error, but further checking showed I was wrong! The Caldwell Catalog may be the only modern catalog to get the type correctly!”

Finding Cepheus:

Cepheus is a circumpolar constellation of the northern hemisphere and is easily seen at visible at latitudes between +90° and -10° and best seen during culmination during the month of November. For the unaided eye observer, start first with Cepheus’ brightest star – Alpha. It’s name is Alderamin and it’s going through stellar evolution – moving off the main sequence into a subgiant, and on its way to becoming a red giant as its hydrogen supply depletes.

What’s very cool is Alderamin is located near the precessional path traced across the celestial sphere by the Earth’s north pole. That means that periodically this star comes within 3° of being a pole star! Keeping that in mind, head off for Gamma Cephei. Guess what? Due to the precession of the equinoxes, Errai will become our northern pole star around 3000 AD and will make its closest approach around 4000 AD. (Don’t wait up, though… It will be late).

However, you can stay up late enough with a telescope or binoculars to have a closer look at Errai, because its an orange subgiant binary star that’s also about to go off the main sequence and its accompanied by a red dwarf star. What’s so special about that? Well, maybe because a planet has been discovered floating around there, too!

The location of the northern Cepheus constellation. Credit: IAU/Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Now let’s have some fun with a Cepheid variable star that changes enough in about 5 days to make watching it fun! You’ll find Delta on the map as the figure 8 symbol and in the sky you’ll find it 891 light-years away. Delta Cephei is binary star system and the prototype of the Cepheid variable stars – the closest of its type to the Sun.

This star pulses every 5.36634 days, causing its stellar magnitude to vary from 3.6 to 4.3. But that’s not all! Its spectral type varies, too – going from F5 to G3. Try watching it over a period of several nights. Its rise to brightness is much faster than its decline! With a telescope, you will be able to see a companion star separated from Delta Cephei by 41 arc seconds.

Are you ready to examine two red supergiant stars? If you live in a dark sky area, you can see these unaided, but they are much nicer in binoculars. The first is Mu Cephei – aka. Herschel’s Garnet Star. In his 1783 notes, Sir William Herschel wrote: “a very fine deep garnet colour, such as the periodical star omicron ceti” and the name stuck when Giuseppe Piazzi included the description in his catalog.

Now compare it to VV Cephi, right smack in the middle of the map. VV is absolutely a supergiant star, and it is of the largest stars known. In fact, VV Cephei is believed to be the third largest star in the entire Milky Way Galaxy! VV Cephei is 275,000-575,000 times more luminous than the Sun and is approximately 1,600–1,900 times the Sun’s diameter.

Artist’s impression of VV Cep A, created using Celestia, with Mu Cephei (Garnet Star) in the background. Credit: Wikipedia Commons/Rackshea

If placed in our solar system, the binary system would extend past the orbit of Jupiter and approach that of Saturn. Some 3,000 light years away from Earth, matter continuously flows off this bad boy and into its blue companion. Stellar wind flows off the system at a velocity of approximately 25 kilometers per second. And some body’s Roche lobe gets filled!

For some rich field telescope and binocular fun from a dark sky site, try your luck with IC1396. This 3 degree field of nebulosity can even be seen unaided at times! Inside you’ll find an open star cluster (hence the designation) and photographically the whole area is criss-crossed with dark nebulae.

For a telescope challenge, see if you can locate both Spiral galaxy NGC 6946 – aka. the Fireworks Nebula – and galactic cluster NGC 6939 about 2 degrees southwest of Eta Cepheus. About 40 arc minutes northwest of NGC 6946 – is about 8th magnitude, well compressed and contains about 80 stars.

More? Then try NGC 7023 – The Iris Nebula. This faint nebula can be achieved in dark skies with a 114-150mm telescope, but larger aperture will help reveal more subtle details since it has a lower surface brightness. Take the time at lower power to reveal the dark dust “lacuna” around it reported so many years ago, and to enjoy the true beauty of this Caldwell gem.

The Iris Nebula (NGC 7023). Credit: Hewholooks

Still more? Then head off with your telescope for IC1470 – but take your CCD camera. IC1470 is a compact H II region excited by a single O7 star associated with an extensive molecular cloud in the Perseus arm!

Yes, Cepheus has plenty of viewing opportunities for the amateur astronomer. And for thousands of years, it has proven to be a source of fascination for scholars and astronomers.

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources:

Messier 35 – the NGC 2168 Open Star Cluster

The open star cluster Messier 35, with NGC 2158 and IC 2157 shown nearby. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the open star cluster known as Messier 35. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is known as Messier 35, a large open star cluster located in the northern constellation Gemini. M35 is the only Messier Object located in Gemini, and lies near the border with the adjacent constellations of  Taurus, Auriga and Orion. It consists several hundred stars that are scattered over an area that is about the same size as a Full Moon.

What You Are Looking At:

Messier 35 is 2,800 light years away from Earth and is relatively young as star clusters go, having formed only about 100 million years ago. The cluster occupies a region of space that is roughly 24 light years in diameter, and an area of 28 arc minutes on the sky – which is roughly equal to the size of the full Moon.

Image of Messier 35 obtained by the Two Micron All Sky Survey (2MASS). Credit: NASA/2MASS

M35 has a central mass that spans 11.4 light years (3.75 parsecs), with an estimated mass of 1600 to 3200 solar masses. While most of the molecule cloud from which it formed has been blown away, some of the material resides in the immediate vicinity of its stars. This can be seen in the way that light from its particularly bright blue stars is scattered to create a diffuse glow.

These are the hottest main sequence stars in the cluster, which correspond to a spectral classification of B3. M35 also contains more evolved stars, including several orange and yellow giants, which have longer lifespans than the more-massive blue stars (only a few tense of millions of years).

As a result, these stars will likely die out in the near future while the smaller stars continue to evolve, drastically affecting the cluster’s luminosity and appearance. In short, it will become redder and dimmer over time.

History of Observation:

This wonderful star cluster was discovered by Philippe Loys de Chéseaux 1745-46 and recovered again by John Bevis before 1750. However, we know and love it best as Messier Object 35, when it was penned into being by Charles Messier. As he wrote of the cluster upon observing it for the first time:

“In the night of August 30 to 31, 1764, I have observed a cluster of very small stars, near the left foot of Castor, little distant from the stars Mu and Eta of that constellation [Gemini]. When examining this star cluster with an ordinary refractor of 3 feet, it seemed to contain nebulosity; but having examined it with a good Gregorian telescope which magnified 104 times, I have noticed that it is nothing but a cluster of small stars, among which there are some which are of more light; its extension may be 20 minutes of arc. I have compared the middle of this cluster with the star Eta of Castor; its right ascension has been concluded at 88d 40′ 9″, and its declination at 24d 33′ 30″ north.”

Close-up of the Messier 35 open star cluster, showing its blue stars. Credit: Wikisky

How long would it be before the companion cluster was observed as well? My guess is Sir William Herschel’s time. Although Herschel would not publish his notes on Messier objects, they do state while observing M35 that “There is no central condensation to denote a globular form.”

And what of Admiral Smyth? He observed the cluster in September of 1836, though he appeared to have missed its companion cluster. As he recorded of M35 at the time:

“A cluster, near Castor’s right foot, in the Galaxy, discovered and registered by Messier in 1764. It presents a gorgeous field of stars from the 9th to the 16th magnitudes, but with the center of mass less rich than the rest. From the small stars being inclined to form curves of three, four, and often with a large [bright] one at the root of the curve, it somewhat reminds one of the bursting of a sky-rocket.”

A nice description, but if you see the companion cluster, you’ll know it!

Locating Messier 35:

Locating M35 in binoculars is fairly easy once you recognize the constellation of Gemini. You’ll find it just a little more than the average field of view north of Eta – the center most of the three “foot” stars on the northernmost twin. In the finderscope of a telescope, begin with Eta and starhop north until you spot a faint fuzzy in the finderscope.

The location of Messier 35 in the norther n Gemini constellation. Credit: IAU/Sky & Telescope magazine/Roger Sinnott & Rick Fienberg

Because Messier 35 is large, you’ll need low magnification to appreciate the size of this cluster in a telecope. It stands up well to moonlight and light polluted skies – as well as less than perfect sky conditions, but you will need around a 10″ or larger telescope to really begin to notice its companion cluster, NGC 2158. In smaller telescopes with good conditions, it will appear as a faint nebulous patch.

And as always, here are the quick facts on M35 to get you started!

Object Name: Messier 35
Alternative Designations: M35, NGC 2168
Object Type: Galactic Open Star Cluster
Constellation: Gemini
Right Ascension: 06 : 08.9 (h:m)
Declination: +24 : 20 (deg:m)
Distance: 2.8 (kly)
Visual Brightness: 5.3 (mag)
Apparent Dimension: 28.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

The Centaurus Constellation

The Centaurus A galaxy (NGC 5128), a luminous galaxy located in the Centaurus constellation. Credit: ESO

Welcome back to Constellation Friday! Today, in honor of the late and great Tammy Plotner, we will be dealing with the “Centaur”, the Centaurus constellation!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these is the famous Centaur of classical antiquity, otherwise known as the constellation Centaurus. As one of the 48 constellation included in the Almagest, it is now one of the 88 modern constellations recognized by the IAU. Located in the southern sky, this constellation is bordered by the Antlia, Carina, Circinus, Crux, Hydra, Libra, Lupus, Musca, and Vela constellations.

Name and Meaning:

In classic Greco-Roman mythology, Centaurus is often associated with Chiron the Centaur – the wise half-man, half-horse who was a teacher to both Hercules and Jason and the son of the Titan king Cronus and the sea nymph Philyra. According to legend, Cronus seduced the nymph, but they were interrupted by Cronus’ wife Rhea. To evade being caught in the act, Cronus turned himself into a horse.

Centaurus, as depicted on a globe created by Gullielmus Janssonius Blaeu (1602), photographed at Skokloster Castle in Stockholm, Sweden. Credit: Wikipedia Commons/Erik Lernestål

As a result, Philyra gave birth to a hybrid son. He died a tragic death in the end, having been accidentally struck by one of Heracles’ poisoned arrows. As an immortal god, he suffered terrible pains but could not die. Zeus eventually took pity on the centaur and released him from immortality and suffering, allowing him to die, and placed him among the stars.

It is believed that the constellation of Sagitta is the arrow which Chiron fired towards Aquila the Eagle to release the tortured Prometheus. The nearby constellation of Lupus the Wolf may also signify an offering of Hercules to Chiron – whom he accidentally poisoned. Just as Virgo above represents the maid placed in the sky as a sign of pity for the Centaur’s plight.

History of Observation:

The first recorded examples of Centaurus date back to ancient Sumeria, where the constellation was depicted as the Bison-man (MUL.GUD.ALIM). This being was depicted in one of two ways – either as a four-legged bison with a human head, or as a creature with a human head and torso attached to the rear legs of a bison or bull. In the Babylonian pantheon, he was closely associated with the Sun god Utu-Shamash.

The Greek depiction of the constellation as a centaur is where its current name comes from. Centaurus is usually depicted as sacrificing an animal, represented by the constellation Lupus, to the gods on the altar represented by the Ara constellation. The centaur’s front legs are marked by two of the brightest stars in the sky, Alpha and Beta Centauri (aka. Rigil Kentaurus and Hadar), which also serve as pointers to the Southern Cross.

Johannes Hevelius’ depiction of Centaurus, taken from Uranographia (1690). Credit: NASA/Chandra

In the 2nd century AD, Ptolemy catalogued 37 stars in the constellation and included it as one of the 48 constellations listed in the Almagest. In 1922, it was included in the 88 modern constellations recognized by the International Astronomical Union (IAU).

Notable Features:

Centaurus contains 11 main stars, 9 bright stars and 69 stars with Bayer/Flamsteed designations. Its brightest star – Alpha Centauri (Rigel Kentaurus) – is the Solar System’s closest neighbor. Located just 4.365 light years from Earth, this multiple star system consists of a yellow-white main sequence star that belongs to the spectral type G2V (Alpha Centauri A), and a spectral type K1V star (Alpha Centauri B).

Alpha Centauri A, the brightest component in the system, is the fourth brightest individual star (behind Arcturus) in the night sky, B is the 21st individual brightest star in the sky. Taken together, however, they are brighter than Arcturus, and rank third among the brightest star system (behind Sirius and Canopus). The two stars are believed to be roughly the same age – ~4.85 billion years old – and are close in mass to our Sun.

Proxima Centauri, a red dwarf system (spectral class M5Ve or M5Vie), if often considered to be a third member of this star system. Located about 0.24 light years from the binary pair (and 4.2 light years from Earth), this star system was confirmed in 2016 to be home to the closest exoplanet to Earth (Proxima b).

The two brightest stars of the Centaurus constellation – (left) Alpha Centauri and (right) Beta Centauri. The faint red star in the center of the red circle is Proxima Centauri. Credit: Wikipedia Commons/Skatebiker

Then there’s Beta Centauri, a blue-white giant star (spectral class B1III) located 348.83 light years from Earth that is the tenth brightest star in the sky. The star’s traditional names (Hadar or Agena), are derived from the Arabic words for “ground” and “the knee”, respectively. This multiple star system consists of Hadar A, a spectroscopic binary of two identical stars, while Hadar B orbits the primary pair with a period of at least 250 days.

Next up is Theta Centauri (aka. Menkent), an orange K-type giant (spectral class K0IIIb) that is located approximately 60.9 light years from Earth. Its traditional name, which comes from its location in the constellation, translates to “shoulder of the Centaur” in Arabic.

And then there’s Gamma Centauri (Muhlifain), a binary star system located 130 light years from Earth which is composed of two stars belonging to the spectral type A0. It’s name is translated from Arabic and means “two things”, or the “swearing of an oath”, which appears to be a case of name-transfer from Muliphein, a star located in the Canis Majoris constellation.

The constellation is also home to many Deep Sky Objects. For instance, there is the Centaurus A galaxy, the fifth brightest galaxy in the sky and one of the closest radio galaxies to the Solar System (between 10 and 16 million light years distant). The galaxy has an apparent visual magnitude of 6.84 and is believed to contain a supermassive black hole at its center.

Image of the Centaurus A galaxy, combining optical, x-ray and infrared data. Credit: X-ray: NASA/CXC/SAO/Rolf Olsen/JPL-Caltech

Centaurus A’s brightness is attributed to the intense burst of star formation going on inside it, which is believed to be the result of it undergoing a collision with a spiral galaxy. Centaurus A is located at the center of the Centaurus A subgroup of the Centaurus A/M83 Group of galaxies, which includes the Southern Pinwheel Galaxy (aka. Messier 83, M83).

Then there’s the famous Omega Centauri globular cluster, one of the brightest globular clusters in the Milky Way. Located approximately 15,800 light years distant, this cluster is bright enough to be visible to the naked eye. Originally listed as a star by Ptolemy in the Almagest, the cluster’s true nature was not discovered until John Herschel studied it in the early 19th century.

Next up is NGC 4945, one of the brightest galaxies in the Centaurus A/M83 group, and the second brightest galaxy in the Centaurus A subgroup. The spiral galaxy is approximately 11.7 million light years distant and has an active Seyfert II nucleus, which could be due to the presence of a supermassive black hole at its center.

The galaxy NGC 4650A is also located in Centaurus, some 130 million light years from Earth. This galaxy is one of only 100 polar-ring galaxies known to exist, which are so-named because their outer ring of stars and gas rotate over the poles of the galaxy. These rings are believed to have formed from the gravitational interaction of two galaxies, or from a collision with a smaller galaxy in the past.

The Blue Planetary (NGC 3918), as imaged by the Hubble telescope. Credit: ESA/Hubbl/e NASA

The Blue Planetary nebula (aka. the Southerner), is a bright planetary nebula in Centauru, approximately 4,900 light years distant. With an apparent visual magnitude of 8.5, it is the brightest planetary nebula in the far southern region of the sky and and can be observed in a small telescope.

Finding Centaurus:

Centaurus is one of the largest constellations in the night sky – covering over 1000 square degrees – and the brightest in the southern hemisphere.  For observers located at latitudes between +30° and -90°, the entire constellation is visible and the northern portion of the constellation can be spotted easily from the northern hemisphere during the month of May.

For the unaided southern skies observer, the constellation of Centaurus holds a gem within its grasp – Omega Centauri (NGC 5139). But of course, this object isn’t a star – despite being listed on the catalogs as its Omega star. It’s a globular cluster, and the biggest and brightest of its kind known to the Milky Way Galaxy. Though visible to the naked eye, it is best observed through a telescope or with binoculars.

This 18,300 light-year beauty contains literally millions of stars with a density so great at its center the stars are less than 0.1 light year apart. It is possible Omega Centauri may be the remains of a galaxy cannibalized by our own. Even to this present day, something continues to pull at NGC 5139’s stars… tidal force? Or an unseen black hole?

Omega Centauri (NGC 5139), a massive globular cluster that is part of the Centaurus constellation. Credit: Jose Mtanous

Now, hop down to Alpha. Known as Rigil Kentaurus, Rigil Kent, or Toliman, is the third brightest star in the entire night sky and the closest star system to our own solar system. To the unaided eye it appears a single star, but it’s actually a binary star system. Alpha Centauri A and Alpha Centauri B are the individual stars and a distant, fainter companion is called Proxima Centauri – a red dwarf that is the nearest known star to the Sun.

Oddly enough, Proxima Centauri is also a visual double, which is assumed to be associated with Centaurus AB pair. Resolution of the binary star Alpha Cen AB is too close to be seen by the naked eye, as the angular separation varies between 2 and 22 arc seconds, but during most of the orbital period, both are easily resolved in binoculars or small telescopes.

Then stop for a moment to take a look at Beta Centauri. Beta Centauri is well-known in the Southern Hemisphere as the inner of the two “Pointers” to the Southern Cross. A line made from the other pointer, Alpha Centauri, through Beta Centauri leads to within a few degrees of Gacrux, the star at the top of the cross. Using Gacrux, a navigator can draw a line with Acrux to effectively determine south.

But, that’s not all! Hadar is also a very nice double star, too. The blue-white giant star primary is also a spectroscopic binary, accompanied by a widely spaced companion separated from the primary by 1.3″. Or try Gamma Centauri! Muhlifain has an optical companion nearby, but check it out in the telescope… it’s really two spectral type A0 stars each of apparent magnitude +2.9!

The location of the Centaurus constellation in the southern sky. Credit: IAU/Sky & Telescope magazine/Roger Sinnott & Rick Fienberg

For binoculars or telescopes, hop on over to Centaurus A. This incredible radio source galaxy is one of the closest to Earth and also the fifth brightest in the sky. When seen through an average telescope, this galaxy looks like a lenticular or elliptical galaxy with a superimposed dust lane, and oddity first noted in 1847 by John Herschel.

The galaxy’s strange morphology is generally recognized as the result of a merger between two smaller galaxies and photographs reveal a jet of material streaming from the galactic core. Although we cannot see it, there may be a supermassive black hole at the center of the galaxy is responsible for emissions in the X-ray and radio wavelengths!

For binoculars and rich field telescopes, head towards the Crux border and center on Lambda Centauri for open cluster, IC2944. Also known on some observing lists as Caldwell 100, this scattered star cluster contains about 30 stellar members and some faint nebulosity. About 2 degrees southwest of Beta you’ll find another pair of open clusters, NGCs 5281 and 5316. Or try your hand just about a degree west of Alpha for open cluster, NGC5617. These last three are far more rich in stars and photon satisfying!

Centaurus has been known to human astronomers since the Bronze Age and has gone through some changes since that time. But even after thousands of years’ time, the Centaur is still hunting in the night sky! And for those who love viewing classic constellations and bright objects, it still provides viewing opportunities that are bound to dazzle the eyes and inspire the mind!

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources: